
MATH 580A Assignment 4 — Ray Tracing

1 Introduction

Ray tracing is a technique used for rendering scenes with 3d geometry. It is well-suited for ren-
dering objects realistically and is based on modeling how individual light rays bounce and scatter
before reaching our eyes. The downside however is that ray tracing is fairly time-consuming and
often too slow for interactive 3d applications. In this assignment, you will implement a simple
raytracer that can render planes and spheres with shading, shadow, reflections, and transparency.
By the end of the assignment, you will be able to render a realistic-looking scene as in Fig. 1.

Figure 1: Raytracer Example

We will first summarize the basic principle behind raytracing in this section. Each subsequent
section will introduce the necessary mathematics and physics for implementing an additional
feature of the raytracer. Finally, there are a couple sections at the end of this handout on imple-
mentation details. You may wish to read the implementation details sections concurrently with
the other more theoretical sections.

There are three main types of objects we will be concerned with: the camera, lights, and
geometries. The camera models how the scene is viewed. It is located at a specific point p⃗ in R3,
has a facing vector f⃗ and an up vector u⃗. The window screen sits in front of the camera in the
direction of the facing vector and is oriented such that the up vector is aligned with the upwards
direction on the window screen. The window screen is subdivided into many pixels and a ray is
cast from the camera position to the center of each pixel in order to determine the color of that
pixel.

1

MATH 580A: Graduate Computing Seminar

Lights are what emit light rays that bounce or scatter off of objects so that they can be seen
through the camera. In this assignment, we will consider point lights, directional lights, and
ambient lights. A point light has all the light concentrated at one point in R3 and a base intensity
I. Its light attenuates, meaning that the intensity diminishes as per the inverse square law. That
is, if a point light is illuminating a point at a distance r away from the source, then the effective
intensity will be I

(1+r)2 . A directional light models the sun and has an intensity I and direction
d in which light rays are cast. The light rays do not attenuate and do not emanate from a single
point; a directional light emits all possible rays pointing in direction d. Finally, there is usually a
single ambient light in the scene. An ambient light does not physically correspond to any light
source but instead provides a global fixed amount of illumination with intensity I to all objects
in the scene.

Finally, geometries are the physical objects that we will see in a scene. In this assignment,
we will only consider planes and spheres. Geometries can have different properties that affect
how light rays interact when intersecting their surface. The properties we will handle in this as-
signment are “shininess” via specular reflections and transparent objects with a certain refractive
index. Our geometries will either be a single solid color or fully transparent.

Figure 2: A Sample Scene with a Camera, Light and Geometry.

Fig. 2 depicts these three types of object in a scene. The dotted ray r is traced outwards from
the camera position and goes through the center of a pixel on the screen in front of the camera.
The ray intersects a sphere geometry at a certain point. We then look for lights in the scene that
illuminate the point of intersection. In this case, we have a single point light that illuminates the
point of intersection. By computing the intensity of light reflected off the sphere, we are able to

2/13

MATH 580A: Graduate Computing Seminar

fill in the corresponding pixel with the appropriate color.

2 Emitting Rays

The very first order of business for implementing a ray tracer is to emit one ray per pixel on the
screen. A camera object is set up for you already, but will need to implement the Camera.pixel()
method that takes the (x,y) coordinate of a pixel and returns a ray with origin at the camera’s
position and going through the center of the appropriate pixel.

There are a couple parameters to be aware of. First, a camera has a field of view angle (fov) θ

which determines the viewing angle of the frustrum. By default, we will use a field of view angle
of π

4 , but by adjusting this value towards π
2 or towards 0, we can simulate a wide-angle camera

lens or a very narrow pinhole view. Next, the screen we are rendering will have a resolution
width x height pixels and we need to subdivide the rendering plane appropriately. The size of
each pixel on the rendering plane will be called the pixel size.

From the facing vector f⃗ and up vector u⃗, we can compute the right vector r⃗ = f⃗ × u⃗. The

rendering plane at distance ∥⃗f∥ will be a square of side length s = 2 tan(θ)∥⃗f∥
max {w,h} . For the pixel at po-

sition (x, y), we want to cast a ray starting from p⃗ in the direction f⃗+
(
x − 1

2

)
s⃗r+

(
y − 1

2

)
s⃗u. The

camera setup and corresponding calculations are summarized in Fig. 3. Although the rendering
plane is square, the actual screen will only involve a w × h subgrid of pixels.

Figure 3: Camera Setup and Ray Calculations.

The first step of implementing the ray tracer, is to compute the correct ray for the Camera.pixel()
function in objects.py, and call color(r) for each ray r corresponding to a pixel on the screen.
At this point, rays are being cast but we have no logic used to detect whether the rays are hitting
objects, so color(r) will just return a vector representing pure black Vector3(0,0,0).

3/13

MATH 580A: Graduate Computing Seminar

2.1 [Optional] Implement Supersampling Anti-Aliasing

By casting one ray per pixel, we will be determining the pixel’s color based solely on the ray cast
through the center of the pixel. This can lead to jagged or pixelated images, especially at low
screen resolutions. The process of smoothing out jagged edges is known as anti-aliasing. One
simple method of anti-aliasing is to cast more than one ray per pixel and averaging the colors
computed across the multiple rays. This is known as supersampling anti-aliasing (SSAA) and as
an optional extension, you can implement a version of SSAA that samples four rays per pixels.

A naive approach may be to split each pixel into 4 subpixels in a 2 × 2 arrangement and
use the centers of the subpixels for sampling. These positions of these centers would be then be(

x ± 1
4 , y ± 1

4

)
. However, it turns out that a 2× 2 grid shape often leads to suboptimal antialiasing

because of jagged edges that align with the grid horizontally or vertically. Rotating the positions
of these centers to be

(
x + 1

8 , y + 3
8

)
,
(
x + 3

8 , y − 1
8

)
,
(
x − 1

8 , y − 3
8

)
,
(
x − 3

8 , y + 1
8

)
will significantly

improve the antialiasing quality for the same number of samples. See Fig. 4 for a visualization
of the sampling pattern.

Figure 4: SSAA Rotated Grid Pattern

3 Plane and Sphere Geometries

In this section, you will implement the geometric functions necessary for detecting ray intersec-
tions with planes and spheres. You will implement the function intersect_ray() which takes a
ray, represented as a line segment (p⃗1, p⃗2), and return the nearest intersection of the ray with the
geometry.

4/13

MATH 580A: Graduate Computing Seminar

3.1 Planes

We will represent planes with a center point c⃗ on the plane and a normal vector n⃗. To compute
the intersection with a ray, we wish to find some 0 ≤ s ≤ 1 such that (p⃗1 + s(p⃗2 − p⃗1)− c⃗) · n⃗ = 0.
Solving for s, we find that the point of intersection occurs when

s =
(⃗c − p⃗1) · n⃗
(p⃗2 − p⃗1) · n⃗

. (1)

You will also need to handle the case where no intersection occurs or when s < 0 or s > 1. In
these cases, you should return None.

3.2 Spheres

We will represent spheres with a center point c⃗ and a radius r > 0. Spheres are a little trickier
than planes. To compute the intersection with a ray, we wish to find some 0 ≤ s ≤ 1 such that
∥p⃗1 + s(p⃗2 − p⃗1)− c⃗∥ = r. This is equivalent to solving the following quadratic equation,

∥p⃗2 − p⃗1∥2s2 + 2 ((p⃗2 − p⃗1) · (p⃗1 − c⃗)) s + ∥p⃗1 − c⃗∥2 = r2. (2)

If the quadratic has multiple solutions, you will want to compute the nearest intersection,
which corresponds to the minimum value of s such that 0 ≤ s ≤ 1. Again, you should handle
the case where no intersection occurs and return None appropriately.

3.3 Raycasting and Testing

At this point, you will be able to test your raytracer implementation thus far and start to see
some images! First, implement raycast() in utilities.py. This function computes the first
intersection with a geometry along the given ray and returns the intersection point and the
geometry. Then, in color(), you can cast a ray and return the color of the geometry the ray hits.
This will result in an image that accurately draws the geometry in the scene, but without any
shading. When rendering SCENE1, you should see an image like in Fig. 5.

Figure 5: Initial Render of SCENE1.

5/13

MATH 580A: Graduate Computing Seminar

4 Diffuse and Specular Shading

The next step is to shade our geometries based on the intensity of the light hitting their surfaces
and reflecting into the camera. In real life, different materials reflect or scatter light in very
different ways, depending on how matte or glossy the material is. We will model objects that can
range from being completely matte to being very shiny. The particular shading model we will use
is called Blinn-Phong shading, named after Jim Blinn and Bui Tuong Phong. This shading model
applies point lights and directional lights. Ambient lights will illuminate all objects uniformly,
regardless of their position and angle relative to the camera.

When computing the color seen through the camera at a particular intersection point on a
geometry, we will sum over the color contributes of each point light and directional light in the
scene. The relevant variables for this computation are:

• The color C of the geometry.

• The intensity I of the light.

• The shininess of the geometry α.

• The normal vector N⃗ at the point of intersection.

• The direction vector V⃗ from the point of intersection back to origin of the ray cast.

• The direction vector L⃗ from the point of intersection towards the light source.

All vectors will be normalized to be unit vectors.
The Blinn-Phong shading model first computes a unit halfway vector H⃗ = L⃗+V⃗

∥⃗L+V⃗∥ . The color
contribution from a given light is then equal to(

(⃗L · N⃗)I + (H⃗ · N⃗)α I
)

C. (3)

See Fig. 6 for a visualization of the relevant vectors for computing Blinn-Phong shading at a point
on a sphere.

Figure 6: Vectors Used in Blinn-Phong Shading.

6/13

MATH 580A: Graduate Computing Seminar

In Eq. (3), the term (⃗L · N⃗) is the diffuse contribution. This term is what contributes to mate-
rials looking matte or dull. It is not dependent on angle the camera makes with the intersection
point and light is assumed to scatter or diffuse in all directions when it hits the geometry. It does
however depend on the angle the direction of light makes with the normal. Since L⃗ and N⃗ are
both unit vectors, their dot product simply represents the cosine of the angle θ between them.
The property that matte surfaces diffuses light based on cos(θ) is known as Lambert’s cosine
law. Intuitively, we expect that an object is most well-lit if the light shines head on when θ = 0
and the object is not lit at all, if the light is tangent to the sphere when θ = π

2 .
The term (H⃗ · N⃗)α is the specular contribution. This is an approximation proposed by Blinn

as a modification to Phong’s original specular reflection model. Specular highlights make a
geometry look glossy or shiny and correspond to light rays that reflect directly off the surface
and into the camera. An ideal reflection occurs when the angle between N⃗ and L⃗ is equal to the
angle between N⃗ and V⃗. To approximate this, we take the dot product of the halfway vector with
the normal vector. Observe that this dot product tends to 1 in the ideal reflection case and tapers
off to 0 otherwise. The exponent α controls how fast the tapering off occurs. When α = ∞, we
obtain a perfectly reflective surface. We will use values of α ≈ 1000 to model shiny surfaces.

4.1 Implementation Details

The original Blinn-Phong shading defined constants kd and ks used to weight the amount of con-
tribution from diffuse and specular reflections respectively. Instead of specifying these constants
manually for our geometries, we will always assume kd = 1 and set ks = 1−e−α/200

1+e−α/200 . This will
ensure that objects with low shininess also contribute less light reflected specularly.

Another detail that you need to be aware of when implementing Blinn-Phong shading is that
it’s possible for some of our dot products to be negative. For example, a point light may graze the
intersection point on the sphere at an angle greater than π

2 from the normal. In these cases, there
should be no contribution to the diffuse or specular reflection. Thus, if a dot product results in a
negative value, we should replace it with 0.

Finally, be sure to implement attenuation for point lights. The effective intensity for a point
light is I

(1+r)2 where r is the distance from the point light to the point on the geometry in question.
You should implement the Blinn-Phong shading computation in blinn_phong() in utilities.py,

then call this function in compute_intensity() for both PointLight and DirectionalLight. You
will also want to implement AmbientLight.compute_intensity() which simply returns IC with-
out any consideration of vectors. Once these are all implemented, you should loop through each
light and sum their intensity contributions in color() to obtain the color for each pixel in the
raytracer. After implementing Blinn-Phong shading, you can try rendering SCENE1 and SCENE2.
At this point, they should look like as in Fig. 7.

4.2 Shadows

One simple graphical feature missing from our raytracer thus far is shadows. In order for shad-
ows to be properly rendered, when computing the contribution from a given light source, we
need to check if there are any other geometries in between our point of intersection and the light
source. If there is an obscuring geometry, then we should return Vector3(0,0,0) as there is no
light contribution. In addition, transparent objects do not obscure light, so you will only compute
intersections with geometries where is_transparent is False.

7/13

MATH 580A: Graduate Computing Seminar

Figure 7: SCENE1 and SCENE2 with Blinn-Phong Shading.

When checking for obscuring geometry, you should cast a ray in the direction of L⃗ from
the point of intersection p⃗. In order to avoid detecting the original point of intersection as an
obscuring geometry, you can shift the origin of this ray by 0.1⃗L so that it does not begin exactly
at the point of intersection.

Once you have implemented shadows, you can render SCENE2 again and it should look like as
in Fig. 8. Observe that a sphere can obscure itself as in this scene, which produces the shadows
along half the sphere.

Figure 8: SCENE2 Rendered With Shadows.

5 [Optional] Reflections

Besides having specular lighting, glossy geometries should also reflect other geometries on their
surface. In this section, we will implement these reflections by modifying our raytracing to be
recursive.

First, when we have a ray r⃗ casted and intersecting with our geometry at a point p⃗, we need
to compute the reflected ray r⃗′. Let n⃗ be the normal vector of our geometry at point p⃗. Our
reflected ray should lie in the same plane as r⃗ and n⃗ and make the same angle with the normal
as the original ray does. Assuming our normal vector is a unit vector, the reflected ray can be
computed via:

r⃗′ = r⃗ + 2(proj⃗n(⃗r)− r⃗). (4)

8/13

MATH 580A: Graduate Computing Seminar

Here, proj⃗n(⃗r) = (⃗r · n⃗)⃗n is the projection of r⃗ onto n⃗. The reflected ray is depicted in Fig. 9.
Once we have computed the direction of the reflected ray, we want to add a reflective contri-

bution based on the color seen by tracing along the reflected ray r⃗′. Thus, we will recursively call
color() with our new ray to compute what color we would see from our point of intersection at
the geometry if we looked towards r⃗′. Note that if our reflected ray intersects another geometry,
we may have to recursively compute reflections on that geometry first! When our scene contains
a lot of geometries, this could lead to a lot of recursive calls and we will implement a maximum
recursion depth for our raytracing. By keeping track of how many times we have recursed so far,
we can stop and return Vector3(0,0,0) if we have reached the maximum recursion depth.

Figure 9: Reflected Ray r⃗′.

One other detail to keep in mind when implementing reflections is that like specular lighting,
we want to weight how much we reflect based on the shininess α of our geometry. We will use
the same weight 1−e−α/200

1+e−α/200 as for specular lighting. Once you have implemented reflections, you
can try rendering SCENE3. You should see something similar to Fig. 10

Figure 10: Rendering SCENE3.

9/13

MATH 580A: Graduate Computing Seminar

6 [Optional] Transparent Objects and Refraction

The final feature we will add to our raytracer is the ability to handle transparent geometries. In
the real world, there is a wide spectrum of transparent materials, such as water, tinted acrylic,
translucent materials (e.g. frosted glass), etc. Our transparent geometries will approximate fully
transparent colorless glass.

To compute the color of a ray that intersects a transparent geometry, we will need to consider
both reflection and refraction. Reflection we have already seen how to implement in the previous
section. We will focus on computing the refraction ray and then see Schlick’s appproximation
for how to weight the reflection and refraction rays.

6.1 Refraction

When light enters a different medium, it bends in a phenomenon known as refraction. For this
assignment, you will need to simulate light refracting as it passes from air into a glass sphere
and back out into the air. Note that we will not consider planes in this assignment.

Let v⃗ be the ray from the point of intersection at a sphere back towards the camera and let
N⃗1 be the unit normal at this point of intersection. Let θ1 be the angle between the vectors v⃗ and
N⃗1. Snell’s law describes how light gets refracted as it passes through the medium. If we let v⃗′

be the refracted ray and θ2 be the angle between v⃗′ and −N⃗1, then Snell’s law tells us that

sin θ1

sin θ2
=

n
1

. (5)

Here, n is called the refractive index of the medium. The right hand side is written with a
denominator of 1 because the refractive index of air is approximately 1. For the refractive index
of glass, we will default to 1.5 which is a good approximation empirically, though you can play
around with different refractive indices for different effects.

The ray v⃗′ will travel through the glass sphere and intersect the sphere at a different intersec-
tion point. When this ray exits from the second intersection point, we apply Eq. (5) again, though
the right hand side now has the refractive indices reversed, as light is exiting glass back into the
air. This will result in a new ray v⃗′′. Finally, you should call color() starting from this new
intersection point on the sphere and in the direction of v⃗′′. The relevant geometry is summarized
in Fig. 11. Note that necessarily ϕ1 = θ2 and ϕ2 = θ1, though you don’t need this fact for the
implementation.

Observe that when you solve ϕ2 = sin−1(n sin ϕ1), it is possible for numerical inaccuracy
issues to lead to |n sin ϕ1| > 1. To handle this edge case, you can either use ϕ2 = θ1 or render the
contribution from refraction as Vector3(0,0,0).

6.2 Schlick’s Approximation

When a light ray hits a glass object, what happens is that part of the light is reflected off of the
glass and part of the light passes through and is refracted. The ratio of reflected light to refracted
light is determined by the Fresnel equations. These equations are relatively complicated and a
common approximation used in raytracing is known as Schlick’s approximation, named after
Christophe Schlick.

10/13

MATH 580A: Graduate Computing Seminar

Figure 11: Refraction Through a Glass Sphere.

Let θ be the angle the view vector v⃗ makes with the normal vector N⃗. Then

R =

(
1 − n
1 + n

)2

+

(
1 −

(
1 − n
1 + n

)2
)
(1 − cos θ)5, (6)

is Schlick’s approximation for the reflection coefficient. Here n is the refractive index of the
medium. Observe that 0 ≤ R ≤ 1. If Creflect is the color contribution from reflection and Crefraction
is the color contribute from refraction, then the total color contribution is

C = R · Creflect + (1 − R) · Crefraction. (7)

6.3 Implementation

In this assignment, we render transparent geometries and non-transparent geometries in com-
pletely different ways. In particular, the Blinn-Phong shading computations do not apply to
transparent objects. In color() you should check if the point of intersection lies on a transparent
geometry or an opaque geometry and handle the two cases accordingly.

Once you have implemented transparent geometries, you can try rendering SCENE4 and
SCENE5. SCENE5 was depicted in the introduction and your SCENE4 should look similar to Fig. 12.

7 Object-Oriented Programming

A feature of Python that we have skipped over thus far are objects and classes. These are features
common in a type of programming known as object-oriented programming (OOP). In this section
we will briefly cover the relevant OOP details.

A class refers to a type of data. For example, numbers, strings, lists, dictionaries are all
different classes in Python. Classes can store data in different ways and operators can have
different meanings for different classes. For example, the + operator refers to numerical addition
on numbers but list concatenation for lists.

11/13

MATH 580A: Graduate Computing Seminar

Figure 12: Rendering SCENE4.

Classes can also have custom methods. For example, lists have a <list>.sort() method
which sorts a list in place. Methods differ from functions in that they are tied to a specific class.
So although you might be able to pass in different classes into a print() function, you can only
call .sort() on a list.

Large programs tend to have their own custom classes to represent data they want to work
with. In this assignment, the following classes are set up for you:

• Vector3: This represents a vector in R3. Addition, subtraction, and multiplication with a
scalar behaves as expected.

• Camera: This represents the camera object discussed in the introduction.

• Plane, Sphere: These represent plane and sphere geometries respectively.

• PointLight, DirectionalLight, AmbientLight: These represent the different types of light
objects.

An object is a particular instance of a class. So the list type abstractly is a class, but one specific
list instance is an object. In order to create an instance of a custom class, you call the class name
as if it were a function. For example Vector3(1.0, -1.5, 0.0) would create a 3-dimensional
vector object with coordinates (1,−1.5, 0).

In this assignment, you will not need to define new methods or new classes, but you will
need to instantiate objects and fill out the logic for methods on some of the classes. As you look
through the classes in objects.py, you will notice that each method begins with an argument
called self. This is a special argument that corresponds to the specific object instance the method
is called on. For example, when implementing def normal_at(self, point) in the Sphere class,
you can use self.center and self.radius to access that specific sphere object’s center and
radius respectively.

There is also a special method called __init()__ that is used for initializing objects. By
looking in that method, you can see what attributes are accessible on a given class. For example,
if you look at the __init()__ method on the Sphere class, you’ll see that Sphere’s have a center
and radius attribute. Both Sphere and Plane also have some additional common attributes that
you can find on the Geometry class. This is a bit of special syntax in Python that allows multiple

12/13

MATH 580A: Graduate Computing Seminar

classes to share some code. So both Sphere and Plane have a shininess or is_transparent
attribute for example.

8 Implementation Details

There is a fair amount of starter code provided for you. All the functions and methods you will
need to implement are written out, with #TODO comments where appropriate. Furthermore, a
relatively comprehensive Vector3 class implementations provided. For example, you can call
v.dot(w) to obtain the dot product of v with w. The full list of methods provided is in the
implementation of Vector3 in utilities.py.

In the past, we have seen colors represented as 3-tuples of integers between 0 and 255 inclu-
sive. In this assignment, we will work with colors as Vector3’s with components in the range
0.0 to 1.0. After computing the final color for each pixel, you should call color_clamp(). This
will ensure that color values beyond 1.0 are clamped down to 1.0.

Graphical applications often have a coordinate system where the x-axis points to the right
and the y-axis points downwards on the screen. You do not have to worry about this convention
and may instead treat the screen as going from -WIDTH // 2 to WIDTH // 2 in the x direction and
-HEIGHT // 2 to HEIGHT // 2 in the y direction. There is code provided for you to handle the
difference in convention.

Finally, raytracing is a slow process! Complicated scenes with lots of objects, SSAA, and
reflection can take nearly a minute to render. When testing your code, you can render a low
quality version by setting the WIDTH and HEIGHT parameters to a smaller resolution and turning
SSAA off. When you’ve verified that your implementation looks correct, you can adjust the
settings to render a high quality image.

13/13

	Introduction
	Emitting Rays
	[Optional] Implement Supersampling Anti-Aliasing

	Plane and Sphere Geometries
	Planes
	Spheres
	Raycasting and Testing

	Diffuse and Specular Shading
	Implementation Details
	Shadows

	[Optional] Reflections
	[Optional] Transparent Objects and Refraction
	Refraction
	Schlick's Approximation
	Implementation

	Object-Oriented Programming
	Implementation Details

