
MATH 580A Assignment 3

1 Checking Bipartite-ness

In class, we saw how to use DFS in order to compute whether or not a graph is k-colorable. A
graph that is 2-colorable is called bipartite. In the first program, you will write a function to
check if a graph is bipartite, using BFS. Using a BFS approach, you can color all the vertices at
distance d away from the root vertex with color 1 if d is odd and color 2 if d is even.

After you color a node, you should check to see if it has been colored the same color as any of
its neighbors. If so, then a contradiction has been reached and the graph is not bipartite. If you
manage to color all the nodes successfully without contradictions, then the graph is bipartite.

2 Topological Sort

A real world application of graphs is for deciding on an order to do tasks. Perhaps you have a
project that has some set of tasks T and each task ti ∈ T depends on first finishing some other
tasks ti1 , . . . , tik . For example, your “project” may be throw a birthday party. One task might be
to bake a birthday cake but this is dependent on a task where you shop for ingredients. Sending
invitations to the party is independent of both of the aforementioned tasks. The problem to solve
here is to find an ordering of the tasks such that you can do them in order without worrying
about dependencies.

This problem can be modeled using graphs and the resulting algorithm is known as topolog-
ical sort. Each task ti is a node in a directed graph and if task ti depends on task tj, then draw a
directed edge from tj to ti, indicating that tj has to be finished first. If there are no cycles in the
resulting graph (otherwise you could not finish any of the tasks in the cycle!), then the graph is
called a directed acyclic graph, or DAG for short. The problem is then to compute an ordering
of the nodes [ti1 , ti2 , . . . , tin] such that if there is a path from ti to tj in the graph, then ti appears
before tj in the ordering. In the real life application, this is saying that by the time we do task tj,
any tasks ti that are a requirement has already been done first.

You will implement an algorithm for this known as Kahn’s algorithm. The idea is as follows:
first find all nodes in the graph with no incoming edges. These nodes can done in any order
since they have no dependencies so do them all first. Delete these nodes from the graph and
repeat. Similar to BFS, you will have a list of nodes to process at each “depth” in the algorithm.
The order in which nodes at the same depth are processed do not matter so you will return a list
of lists, where the ith lists are the nodes at “depth” i in this algorithm.

1

MATH 580A: Graduate Computing Seminar

3 Intelligent Scissors

Introduction

There is a selection tool in digital image programs known under various names such as intelligent
scissors or magnetic lasso. The tool helps with selecting a specific object from a picture to cut out.
To use these tools, you start off clicking on a point in the image and start moving the mouse
around the contour of the object. The selection path will approximately follow the the path
traced out by your mouse, but it will attempt to intelligently “snap” to the edges of objects in
the image and automatically correct for any human inaccuracies. You can see an example of the
magnetic lasso tool in action at https://youtu.be/o-m3loHVbJw?t=126. In this program, you
will implement a variant of Dijkstra’s algorithm that we saw in class to implement the intelligent
scissors tool. The resulting tool will be able to cutout contours of objects as in Fig. 1. The
approach here is based off a 1995 paper by Eric N. Mortensen and William A. Barrett titled
“Interactive Segmentation with Intelligent Scissors”.

Figure 1: Intelligent Scissors Tracing Out a Bluebird Contour

Modeling an Image as a Graph

The function image_data_to_graph() is provided to you and computes a weighted graph rep-
resentation of an image useful for applying Dijkstra’s algorithm on. We would like the shortest
path from the initial point to the current position of the mouse to follow the contours of the object
in the image. This subsection will give a brief explanation of how this graph representation is
computed under the hood.

The graph structure contains one node per pixel in the image. Orthogonally adjacent pixels
in the image have edges joining them. Thus, if our image has width w and height h, then
our resulting graph is the w × h grid graph. Now, to each edge, we would like to associate
a weight such that pixels of a similar color have a high weight and pixels of differing colors
have a low weight. This weight assignment implies that our shortest path will try to avoid
the interior of objects and instead follow their contours. See Fig. 2 for an example 6x6 image,
its associated weighted graph, and the shortest path on this graph. Observe that this is not
the shortest Euclidean distance between the top-left and top-right pixels. Instead, it roughly

2/5

https://youtu.be/o-m3loHVbJw?t=126
https://www.sciencedirect.com/science/article/abs/pii/S1077316998904804

MATH 580A: Graduate Computing Seminar

approximates the edge by first stepping down one pixel.
The edge weights between graphs are calculated by first computing the gradient in the x and

y directions and the Laplacian of the image at each pixel. Images are first typically converted
to grayscale as opposed to handling the red, green, and blue channels separately. To convert
to grayscale, we compute the luma value given by the weighted sum L = 0.299R + 0.587G +

0.114B, where R, G, B are the values of the red, green, and blue values respectively. In order to
approximate the gradient and the Laplacian at each pixel, we convolve with the following 3x3
kernels:

gx =

−1 0 1
−2 0 2
−1 0 1

 gy =

−1 2 −1
0 0 0
1 2 1

 ∆ =

−1 −1 −1
−1 8 −1
−1 −1 −1

Next, if Gx and Gy are the gradients in the x and y direction for a given pixel, we compute the

magnitude of its gradient via G =
√

G2
x + G2

y. We also compute a value called the zero-crossing

Z at a pixel. For a pixel at position (x, y) we look at its Laplacian ∆x,y and if it differs in sign
from the Laplacian of some neighboring pixel ∆x−1,y, ∆x+1,y, ∆x,y−1, ∆x,y+1 and its absolute value is
smaller than the Laplacian of that neighboring pixel, then Z = 1. Otherwise, Z = 0.

Finally, for each pixel, we define its cost to be C = 0.5Z + 0.5G. To compute the edge weight
between a pixel at position (x, y) and a pixel at position (x′, y′) we average the sum of their costs.
This is a simplified model of the edge weight function described in Mortensen and Barrett’s
paper and will suffice for our intelligent scissors application to perform well.

Dijkstra’s Algorithm Variant

For this program, you will only need to code up the variant of Dijkstra’s algorithm used to find
the shortest path between the initial anchor node that the user clicks on and the current node
that the mouse cursor is on. The version of Dijkstra’s we saw in class has two issues that we need
to address.

First, it only outputs the length of the shortest path from the source node to other nodes. For
our application we also need the actual path itself. Fortunately, this can be obtained fairly easily.
For each node, we record not only the length of the shortest path to it, but also the parent node
that precedes it in its shortest path. In Dijkstra’s algorithm, when we “lock in” a node v, we look
at each of its neighbors and see if we can compute a path length that is shorter than our tentative
upper bound. For any neighboring node n whose upper bound we update, we also update its
parent node to be v, the current node we’re locking in. This is because the shortest path we’ve
found so far for n involves first taking the shortest path to v and then taking the edge v → n.

At the end of the algorithm, to compute the shortest path from the source to a node v, we
start with v, follow its parent node, then follow its parent’s parent, and so on until we reach the
source node. This is the shortest path from v back to the source, so we can reverse this path to
go from the source to v.

The second issue is that the implementation we saw in class is too slow! The naïve version’s
runtime was O(|V|2) where |V| is the number of vertices in the graph. Our sample image has
dimensions 308 × 200 pixels and the resulting graph has 308 · 200 = 61600 vertices. Therefore,
our in-class implementation of Dijkstra would take around 616002 ≈ 3.8 · 109 operations. This is
acceptable (on the order of 10 seconds) if we needed to only compute the shortest path once, but
is far too slow for recomputing the shortest path every time the user moves their mouse. We will

3/5

MATH 580A: Graduate Computing Seminar

0.370.37 0.460.46 0.500.50 0.460.46 0.370.37

0.110.11 0.290.29 0.420.42 0.290.29 0.110.11

0.330.33 0.330.33 0.160.16 0.330.33 0.330.33

0.290.29 0.360.36 0.550.55 0.360.36 0.290.29

0.460.46 0.610.61 0.810.81 0.610.61 0.460.46

0.500.50 0.500.50 0.500.50 0.500.50 0.500.50

0.180.18

0.100.10

0.290.29

0.460.46

0.500.50

0.290.29

0.330.33

0.330.33

0.290.29

0.460.46

0.460.46

0.290.29

0.350.35

0.680.68

0.660.66

0.460.46

0.290.29

0.350.35

0.680.68

0.660.66

0.290.29

0.330.33

0.330.33

0.290.29

0.460.46

0.180.18

0.100.10

0.290.29

0.460.46

0.500.50

Figure 2: Example 6x6 Image, Graph and Shortest Path.

see how to code up an implementation that runs in O((|V|+ |E|) log |V|) time. For our graph,
each vertex has degree at most 4 so O(|E|) = O(|V|). This reduces the number of operations to
about 61600 · log(61600) ≈ 7 · 105 which is many orders of magnitude faster.

In order to obtain this speedup, we will optimize how to pick the next vertex to lock in.
In class, we looped over every remaining vertex to find the one with the minimum value. We
will use a data structure called a heap or priority queue. A heap acts like a list except that after
sorting the elements in it initially in O(n log n) time, you can add and remove elements from it in
O(log n) time and the heap will automatically stay sorted. We can keep a heap of our candidate
vertices and it will stay sorted by the path length as we update the lengths when iterating over
neighboring vertices. The vertex with the minimum value can then easily be found since the
heap remains sorted. Python provides a heap data structure as part of its built-in library heapq.

In order to use heapq, first create a regular Python list to represent the actual heap. Then, in-
stead of adding and removing elements to the list in the usual fashion, use heapq.heappush(<heap>,
<item>) to add an element and heapq.heappop(<heap>) to pop off the smallest element. In or-
der to implement Dijkstra’s with Python’s heapq, one possibility is to push on tuples of the form
(<path_length>, <node>). Tuples are compared by first comparing their first element, then
breaking ties by comparing their second element, and so on. By placing <path_length> first, the
heap will stay sorted according to the tentative path lengths.

4/5

MATH 580A: Graduate Computing Seminar

One snag with Python’s implementation of heapq is that there is no default method for up-
dating the values of an element in the heap. In order to work around this, simply push another
tuple (<path_length>, <node>) when updating a path length of a neighboring node. The heap
may contain duplicate nodes as a result, and as you pop tuples off, you should check that the
node hasn’t already been added to used. Also, note that the use of a heap should be in addition
to maintaining a ret dictionary that stores the shortest path length and the parent node.

There is one more slight optimization to for this particular application of Dijkstra’s algorithm.
Typically, one calculates the shortest path from the source node to all nodes in the graph. How-
ever, we only require the shortest path to a specific target node. Thus, once we’ve locked in the
shortest path to the target node, we can stop Dijkstra’s algorithm and return that path. The target
node will be typically close to where the user initially clicked so this will substantially speed up
computations.

5/5

	Checking Bipartite-ness
	Topological Sort
	Intelligent Scissors

