
MATH 580A Assignment 2

1 Introduction

Wordle is a recent popular game that involves guessing a hidden 5 letter answer word. After
each guess, the game will tell you whether each letter is in the answer and in the same location
(green), in the answer and in a different location (yellow), or not in the answer (gray). The game
typically gives you up to 6 guesses and has sparked some interesting analysis trying to come up
with the best possible strategy for the game.

There are several ways to define an optimal strategy, but we will be asking for the fewest
guesses on average, assuming every answer word has the same likelihood of appearing. This
question has in fact been solved and there is even in fact a leaderboard for Wordle solvers. This
assignment is based off of the techniques described by Alex Selby here, though we will only be
able to scale our solver up to generate an optimal solution for a word list of about 1000 words.

Figure 1: Sample Wordle Game

1

https://www.nytimes.com/games/wordle/index.html
https://freshman.dev/wordle/#/leaderboard
https://sonorouschocolate.com/notes/index.php?title=The_best_strategies_for_Wordle

MATH 580A: Graduate Computing Seminar

2 Formal Description

Let A denote the set of all possible answers and let G denote the set of allowed guesses, where
necessarily G ⊆ A. Let R = {X, Y, G}5 denote the 35 = 243 possible responses for a guess, where
X denotes a gray letter, Y a yellow letter, and G a green letter.

There is a function guess : G ×A → R that returns a response r for a given guess word and
answer word pair (g, a). The response r is computed as follows:

1. If the ith letter in g appears in the same position in a, then there is a G in the ith position
of r.

2. If the ith letter in g does not appear in a, then there is an X in the ith position of r.

3. From left to right, if the ith letter in g appears in a but not in the ith position and is not
already accounted for, then there is a Y in the ith position of r. Otherwise there is an X in
the ith position of r.

Here are two examples to clarify when Y’s appear in the response: guess(TRUST, LEAST) =

(X, X, X, G, G) and guess(OASIS, LEAST) = (X, Y, Y, X, X).
A Wordle strategy S is a decision tree, written as a directed rooted tree whose nodes are

words in G and edges are labeled with a response in R. The leaves of the tree are precisely the
set of answers A. For any path in the tree ending in a leaf a, the label of the outgoing edge
from each intermediate node g should equal guess(g, a). For example, if the possible answers
are GORGE, DUSKY, SOOTH, COLON, WAFER, PAPER, one possible strategy is the decision tree in fig. 2.

GRACE

GORGE SHADE COLON EQUIP

DUSKY SOOTH WAFERPAPER

GYXXG XXXXX XXXYX XYYXY

YXXXX GXXXX YXXXY YXXXX

Figure 2: Example Wordle strategy

The average number of guesses needed in a strategy S, assuming a uniform distribution on
A is given by

1
|A| ∑

a∈A
ℓ(a),

where ℓ(a) denotes the length of the path from the root node to a in S. Your objective will be
to devise a strategy S that minimizes the average number of guesses needed. Observe that for a
fixed answer set, you will only need to minimize the total number of guesses ∑ ℓ(a).

2/5

MATH 580A: Graduate Computing Seminar

3 Solving Wordle Optimally

Let T(A) denote the total number of guesses required in an optimal strategy where A is the set
of possible answers left. Then T(A) has a recursive structure as follows,

T(A) =

0 if |A| = 0,

1 if |A| = 1,

|A|+ min{∑r∈R T(Ag,r) : g ∈ G} otherwise,

where, Ag,r = {a ∈ A : guess(g, a) = r}. If there is only one possible answer left, then we need
to guess the answer which is one guess. If there are multiple possibilities, each guess word g will
partition A into subsets Ag,r and the minimum total number of guesses required for each subset
is ∑ T(Ag,r). In addition, the guess word g needs to be included in the count, once per remaining
answer left, giving a contribution of |A|.

A recursive algorithm for finding an optimal strategy is then fairly simple to write. Starting
with A, we loop through all guesses g ∈ G and recursively compute the sum ∑r∈R T(Ag,r).
The first word in our guessing strategy should then be the word g that minimizes this sum.
Subsequent guessing words are computed recursively.

One implementation caveat is that we may recurse infinitely if a certain guess no longer gives
any information. That is, if there is a guess word g such that Ag,r = A for some response r and
all the other subsets Ag,r′ are empty. An explicit check is required to skip recursing in this case.

4 Solving Wordle Efficiently

The recursive algorithm we’ve considered so far is guaranteed to return an optimum strategy,
but in practice is too slow to run to completion on the full Wordle word list when implemented
naïvely. You may however wish to implement it first and test it on a smaller word list to convince
yourself of its correctness first. In this section, we will cover some optimizations we can do while
still guaranteeing we obtain an optimum strategy.

Tree Pruning

The first major optimization we’ll implement is tree pruning. In our recursive algorithm, each
step has to compute a minimum across all guess words in G which is costly. The basic idea is that
after we compute ∑r∈R T(Ag,r) for some guess word g, we store this value and call it β. Then, for
any other guess word g′, we obtain a lower bound on the sum without recursion. If this lower
bound exceeds β, then we don’t need to perform the costly recursive computation for g′. We will
keep β updated to be the best minimum we had computed so far. In the best-case scenario where
we compute the true minimum on the very first guess word, this optimization could allow us to
skip recursing on all the remaining guess words.

The crux of this optimization is in computing a good lower bound for T(Ag,r) and ordering
the words in G so that the first we try is close to the best one. Let us first tackle computing a
good lower bound. Consider any subset Ag,r in the partition. If Ag,r is empty, then it contributes
no guesses. If it is nonempty, then the best case scenario is that we guess one of the answers in
Ag,r and if the response is not (G, G, G, G, G), guess one of the remaining answers. This gives a

3/5

MATH 580A: Graduate Computing Seminar

total of 2|Ag,r| − 1 guesses. Thus an initial lower bound estimate we can use is

estimate(g) = ∑
r∈R

max(2|Ag,r| − 1, 0).

Recall that the true value of g is ∑r∈R T(Ag,r). As we evaluate T(Ag,r) for some subset of
responses in R, we can improve our estimate, by replacing some of the lower bounds in the sum
with the true value T(Ag,r). It’s possible that after evaluating some of the T(Ag,r) recursively, we
obtain an estimate that exceeds β and we can skip the remaining recursive calls.

Try implementing tree pruning and see if you are able to compute optimal strategies for larger
word lists.

Entropy

For tree pruning to be efficient, we should ideally compute a β value close to the true minimum
on the very first guess word we try. If we knew exactly which guess word to use, then we could
skip tree pruning and recursion entirely. However, we can compute an entropy value associated
with each guess to obtain a quick approximation of which guess word is best.

For a fixed guess word g, we compute the entropy value associated with it via the following
formula:

entropy(g) = − ∑
r∈R

|Ag,r|
|A| log

(|Ag,r|
|A|

)
.

Entropy measures how much information we gain by making the guess g and this is reflected
in how the set of answers A gets partitioned into various possibilities. If A gets partitioned
relatively uniformly into sets Ag,r, then the entropy is high because each set Ag,r is now much
smaller in size. In the worst case scenario, we gain no information and Ag,r = A for one of the
sets in the partition and all other subsets are size 0. You can verify that the entropy value is 0 in
this case.

We can use entropy as a heuristic and first sort our list of guess words by the entropy they
provide based on the remaining answer possibilities. This combined with tree pruning will speed
up our solver significantly by reducing the number of recursive function calls we have to make,
leading to fewer operations overall.

4.1 Memoization

In class, we’ve seen the technique of memoization to avoid repeating computations we’ve already
done before. We can use this technique to speed up our Wordle solver as well. There are two
primary areas where we can apply memoization. The first memoization we can do is for the
guess function. We can memoize the response for a given (g, a) guess word and answer word
pair. Another function to memoize is our recursive function T.

It is quite possible that some sequence of guesses leads to the same set A of responses left as
a different sequence of guesses. Because the recursive calls used to compute T are so costly, we
can speed up our solver significantly by memoizing our T(A) computations for a given set A.

4/5

MATH 580A: Graduate Computing Seminar

5 Implementation Details and Requirements

Thus far, we have discussed abstractly how to solve Wordle. In this section we will discuss some
of the implementation details for this assignment.

Response Representation

A direct representation of guess responses might be to use a list of tuple of either "X", "Y", or
"G". However, in order to store and compute these guess responses more efficiently, we will
represent them as numbers in base 3 instead. We will treat the letter X as the digit 0, the letter Y
as the digit 1 and the letter G as the digit 2. In addition, the base 3 representation will be read
from left to right.

As an example, the guess response (X, G, Y, X, G) would correspond to the base 3 number
201203 = 2 · 34 + 0 · 33 + 1 · 32 + 2 · 31 + 0 · 30 = 177. When implementing the function for
computing guess responses, you will need to compute the base 3 representation as opposed to
"X", "Y", "G" values.

Solution Representation

To represent a Wordle strategy we will use nested tuples and dictionaries. Given an answer
set A, the Wordle strategy should be a tuple (total_guesses, guess, substrategies). The
variable total_guesses is the total number of guesses T(A) summed across all answer words.
The variable guess is the word to guess given this answer set A. The variable substrategies is
a dictionary whose keys are possible responses r ∈ R and whose values is a Wordle strategy for
Ag,r, that is another 3-tuple of the same format. If |A| = 1, then the Wordle strategy should look
like (1, guess, None), where guess is the single answer word left in A.

Input, Output, and Interactivity

An efficient implementation in Python of the Wordle solver as described above will still unfor-
tunately run several orders of magnitude too slowly to find an optimal solution for the official
Wordle word lists. For this assignment, you will have several input word lists for the potential
guess and answer words of varying sizes. In wordle_runner.py you will want to set SIZE to be
"small", "medium", or "large", corresponding to word lists of size 50, 200, and 500 respectively.
For comparison, the official Wordle word list has 2315 possible answer words and 12972 possible
guess words.

The Wordle runner can be executed in one of two modes, depending on whether MODE is set to
"file_output" or "interactive". In "file_output" mode, your solver code will be run and the
final strategy will be outputted in a readable format in an output file placed under the outputs
directory. In "interactive" mode, your solver code a clone of Wordle will pop up allowing you
to play. At each step, your solver will be run on the remaining available answers and the optimal
word to guess will be displayed along with the average number of guesses required.

5/5

	Introduction
	Formal Description
	Solving Wordle Optimally
	Solving Wordle Efficiently
	Memoization

	Implementation Details and Requirements

