
MATH 580A Assignment 1

1 Short Exercises

1. In class, we saw an example program used to blur an image via the box blur algorithm.
The box blur algorithm is what is known as a separable filter. To reduce the complexity from
O(whr2) down to O(whr), instead of averaging across a box of (2r + 1)× (2r + 1) centered
at each pixel, you can instead do two 1-dimensional passes.

First blur along the x-axis. For each pixel, average it along the horizontal line of length
2r + 1 centered at the pixel. After blurring once, do a second blur pass along the y-axis. For
each already blurred pixel, average it along the vertical line of length 2r + 1 centered at the
pixel. It turns out that these two blur passes will result in precisely the same value as the
original box blur, but the complexity will only be linear in r.

Modify the existing box blur program to perform two linear blur passes one after another,
and observe whether or not it speeds up the blurring process.

2. In class, we also saw an algorithm for sorting a list known as selection sort. The complexity
of the selection sort algorithm is O(n2) where n is the length of the input list. In this
exercise, you will implement a different algorithm known as mergesort, which has time
complexity O(n log n). This algorithm is most easily implemented using recursion and
proceeds as follows.

Given a list ℓ, divide it into two sublists ℓ1 and ℓ2 where ℓ1 is the first half of ℓ and ℓ2 is
the second half of ℓ. If ℓ has an odd number of elements, let ℓ1 also contain the middle
element. Recursively use the mergesort algorithm to sort ℓ1 and ℓ2 respectively.

Once ℓ1 and ℓ2 are sorted, apply a merge procedure to produce the final sorted list ℓ′. To
merge the lists, repeat the following procedure: look at the first element of ℓ1 and ℓ2 and
pop the smaller element off and append it to ℓ′. If at any point one of the lists becomes
emptied, simply continue to pop elements off the remaining list and append it onto ℓ′. This
procedure will terminate once both lists are emptied and we can return the sorted list ℓ′.

After implementing the two short exercises, pick and implement one of either the Linden-
mayer System project or the Heat Equation project.

2 Lindenmayer Systems

Introduction

For this program, you will implement and draw some self-similar pictures using Lindenmayer
systems (L-systems). L-systems were originally developed by the botanist Aristid Lindenmayer
in order to model the development of plants and draw them. An L-system consists of an initial

1

MATH 580A: Graduate Computing Seminar

state s in some formal alphabet Ω and a set of replacement rules P that tell you how to evolve
the initial state. Replacement rules look like s → s1s2 · · · sℓ, where s is a single letter in Ω and
s1s2 · · · sℓ is replacement string with letters in Ω. To evolve the state in an L-system, read the
letters in the current state from left to right, and for each letter s that has a replacement rule
s → s1s2 · · · sℓ, replace it with s1s2 · · · sℓ in the evolved state. If a letter has no replacement rule,
then keep it as is in the evolved state.

Iterating these replacement rules over and over gives a state that has a lot of self-similarity.
By assigning a certain drawing operation to each letter in Ω, we can interpret the resulting state
and draw fractal-like or tree-like images. We will use the turtle module in the Python standard
library to draw these images.

Using the turtle library

This section will give a brief introduction to the turtle library. For the full documentation, refer
to https://docs.python.org/3/library/turtle.html.

Turtle graphics was originally part of the Logo programming language designed in 1967. The
implementation in Python is similar. In turtle graphics, there is an object, the turtle, that has an
(x, y) position and an angle θ that it is facing. Through calling functions in the turtle library,
you can tell the turtle to move forwards or backwards a certain distance, or to turn left or right
a certain angle (in degrees). The turtle holds a pen that can either be held up or held down.
When the pen is down, the turtle draws a line as it moves. In the Python turtle module, there
is also the option to change the pen color between turtle movements, allowing for multicolored
drawings.

The turtle starts off at (0, 0), facing the positive x-axis and with the pen down in black and
width 1. The main functions you will need to make use of in this assignment are:

• turtle.forward(distance): Moves the turtle forwards distance units.

• turtle.backward(distance): Moves the turtle backwards distance units.

• turtle.left(angle): Turns the turtle angle degrees to the left (counter-clockwise).

• turtle.right(angle): Turns the turtle angle degrees to the right (clockwise).

• turtle.setposition(pos): Sets the turtle position to pos.

• turtle.setheading(angle): Sets the turtle to face angle degrees counter-clockwise from
the positive x-axis.

• turtle.penup(): Sets the pen up.

• turtle.pendown(): Sets the pen down.

• turtle.pencolor(color): Sets the pen color to color interpreted as a hex string (e.g.
"#FF00FF" is magenta).

• turtle.pensize(width): Sets the pen width to be width pixels wide.

• turtle.position(): Returns the turtle’s current position.

• turtle.heading(): Returns the angle the turtle is currently facing.

2/9

https://docs.python.org/3/library/turtle.html

MATH 580A: Graduate Computing Seminar

• turtle.hideturtle(): Hide the turtle itself in the resulting drawing.

• turtle.done(): This must be called after all drawing functions to display the result.

Listing 1 is an example program that uses the turtle to draw a polygon-like shape with each
edge in a different color. The resulting output is in Fig. 1.

import turtle

colors = ["#000000","#FF0000","#FFFF00","#00FF00","#00FFFF","#0000FF","#FF00FF"]
n = len(colors)

turtle.pensize(10)

for i in range(n):
turtle.pencolor(colors[i])
turtle.pendown()
turtle.forward(40)
turtle.left(360/(2*n))
turtle.penup()
turtle.forward(40)
turtle.left(360/(2*n))

turtle.done()

Listing 1: Example Program Using the turtle Module.

Figure 1: Graphical Output of Listing 1.

There are a few more features of turtle graphics that are not covered here. You can peruse the
official documentation to learn about the other functions included in the module.

3/9

MATH 580A: Graduate Computing Seminar

Drawing a Binary Tree

Let us now take a look at an example of an L-system and a set of drawing instructions that results
in a binary tree. Our alphabet will be Ω = {X, F, +, -}. The initial state will be X and we have two
replacement rules F → FF and X → F+X-X. The drawing operations associated with X and F are
to move forward and draw a line of fixed length. The drawing operations associated with + and
- is a little more complicated. For +, append the turtle’s current position and angle to a list, then
turn 45◦ left. For -, reset the turtle’s position and angle to the most recent entry in the list and
pop that entry out. Then turn 45◦ right. After 6 iterations, this L-system results in the binary tree
in Fig. 2.

Figure 2: Binary Tree L-System Example

Why does this L-system work? Let us take a look at the first few iterations of the state to
discern how it produces a binary tree.

Iteration State
0 X
1 F+X-X
2 FF+F+X-X-F+X-X
3 FFFF+FF+F+X-X-F+X-X-FF+F+X-X-F+X-X

Let wn denote the state at iteration n. Observe that these replacement rules lead to the
recursive relations

wn+1 = F · · · F︸ ︷︷ ︸
2n−1 times

+wn-wn.

Thus, when wn gets drawn, first the turtle moves forward to draw a stem of length 2n−1. Then, it
encounters a + symbol to draw a smaller binary tree corresponding to wn−1 starting from the end
of the stem and rotated 45◦ counter-clockwise. Finally, it encounters a -, resetting its position to
the end of the stem and facing towards the positive x-axis. It then draws a smaller binary tree
corresponding to wn−1 starting from the end of the stem and rotated 45◦ clockwise.

4/9

MATH 580A: Graduate Computing Seminar

Implementation

We’ve now seen a full example of how a simple L-system can be used to draw self-similar objects
like a binary tree. In this program, you will implement a function draw_lindenmayer_system()
that takes in 4 parameters initial_state, rules, turtle_commands and iterations, and com-
putes the resulting state and executes the turtle commands to visualize the state. See the
lindenmayer.md file in the repl for more implementation details.

After implementing the generic draw_lindenmayer_system() function, use it to draw the
following objects:

(a) Koch Snowflake: The alphabet is Ω = {X, +, -}. The initial state is X-X-X and there is a
single replacement rule X → X+X-X+X. The drawing operation for X is to move forward by a
fixed length and draw a line. The drawing operation for + is to rotate left by 60◦ and for -
is to rotate right by 120◦.

(b) Sierpinski Triangle: The alphabet is Ω = {X, F, +, -}. The initial state is X-F-F and the
replacement rules are X → X-F+X+F-X and F → FF. The drawing operations for X and F are
to move forward by a fixed length and draw a line. The drawing operation for + is to rotate
left by 120◦ and for - is to rotate right by 120◦.

(c) Algorithmic Fern: By adding drawing operations that append and pop the turtle position
and angle, we can draw organic plant-like objects. The alphabet is Ω = {X, F, [,], +, -}. The
initial state is X and the production rules are X → F+[[X]-X]-F[-FX]+X and F → FF. The
drawing operations for X and F are to move forward by a fixed length and draw a line. The
drawing operations for + and - are to rotate left and rotate right by 25 degrees respectively.
The drawing operation for [and] is to append and pop the turtle position and angle
respectively.

Extensions

The L-systems described thus far have all been deterministic. There are also stochastic L-systems
in which one chooses randomly among a set of replacements for each letter in the alphabet. To
implement a stochastic L-system, you can use the Python random module.

Another small extension is to add drawing operations that set the pen color and pen width,
injecting some aesthestics to your program output.

Finally, the theory of modeling plant growth and drawing them is quite well-developed and
goes far beyond what we have done here with L-systems. If you are interested in studying
more on this subject, take a look at The Algorithmic Beauty of Plants by Przemyslaw Prusinkiewicz
and Aristid Lindenmayer available at http://algorithmicbotany.org/papers/abop/abop.pdf.
Chapter 1 is devoted to modeling using L-systems and has many more examples of fractals and
plants one can draw using what we have covered here.

5/9

http://algorithmicbotany.org/papers/abop/abop.pdf

MATH 580A: Graduate Computing Seminar

3 Modeling the Heat Equation

Introduction

For this program, you will model the diffusion of heat in two dimensions by using the finite
difference method to approximate solutions to the heat equation

∂u
∂t

= α

(
∂2u
∂x2 +

∂2u
∂y2

)
.

There are three different common schemes used: forward time centered space (FTCS), backward
time centered space (BTCS), and Crank-Nicolson. Each of them expresses the heat function at
the next time step linearly in terms of the heat function at the current time step. You will use a
mathematical Python package called NumPy to perform the necessary matrix operations. Starter
code relying on a package called Matplotlib will be provided to visualize the heat distribution.

Finite Difference Methods

In order to model heat in a program, we will first discretize the problem. That is, we will assume
time advances in discrete steps of ∆t and that the spatial domain can be thought of as a discrete
grid of points spaced ∆x apart. We will use the notation ut

x,y to denote the heat at time t and
position (x, y).

Let us first look at the forward time difference and backward time difference approximations.
Fixing x and y, the Taylor series of ut

x,y centered at t = t0 can be expressed as

ut0+∆t
x,y = ut0

x,y + ∆t
∂ut

x,y

∂t

∣∣∣∣
t0

+
(∆t)2

2!
∂2ut

x,y

∂t2

∣∣∣∣
t0

+
(∆t)3

3!
∂3ut

x,y

∂t3

∣∣∣∣
t0

+ · · · . (1)

Rearranging Eq. (1) and dividing through by (∆t)2, we obtain

1
∆t

(
ut0+∆t

x,y − ut0
x,y

∆t
−

∂ut
x,y

∂t

∣∣∣∣
t0

)
=

1
2!

∂2ut
x,y

∂t2

∣∣∣∣
t0

+
∆t
3!

∂3ut
x,y

∂t3

∣∣∣∣
t0

+ · · · (2)

By the mean-value theorem, there exists some s ∈ [t0, t0 +∆t] such that ut0+∆t
x,y −ut0

x,y
∆t =

∂ut
x,y

∂t

∣∣∣
s
. Apply-

ing the mean-value theorem once more, there exists r ∈ [t0, s] such that 1
∆t

(
∂ut

x,y
∂t

∣∣∣
s
− ∂ut

x,y
∂t

∣∣∣
t0

)
=

∂2ut
x,y

∂t2

∣∣∣
r
. Substituting this into Eq. (2), then Eq. (1), and rearranging gives us

∂ut
x,y

∂t

∣∣∣∣
t0

=
ut0+∆t

x,y − ut0
x,y

∆t
− ∆t

∂2ut
x,y

∂t2

∣∣∣∣
r
. (3)

The term ∆t
∂2ut

x,y

∂t2

∣∣∣∣
r

is our error term which is dependent on ∆t. Thus far, all the equations have

6/9

MATH 580A: Graduate Computing Seminar

been exact equalities. Dropping the error term gives our forward difference time approximation:

∂ut
x,y

∂t

∣∣∣∣
t0

≈
ut0+∆t

x,y − ut0
x,y

∆t
. (4)

By using −∆t instead of ∆t, we obtain the backward difference time approximation:

∂ut
x,y

∂t

∣∣∣∣
t0

≈
ut0t

x,y − ut0−∆t
x,y

∆t
. (5)

Next, we will again examine the Taylor series of ut
x,y but for a fixed value of t and y and

centered at x = x0. Using both ∆x and −∆x we have

ut
x0+∆x,y = ut

x0,y + ∆x
∂ut

x,y

∂x

∣∣∣∣
x0

+
(∆x)2

2!
∂2ut

x,y

∂x2

∣∣∣∣
x0

+
(∆x)3

3!
∂3ut

x,y

∂x3

∣∣∣∣
x0

+ · · · (6)

ut
x0+∆x,y = ut

x0,y − ∆x
∂ut

x,y

∂x

∣∣∣∣
x0

+
(∆x)2

2!
∂2ut

x,y

∂x2

∣∣∣∣
x0

− (∆x)3

3!
∂3ut

x,y

∂x3

∣∣∣∣
x0

+ · · · . (7)

Summing Eq. (6) and Eq. (7) and solving for the second partial derivative gives us

∂2ut
x,y

∂x2

∣∣∣∣
x0

=
ut

x0+∆x,y + ut
x0−∆x,y − 2ut

x0,y

(∆x)2 +
2(∆x)4

4!
∂4ut

x,y

∂x4

∣∣∣∣
x0

+ · · · . (8)

A similar mean-value theorem argument allows us to express the higher order terms as an
error term dependent on (∆x)2. We drop the error term to obtain the central difference space
approximation:

∂2ut
x,y

∂x2

∣∣∣∣
x0

≈
ut

x0+∆x,y + ut
x0−∆x,y − 2ut

x0,y

(∆x)2 . (9)

An analogous approximation is used for y when t, x are fixed. Note that we use a uniform
grid size ∆x regardless of which spatial variable we are considering.

FTCS, BTCS, and Crank-Nicolson

We are now ready to describe the three different schemes for modeling the heat equation. In
each of them, we can express the values {ut

x,y | t = t0} as a vector ut0 and compute ut0+∆t as the
matrix product Aut0 .

The forward time centered space scheme uses the forward time difference equation to ap-

proximate
∂ut

x,y
∂t and the centered space equation to approximate

∂2ut
x,y

∂x2 . Substituting these approx-
imations into the heat equation yields,

ut+∆t
x,y − ut

x,y

∆t
=

ut
x+∆x,y + ut

x−∆x,y + ut
x,y+∆y + ut

x,y−∆y − 4ut
x,y

(∆x)2 . (10)

7/9

MATH 580A: Graduate Computing Seminar

By multiplying both sides by ∆t and moving −ut
x,y over to the right hand side, we obtain

ut+∆t
x,y = α

(
ut

x+∆x,y + ut
x−∆x,y + ut

x,y+∆y + ut
x,y−∆y − 4ut

x,y

)
+ ut

x,y, (11)

where α = ∆t
(∆x)2 . Since Eq. (11) expresses each coordinate of ut+∆t as a linear combination of the

coordinates of ut, there exists a matrix F such that ut+∆t = Fut. You will need to work out how
to compute F when implementing the FTCS scheme. Unlike the other two schemes, the FTCS
scheme only results in a stable solution when α ≤ 1

4 . When α > 1
4 , you will observe oscillation in

the resulting model.
The other two schemes are similar and also result in a matrix equation relating ut+∆t and

ut, but are unconditionally stable. In order to implement the BTCS scheme, the backwards time
difference equation is used, resulting in

ut
x,y − ut−∆t

x,y

∆t
=

ut
x+∆x,y + ut

x−∆x,y + ut
x,y+∆y + ut

x,y−∆y − 4ut
x,y

(∆x)2 . (12)

Observe that Eq. (13) will result in a matrix equation But = ut−∆t and by inverting B, we obtain
ut = B−1ut−∆t.

Finally, in the Crank-Nicolson scheme, the backwards time difference equation is also used,
but instead of the central difference space approximation at time t, we use the average of the
approximation at times t and t − ∆t. This results in the equation

ut
x,y − ut−∆t

x,y

∆t
=

ut
x+∆x,y + ut

x−∆x,y + ut
x,y+∆y + ut

x,y−∆y − 4ut
x,y

2(∆x)2

+
ut−∆t

x+∆x,y + ut−∆t
x−∆x,y + ut−∆t

x,y+∆y + ut−∆t
x,y−∆y − 4ut−∆t

x,y

2(∆x)2 . (13)

In this case, there will be matrices C and N such that Cut = Nut−∆t. Multiply by C−1 to then
obtain ut = C−1Nut−∆t.

Using NumPy

For this program, you will need to manipulate matrices using the NumPy package. A basic
overview of NumPy is available at https://numpy.org/doc/stable/user/absolute_beginners.
html. For the most part, you can also treat a matrix in NumPy as a 2-dimensional list in Python
(i.e. a list of lists) and you can index and modify the matrix values in the same way. More gen-
erally, NumPy is often used for scientific computing and provides functions for various mathe-
matical operations in linear algebra, discrete fourier transform, and other areas.

The matrix operations that you need to be aware of for this program is matrix multiplication
and matrix inversion. See Listing 2 for a basic example of how to create NumPy arrays, how to
multiply two matrices, and how to invert a matrix.

Implementation and Extensions

For this program, starter code has been provided to display the results of the heat equation and
update the heat state using the finite difference method. However, it is up to you to implement

8/9

https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html

MATH 580A: Graduate Computing Seminar

import numpy as np

Create a 2x2 matrix in numpy.
A = numpy.array([

[1, 2],
[3, 4],

])
B = numpy.array([

[5, 6],
[7, 8]

])

Use the @ operator to multiply two matrices.
prod = A @ B
print(prod)

Use np.linalg.inv() to invert square matrices.
inv = np.linalg.inv(prod)
print(inv)

Listing 2: Example Program Using the numpy Package.

the FTCS, BTCS, and Crank-Nicolson schemes. More specifically, you will need to write code to
compute the matrices described in the section on these 3 schemes.

In the provided starter code, the starting heat state is also randomized for you and a color
scheme for display has been set. The heat values will be between 0 and 1, where 1 is the highest
heat value and 0 is the lowest.

After implementing the 3 schemes, you may wish to try extending the assignment in one of
the following ways:

• Modify the boundary conditions to have more complicated shapes. For example, try adding
circles in the interior of the current boundary where the temperature is fixed.

• The package used for visualizing the heatmap is known as Matplotlib. Read up on how
to plot 3d surfaces at https://matplotlib.org/stable/gallery/mplot3d/surface3d.html
and use it to visualize the heat as a 3d surface where the z-coordinate value is the heat at a
given coordinate (x, y).

9/9

https://matplotlib.org/stable/gallery/mplot3d/surface3d.html

	Short Exercises
	Lindenmayer Systems
	Modeling the Heat Equation

