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Abstract. We prove optimal pointwise bounds on quasimodes of semiclassical Schrödinger
operators with arbitrary smooth real potentials in dimension two. This end-point estimate
was left open in the general study of semiclassical Lp bounds conducted by Koch-Tataru-
Zworski [2]. However, we show that the results of [2] imply the two dimensional end-point
estimate by scaling and localization.

1. Introduction

Let gij(x) be a positive definite Riemannian metric on R2 with the corresponding Laplace-
Beltrami operator,

∆gu :=
1√
ḡ

∑
i,j

∂xj
(
gij
√

ḡ ∂xju
)
, (gij) := (gij)

−1, ḡ := det(gij),

and let V ∈ C∞(R2) be real valued. We prove the following general bound which was
already established (under an additional necessary condition) in higher dimensions in [2],
but which was open in dimension two:

Theorem 1.1. Suppose that h ≤ 1, and u ∈ H2
loc(R2). Suppose that u satisfies

(1.1)
∥∥−h2∆gu+ V u‖L2 ≤ h , ‖u‖L2 ≤ 1 .

Then for all K b R2,

(1.2) sup
x∈K
|u(x)| ≤ CK h

− 1
2 ,

where the constant CK depends only on g, V , and K.

A function u satisfying (1.1) is sometimes called a weak quasimode. It is a local object
in the sense that if u is a weak quasimode then ψu, ψ ∈ C∞c (R2) is also one, so the theorem
is easily reformulated with g, V , and u defined on an open subset of R2. The localization is
also valid in phase space: for instance if χ ∈ C∞c (R2 ×R2) then χw(x, hD)u is also a weak
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quasimode – see [1, Chapter 7] or [4, Chapter 4] for the review of the Weyl quantization
χ 7→ χw.

If lim inf |x|→∞ V > 0, then −h2∆ +V (defined on C∞c (R2)) is essentially self-adjoint and
the spectrum of −h2∆+V is discrete in a neighbourhood of 0 – see for instance [1, Chapter
4]. In this case weak quasimodes arise as spectral clusters:

(1.3) u =
∑
|Ej |≤Ch

cjwj, (−h2∆ + V )wj = Ejwj, 〈wj, wk〉L2 = δjk,
∑
j

|cj|2 ≤ 1.

Then u is a weak quasimode in the sense of (1.1). Since V (x) ≥ c0 > 0 for |x| ≥ R, Agmon
estimates (see for instance [1, Chapter 6]) and Sobolev embedding show that |u(x)| ≤ e−c1/h,
c1 > 0, for |x| ≥ R. Hence we get global bounds

|u(x)| ≤ Ch−
1
2 , x ∈ R2.

It should be stressed however that a weak quasimode is a more general notion than a
spectral cluster.

The result also holds when R2 is replaced by a two dimensional manifold and, as in the
example above, gives global bounds on spectral clusters (1.3) when the manifold is compact.
If V < 0 this is also a by-product of of the Avakumovic-Levitan-Hörmander bound on the
spectral function – see [3], and for a simple proof of a semiclassical generalization see [2,
§3] or [4, §7.4].

In higher dimensions the theorem requires an additional phase space localization as-
sumption and is a special case of [2, Theorem 6]: Suppose p(x, ξ) is a function on Rn×Rn

satisfying ∂αx∂
β
ξ p(x, ξ) = O(〈ξ〉m) for some m. Suppose that K b Rn and χ ∈ C∞c (Rn×Rn),

and that for (x, ξ) ∈ suppχ

p(x, ξ) = 0, dξp(x, ξ) = 0 =⇒ d2ξp(x, ξ) is nondegenerate.

Then for u(h) such that

(1.4) suppu(h) ⊂ K , u(h) = χw(x, hD)u+OS (h∞) ,

we have

(1.5) ‖u(h)‖∞ ≤ C h−
n−1
2

(
‖u(h)‖L2 +

1

h
‖pw(x, hD)u‖L2

)
, n ≥ 3.

When n = 2 the bound holds with (log(1/h)/h)
1
2 , which is optimal in general if d2ξp is not

positive definite – see [2, §3, §6] and §3 below for examples.

A small bonus for Schrödinger operators in dimension two is the fact that the frequency
localization condition in (1.4) required for (1.5) is not necessary – see (2.5) below. And
as noted already, in all dimensions the compact support condition on u is easily dropped
when working with local estimates on u.
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The proof of Theorem 1.1 is reduced to a local result presented in Proposition 2.1. That
result follows in turn from a rescaling argument involving several cases, some of which use
the following result that forms part of [2, Corollary 1].

Theorem 1.2. Suppose that u = u(h) satisfies (1.1), and that (1.4) holds. If V (x) 6= 0 for
x ∈ suppu, or if gij is positive definite and dV (x) 6= 0 for x ∈ suppu, then

‖u‖L∞ = O
(
h−

n−1
2

)
, n ≥ 2 .

This result is the basis for Propositions 2.2 and 2.3 used in our proof. The case of
Theorem 1.2 with dV 6= 0 is the most technically involved result of [2]. We do not know of
any simpler way to obtain (1.2).

2. Proof of Theorem 1.1

By compactness of K, it suffices to prove uniform L∞ bounds on u over a small ball about
each point in K, where in our case the diameter of the ball can be taken to depend only on
CN estimates for g and V over a unit sized neighborhood of K, for some large N . Without
loss of generality we consider a ball centered at the origin in R2. Let

B = {x ∈ R2 : |x| < 1} , B∗ = {x ∈ R2 : |x| < 2} .
After a linear change of coordinates, we may assume that

(2.1) gij(0) = δij .

Next, by replacing V (x) by cV (cx) and gij(x) by gij(cx), for some constant c ≤ 1 depending
on the C2 norm of g and V over a unit neighborhood of K, we may assume that

(2.2) sup
x∈B∗
|V (x)|+ |dV (x)| ≤ 2 , sup

x∈B∗
|d2V (x)|+

2∑
i,j=1

|dgij(x)| ≤ .01 .

This has the effect of multiplying h by a constant in the equation (1.1), which can be
absorbed into the constant CK in (1.2).

In general, we let

(2.3) CN = sup
x∈B∗

sup
|α|≤N

(
|∂αV (x)|+

2∑
i,j=1

|∂αgij(x)|
)
,

and will deduce Theorem 1.1 as a corollary of the following

Proposition 2.1. Suppose h ≤ 1, that g, V satisfy (2.1) and (2.2), and that u satisfies

(2.4)
∥∥−h2∆gu+ V u‖L2(B∗) ≤ h , ‖u‖L2(B∗) ≤ 1 .

Then
‖u‖L∞(B) ≤ C h−

1
2 ,

where the constant C depends only on CN in (2.3) for some fixed N .
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We start the proof of Proposition 2.1 by recording the following two propositions, which
are consequences of Theorem 1.2.

Proposition 2.2. Suppose that (2.1)-(2.2) hold, and that 1
2
≤ |V (x)| ≤ 2 for |x| ≤ 2. If

the following holds, and h ≤ 1,

∥∥−h2∆gu+ V u‖L2(B∗) ≤ h , ‖u‖L2(B∗) ≤ 1 ,

then ‖u‖L∞(B) ≤ C h−
1
2 , where C depends only on CN in (2.3) for some fixed N .

Proposition 2.3. Suppose that (2.1)-(2.2) hold, and that V (0) = 0 and |dV (0)| = 1. If
the following holds, and h ≤ 1,

∥∥−h2∆gu+ V u‖L2(B∗) ≤ h , ‖u‖L2(B∗) ≤ 1 ,

then ‖u‖L∞(B) ≤ C h−
1
2 , where C depends only on CN in (2.3) for some fixed N .

To see that these follow from Theorem 1.2, we first may assume that u is compactly
supported in |x| < 3

2
. Indeed, the assumptions imply ‖du‖L2(|x|<3/2) . h−1, so that one

may cut off u by a smooth function which is supported in |x| < 3
2

and equals 1 for |x| < 1
without affecting the hypotheses. We may then modify g and V outside B∗ so that (2.2)-
(2.3) are global bounds.

In Proposition 2.3 above, since |d2V | ≤ .01, we have .98 ≤ |dV (x)| ≤ 1.02 for |x| ≤ 2, so
since g is positive definite the conditions on g and V in Theorem 1.2 are met. We remark
that the conditions of Proposition 2.3 guarantee that the zero set of V is a nearly-flat curve
through the origin, although this is not strictly needed to apply the results of [2]. That the
resulting constant C depends only on CN for some fixed finite N follows from the proofs
in [2].

Finally, the condition (1.4) that u − χw(x, hD)u = OS (h∞) for some χ ∈ C∞c is not
needed for Theorem 1.2 to hold for positive definite gij in dimension two. To see this, we
note that if |V | < 2 and |gij(x) − δij| ≤ .02 on the ball |x| < 2, then if u is supported in
|x| < 3

2
and ϕ(ξ) = 1 for |ξ| < 4, condition (1.1) implies that

‖(hD)2(u− ϕ(hD)u)‖L2 = O(h) .

This follows by the semiclassical pseudodifferential calculus (see [4, Theorem 4.29]), since
for ϕ0 ∈ C∞c (R2) with suppϕ0 ⊂ B∗, ϕ0(x)(1− ϕ(ξ))|ξ|2/(|ξ|2g + V (x)) ∈ S(R2 × R2).
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Hence, writing û(ξ) for the standard Fourier transform of u,

‖u− ϕ(hD)u‖L∞ ≤
1

(2π)2

∫
R2

|1− ϕ(hξ)||û(ξ)| dξ

≤ C

∫
|hξ|2|1− ϕ(hξ)||û(ξ)|(1 + |hξ|2)−1 dξ

≤ C‖(hD)2(u− ϕ(hD)u)‖L2

(∫
R2

(1 + |hξ|2)−2 dξ
) 1

2

≤ Chh−1 = C ,

(2.5)

an even better estimate than required. Hence we are reduced to proving estimates on
ϕ(hD)u, which by compact support of u satisfies (1.4).

We supplement Propositions 2.2 and 2.3 with the following two lemmas.

Lemma 2.4. Suppose that (2.1)-(2.2) hold, and that |V (x)| ≤ 99h for |x| ≤ 2h
1
2 . If the

following holds, and h ≤ 1,∥∥−h2∆gu+ V u‖L2(|x|<2h1/2) ≤ h , ‖u‖L2(|x|<2h1/2) ≤ 1 ,

then ‖u‖L∞(|x|<h1/2) ≤ C h−
1
2 , where C depends only on CN in (2.3) for some fixed N .

Proof. Consider the function ũ(x) = h
1
2u(h

1
2x), and g̃ij(x) = gij(h

1
2x). Then, since

‖V u‖L2(|x|<2h1/2) ≤ 99h, we have

‖∆g̃ũ‖L2(|x|<2) ≤ 100 , ‖ũ‖L2(|x|<2) ≤ 1 .

Since the spatial dimension equals 2, interior Sobolev estimates yield ‖ũ‖L∞(|x|<1) ≤ C,

where we note that the conditions (2.1) and (2.2) hold for g̃ since h
1
2 ≤ 1. �

Lemma 2.5. Suppose that (2.1)-(2.2) hold, and that 1
2
c ≤ |V (x)| ≤ 2c for |x| ≤ 2c

1
2 . If

the following holds, and h ≤ c ≤ 1,∥∥−h2∆gu+ V u‖L2(|x|<2c1/2) ≤ h , ‖u‖L2(|x|<2c1/2) ≤ 1 ,

then ‖u‖L∞(|x|<c1/2) ≤ C h−
1
2 , where C depends only CN in (2.3) for some fixed N .

Proof. Let ũ(x) = c
1
2u(c

1
2x), g̃ij(x) = gij(c

1
2x), and Ṽ (x) = c−1V (c

1
2x). Note that the

assumptions on V (x) in the statement and in (2.2) imply that |dV (x)| ≤ c
1
2 for |x| < 2c1/2,

so that Ṽ satisfies (2.2), and the constants CN in (2.3) can only decrease for c ≤ 1. Then

with h̃ = c−1h ≤ 1,

‖ − h̃2∆g̃ũ+ Ṽ ũ‖L2(|x|<2) ≤ h̃ , ‖ũ‖L2(|x|<2) ≤ 1 .

By Proposition 2.2, we have ‖ũ‖L∞(|x|<1) ≤ Ch̃−
1
2 , giving the desired result. �
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Proof of Proposition 2.1. It suffices to prove that for each |x0| < 1 there is some 1
2
≥ r > 0

so that ‖u‖L∞(|x−x0|<r) ≤ C h−
1
2 , with a global constant C. Without loss of generality we

take x0 = 0.

We will split consideration up into four cases, depending on the relative size of |V (0)|
and |dV (0)|. Since for h bounded away from 0 the result follows by elliptic estimates, we

will assume h ≤ 1
4

so that h
1
2 below is at most 1

2
.

Case 1: |V (0)| ≤ h , |dV (0)| ≤ 8h
1
2 . Since |d2V (x)| ≤ .01, then Lemma 2.4 applies to give

the result with r = h
1
2 .

Case 2: |V (0)| ≤ h , |dV (0)| ≥ 8h
1
2 . Since we may add a constant of size h to V without

affecting (2.4), we may assume V (0) = 0. By rotating we may then assume

V (x) = βx1 + fij(x)xixj ,

where β = |dV (0)| ≥ 8h
1
2 . Dividing V by 4 if necessary we may assume β ≤ 1

2
. Let

ũ = βu(βx), g̃ij(x) = gij(βx), and

Ṽ (x) = β−2V (βx) = x1 + fij(βx)xixj .

With h̃ = β−2h < 1 we have

‖ − h̃2∆g̃ũ+ Ṽ ũ‖L2(|x|<2) ≤ h̃ , ‖ũ‖L2(|x|<2) ≤ 1 .

Proposition 2.3 applies, since g̃ and Ṽ satisfy (2.1)-(2.2), and the constants CN in (2.3) for

g̃ and Ṽ are bounded by those for g and V . Thus ‖ũ‖L∞(|x|<1) ≤ Ch̃−
1
2 , giving the desired

result on u with r = |dV (0)|.

Case 3: |V (0)| ≥ h , |dV (0)| ≤ 9|V (0)| 12 . In this case, with c = |V (0)|, it follows that
1
2
c ≤ |V (x)| ≤ 2c for |x| ≤ 1

20
c

1
2 . We may apply Lemma 2.5 with V replaced by 1

1600
V to

get the desired result with r = 1
40
|V (0)| 12 .

Case 4: |V (0)| ≥ h , |dV (0)| ≥ 9|V (0)| 12 . Since |d2V (x)| ≤ .01, it follows that there is

a point x0 with |x0| ≤ 1
8
|V (0)| 12 where V (x0) = 0. Since |dV (x0)| ≥ 8|V (0)| 12 ≥ 8h

1
2 , we

may translate and apply Case 2 to get L∞ bounds on u over a neighborhood of radius
|dV (x0)| about x0. This neighborhood contains the neighborhood about 0 of radius r =
.9998 |dV (0)|. �

3. A counter-example for indefinite g.

In [2, Section 5], it was shown that there exist uh for which

(3.1) ‖ − h2(∂2x1 − ∂
2
x2

)uh + (x21 − x22)uh‖L2 ≤ h , ‖uh‖L2 ≤ 1 ,

for which ‖uh‖L∞ ≈ | log h| 12h− 1
2 , showing that the assumption of definiteness of g cannot

be relaxed to non-degeneracy in the main theorem. In [2, Theorem 6] the positive result
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was established showing that this growth of ‖uh‖L∞ for indefinite, non-degenerate g in two
dimensions is in fact worst case.

The example of [2] was produced using harmonic oscillator eigenstates. Here we present a
different construction of such a uh with similar L∞ growth to help illustrate the role played
by the degeneracy of g. The idea is to produce a collection uh,j of functions satisfying

(3.1) (or equivalent), for which uh,j(0) = h−
1
2 , and where j runs over ≈ | log h| different

values. The examples will have disjoint frequency support, hence are orthogonal in L2.
Upon summation over j the L2 norm then grows as | log h| 12 , whereas the L∞ norm grows

as | log h|h− 1
2 , yielding an example with worst case growth after normalization.

We start by considering the form ξ1ξ2 with V = 0. To assure that ‖h2∂x1∂x2uh‖L2 ≤ h,
we will take the Fourier transform of uh to be contained in the set |ξ1ξ2| ≤ 2h−1, as well
as |ξ| ≤ 2h−1 to satisfy the frequency localization condition [2, (1.4)]. Our example is
then based on the fact that one can find ≈ | log h| disjoint rectangles, each of volume h−1,
within this region, as illustrated in the diagram. Each uh,j will be an appropriately scaled
Schwartz function with Fourier transform localized to one of the rectangles.

We now fix ψ, χ ∈ C∞c (R), with 0 ≤ ψ(x) ≤ 2 and 0 ≤ χ(x) ≤ 1, with
∫
ψ =

∫
χ = 1,

and where

suppψ ⊂ [1, 2] , suppχ ⊂ [−1, 1] .

We additionally assume χ(0) = 1.

Let

uh,j(x) = h
1
2

∫
eix1ξ1+ix2ξ2χ(2jh ξ1)ψ(2−jξ2) dξ1 dξ2 = h−

1
2 χ̌(2−jh−1x1)ψ̌(2jx2) .

By the Plancherel theorem, ‖uh,j‖L2 ≈ 1 and ‖h2D1D2uh,j‖L2 . h . Furthermore, uh,j(0) =

h−
1
2 . By disjointness of the Fourier transforms, for i 6= j we have 〈uh,i, uh,j〉 = 0, and

similarly 〈∂x1∂x2uh,i, ∂x1∂x2uh,j〉 = 0.

We then form

uh(x) = | log h|−
1
2

∑
1≤2j≤h−1

uh,j(x) .
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Since there are ≈ | log h| terms in the sum, and the terms are orthogonal in L2, it follows
that

‖uh‖L2 ≈ 1 , ‖h2∂x1∂x2uh‖L2(R2) . h , uh(0) ≈ | log h|
1
2h−

1
2 .

Although the example is not compactly supported, it is rapidly decreasing (uniformly so
for h < 1), and one may smoothly cutoff to a bounded set without changing the estimates.

We observe that for this example it also holds that

‖x1x2uh‖L2 . h .

Hence, uh is also a counterexample for the form ξ1ξ2 ± x1x2. Rotating by π/4 gives the
form ξ21 − ξ22 ± (x21 − x22), including in particular the form considered in [2, Section 6].

We also observe that x21uh will be OL2(h) if one restricts the sum in uh to 1 ≤ 2j ≤ h−
1
2 ,

which still has ≈ | log h| values of j, and thus exhibits the same L∞ growth as uh. This
idea does not however work to yield a counterexample for the form ξ1ξ2 + x21 + x22.
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