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Abstract. We establish Lq∗ → Lq bounds for the resolvent of the Laplacian on compact
Riemannian manifolds assuming only that the sectional curvatures of the manifold are
uniformly bounded. When the resolvent parameter lies outside a parabolic neighborhood
of [0, ∞), the operator norm of the resolvent is shown to depend only on upper bounds
for the sectional curvature and diameter and lower bounds for the volume. The resolvent
bounds are derived from square-function estimates for the wave equation, an approach
that admits the use of paradifferential approximations in the parametrix construction.

1. introduction

In this paper we assume that (M, g) is a compact Riemannian manifold of dimension d
with uniformly bounded sectional curvatures. More precisely, we assume that for constants
K,D <∞, and V > 0, the sectional curvatures, diameter, and volume satisfy
(1.1) | sec(M)| ≤ K, diam(M) ≤ D, vol(M) ≥ V.
It was shown by Cheeger [6] that under these conditions there is a lower bound i(d,K,D, V )
on the injectivity radius. The purpose of this paper is to show that certain Lp → Lq mapping
bounds hold for the resolvent of the Laplacian on (M, g), with constants that depend only on
K,D, V . As a corollary of the proof we show that the constants in the Strichartz estimates,
which were established on such manifolds by Chen-Smith [7], also depend only on K,D, V .
Concerning resolvent bounds, we prove the following.
Theorem 1.1. Suppose that (M, g) satisfies (1.1), and d ≥ 3. Given δ > 0, there is a
constant C0 = C(δ,K,D, V, d) such that for all z ∈ C with Im(z) ≥ δ the following holds

‖(−∆g − z2)−1f‖Lq(M) ≤ C0‖f‖Lq∗(M),

provided that
1
q∗
− 1
q

= 2
d
, q ≥ 2(d+ 1)

d− 1 , and q∗ ≤ 2(d+ 1)
d+ 3 .

For q = 2n/(n − 2), uniform resolvent bounds on smooth Riemannian manifolds were
proven in Dos Santos Ferreira-Kenig-Salo [8] using the Hadamard parametrix. The de-
pendence of C0 on (M, g) was not explicitly considered, but controlling the Hadamard
parametrix ruses a number of derivatives of g that increases with the dimension. The work
of Bourgain-Shao-Sogge-Yao [4] developed the subject further, utilizing the connection of
resolvent estimates and the spectral projection bounds of Sogge [14]. In addition, they
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showed that the domain of z over which uniform estimates hold cannot be enlarged in case
(M, g) is the round sphere, but can be improved logarithmically for manifolds of nonposi-
tive curvature, and by a power for the flat torus. In comparison, Euclidean space uniform
resolvent bounds for q = 2n/(n− 2) hold by Kenig-Ruiz-Sogge [9] over the entire complex
plane.

Uniform estimates for the same range of indices as in Theorem 1.1 were established on
smooth Riemannian manifolds by Shao-Yao [12], using Sogge’s spectral projection bounds
to handle certain nonlocal terms. As with the works cited above, the proof relied on
the Hadamard parametrix for local terms, and methods of Carleson-Sjölin concerning
Lp → Lq bounds for oscillatory integral operators. More recently, Burq-Dos Santos Ferreira-
Krupchyk [5] generalized the estimates to certain non-selfadjoint perturbations of the Lapla-
cian. Their proof used dispersive properties of the resolvent in spatial directions, similar to
the method used in Mockenhaupt-Seeger-Sogge [11] to establish squarefunction bounds in
Lq for solutions to the Cauchy problem for the wave equation.

Along other lines, Chen-Smith [7] established both Strichartz estimates and squarefunc-
tion bounds for the Cauchy problem for the wave equation on Riemannian manifolds of
bounded sectional curvature. This work generalized earlier work of Smith [13] and Tataru
[15] establishing similar estimates for metrics with bounded second-order derivatives. An
important step in these works is reducing matters to establishing dispersive estimates for a
paradifferential approximation to the Laplacian. This method introduces a remainder term
that is bounded in L2 and can be handled as a driving force for the wave equation. This
method can only work, however, for estimates that factor through L2, and does not apply
directly to other types of Lp → Lq mapping bounds for the exact solution. A key step in
proving Theorem 1.1 is to first show that resolvent estimates can be derived directly from
an inhomogeneous version of the squarefunction estimates of [11]. We state these estimates
as Theorem 2.1 below, and prove them with constant depending only on the allowed quanti-
ties. The bounds on the constant are obtained using the methods of [7] in local coordinates,
combined with results of Anderson and Cheeger [6], [2] and [3] concerning existence of a
suitable cover by harmonic coordinate charts on (M, g).

As a corollary of these steps together with the local Strichartz estimates of [7], we will
also obtain that the full range of inhomogeneous Strichartz estimates for the wave equation
hold on (M, g), and that the dependence of the bounds on the geometry of g arises only
from K,D, V . Recall that a triple (s, q, r) with 2 ≤ q, r ≤ ∞ is said to be admissible for
the wave equation if

1
q

+ d

r
= d

2 − s,
1
q
≤ d− 1

2
(1

2 −
1
r

)
.

We then have the following.

Theorem 1.2. Suppose that (M, g) and q are as in Theorem 1.1, and (s, q, r) and (1−s, q̃, r̃)
are admissible, with r, r̃ < ∞. Then for all T > 0 there exists C = C(T,K,D, V, d), such
that solutions to the Cauchy problem (2.1) satisfy

‖u‖Lq([−T,T ];Lr(M)) + ‖u‖L∞([−T,T ];Hs(M)) + ‖∂tu‖L∞([−T,T ];Hs−1(M))

≤ C
(
‖f‖Hs(M) + ‖g‖Hs−1(M) + ‖F‖Lq̃′ ([−T,T ];Lr̃′ (M))

)
.
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2. resolvent estimates from squarefunction estimates

Consider the wave equation on a compact Riemannian manifold (M, g),

(2.1)

(
∂2
t −∆g

)
u(t, x) = F (t, x),
u(0, x) = f(x),

∂tu(0, x) = g(x).

In this section we derive Theorem 1.1 directly from the following square-function estimates
for solutions to (2.1). These square-function estimates, which are an extension of the results
of [7] for the homogeneous equation, will be derived in Section 3.

Theorem 2.1. Suppose that (M, g) and q are as in Theorem 1.1. Then for all T > 0 there
exists C1 = C(T,K,D, V, d), such that solutions to (2.1) satisfy

‖u‖Lq(M ;L2([0,T ])) ≤ C1
(
‖f‖Hs(q)(M) + ‖g‖Hs(q)−1(M) + ‖F‖Lq∗(M ;L2([0,T ]))

)
,

where s(q) = d
(

1
2 −

1
q

)
− 1

2 .

Observe that for q in the range of Theorem 1.1 we have

d− 1
2(d+ 1) ≤ s(q) ≤

d+ 3
2(d+ 1) ,

and in particular s(q) < 1. The Sobolev norm Hs(M) used in Theorem 2.1 is the one
defined intrinsically on M using the spectral decomposition of −∆g, though as we will show
in Section 3 this norm is equivalent to one naturally defined using a suitable covering of M
by local coordinate charts, provided that −2 ≤ s ≤ 2.

An immediate consequence of Theorem 2.1 is the following. Let Πn denote projection
onto the span of eigenfunctions with eigenvalue −λ2

j such that n ≤ λj < n+ 1. Then for a
constant C1 as in Theorem 2.1,

(2.2)
∥∥∥(2〈λ〉∑

n=0
|Πnf |2

)1/2∥∥∥
Lq(M)

≤ C1 〈λ〉s(q)‖f‖L2(M).

To see this, let Qf =
∑∞
n=0 nΠnf . Then for all q we have∥∥∥( ∞∑

n=0
|Πnf |2

)1/2∥∥∥
Lq(M)

= ‖ exp(itQ)f‖Lq(M ;L2([0,2π])).

From the fact that (
∂t − i

√
−∆g

)
exp(itQ)f = i

(
Q−

√
−∆g

)
exp(itQ)f

we obtain

exp
(
itQ

)
f = exp

(
it
√
−∆g

)
f + i

∫ t

0
exp

(
i(t− s)

√
−∆g

)(
Q−

√
−∆g

)
exp(isQ)f ds.
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Let fs = exp(−is
√
−∆g)

(
Q−

√
−∆g

)
exp(isQ)f , and observe that ‖fs‖L2(M) ≤ ‖f‖L2(M).

If f is spectrally localized to eigenvalues with λj ≤ 2〈λ〉+ 1, then

‖ exp(itQ)f‖Lq(M ;L2([0,2π]))

≤ ‖ exp(it
√
−∆g)f‖Lq(M ;L2([0,2π])) +

∫ 2π

0
‖ exp(it

√
−∆g)fs‖Lq(M ;L2([0,2π]))

≤ (2π + 1)C1〈λ〉s(q)‖f‖L2(M).

Corollary 2.2. Suppose that z = λ + iµ with µ ≥ δ > 0, and that the spectrum of f is
contained in 0 ≤ λj < 2〈λ〉. Then the following hold under the conditions of Theorem 2.1,
where C1 = C(δ,K,D, V, d) is independent of λ,

‖(−∆g − z2)−1f‖Lq(M) ≤ C1〈λ〉s(q)|z|−1µ−
1
2 ‖f‖L2(M),

‖(−∆g − z2)−1f‖L2(M) ≤ C1〈λ〉s(q)|z|−1µ−
1
2 ‖f‖Lq′ (M),

‖(−∆g − z2)−1f‖L2(M) ≤ 2|z|−1µ−1‖f‖L2(M).

Proof. The last bound follows since |λ2
j − z2| ≥ max(2|λµ|, |µ2 − λ2|) ≥ 1

2 |z|µ. By duality
it then suffices to prove the first inequality. We write

(−∆g − z2)−1f =
2〈λ〉∑
n=0

(−∆g − z2)−1Πnf

=
2〈λ〉∑
n=0

(n2 − z2)−1Πn(Sf),

where Sf is the spectral multiplier given by

Sf =
∞∑
n=0

(
n2 − z2)(−∆g − z2)−1Πnf.

If µ ≥ δ and λj ∈ [n, n+ 1), then

|n2 − z2| ≤ C(δ)|λ2
j − z2|,

and consequently ‖Sf‖L2(M) ≤ C(δ)‖f‖L2(M). We now bound

∣∣∣ 2〈λ〉∑
n=0

(n2 − z2)−1Πn(Sf)
∣∣∣ ≤ ( ∞∑

n=0

1
|n2 − z2|2

)1/2( 2〈λ〉∑
n=0
|Πn(Sf)|2

)1/2

≤ Cδ−1/2

|z|µ1/2

( 2〈λ〉∑
n=0
|Πn(Sf)|2

)1/2
.

The result now follows by (2.2). �

Proof of Theorem 1.1. Let z = λ + iµ where µ ≥ δ. By (3.2), we can decompose f using
spectral cutoffs into two parts, spectrally localized respectively to λj < 2〈λ〉 and λj > 3

2〈λ〉,
in a manner that is continuous on Lq(M) for all 1 < q <∞.
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Suppose first that spec(f) is contained in 0 ≤ λj < 2〈λ〉. Let u(t, ·) = e−itzf , so that

(∂2
t −∆g)u = e−itz(−∆g − z2)f, u(0, ·) = f, ∂tu(0, ·) = −izf(x).

Since 〈λ〉 ≤ C(δ)|z|, we can apply Corollary 2.2 with q = q∗′ to conclude

‖f‖Hs(q)(M) + |z|‖f‖Hs(q)−1(M) ≤ C(δ)〈λ〉s(q)−1|z|‖f‖L2(M)

≤ C1λ
s(q)+s(q∗′)−1µ−1/2‖(−∆g − z2)f‖Lq∗(M)

= C1µ
−1/2‖(−∆g − z2)f‖Lq∗(M),

where we use that s(q) + s(q∗′) = 1. Also, we have

‖e−itz(−∆g − z2)f‖Lq∗(M ;L2([0,1])) = (e2µ − 1)1/2µ−1/2‖(−∆g − z2)f‖Lq∗(M),

and
‖e−itzf‖Lq(M ;L2([0,1])) = (e2µ − 1)1/2µ−1/2‖f‖Lq(M).

Since e2µ − 1 ≥ e2δ − 1 > 0, applying Theorem 2.1 yields

‖f‖Lq(M) ≤ C1‖(−∆g − z2)f‖Lq∗(M).

Next suppose that spec(f) is contained in λj >
3
2〈λ〉. Note that (1 + λ2

j )/(λ2
j − z2) is

uniformly bounded if Re(z) = λ and λj ≥ 3
2〈λ〉, hence (1 − ∆g)/(−∆g − z2) is uniformly

bounded on L2(M). We then have

‖f‖Lq(M) ≤ C ‖(1−∆g)
d
2 ( 1

2−
1
q

)
f‖L2(M)

≤ C ‖(1−∆g)−
d
2 ( 1
q∗−

1
2 )(−∆g − z2)f‖L2(M)

≤ C ‖(−∆g − z2)f‖Lq∗(M),

where we use the gap relation 1
q∗ −

1
q = 2

d and the Sobolev embedding bound (3.4). �

3. inhomogeneous squarefunction estimates

In this section we derive the inhomogeneous squarefunction estimates of Theorem 2.1
from the results of Chen-Smith [7], taking care to show that the constant C0 depends only
on the relevant geometric quantities. Throughout this section, C will denote a constant
that depends only on the constants K,D, V of (1.1) in addition to the dimension d, and
C(a) a constant that depends only on K,D, V, d, a.

We start with the result of Cheeger and Anderson [6], [2] and [3], that shows that under
the condition (1.1), for each c0 > 0 and d < p < ∞ there exists rh > 0, and a collection
of N harmonic coordinate charts Fν : Uν → B(rh) = {x : |x| < rh}, so that F−1

ν (B(rh/2))
cover M , and there are uniform bounds on the metric tensor gij in the local coordinate
charts

(3.1) sup
x∈B(rh)

|gij(x)− δij | ≤ c0, ‖∂gij‖Lp(B(rh)) ≤ c0.

Furthermore, the numbers N and rh depend only on the quantities K,D, V, d, p, c0.
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In addition, there is such a harmonic coordinate chart on any ball in M of diameter rh.
This yields that Vol(B(x, r)) ∼ rd for r < rh/2, hence a global doubling condition

vol(B(x, 2r)) ≤ C vol(B(x, r)).

A result of Li and Yau [10, Theorem 3.2] then yields small time exponential bounds on the
heat kernel H(t, x, y),

0 ≤ H(t, x, y) ≤ C t−
d
2 exp

(−ρ(x, y)2

5t
)
, 0 < t ≤ 1,

where ρ(x, y) is the geodesic distance on (M, g). By Alexopoulos [1, Theorem 6.1], together
with the doubling condition this implies a version of the Hörmander-Mikhlin multiplier
theorem. In particular, it yields that if φ ∈ C∞c (R), then

(3.2)
∥∥φ((−∆g

)1/2
/〈λ〉

)∥∥
Lq(M) ≤ C(φ, q)‖f‖Lq(M),

uniformly over λ ∈ R.
The bounds on gij and | sec(M)| yield uniform upper bounds on the coefficients Rijkl of

the Riemann curvature tensor in the local harmonic coordinates. Using cutoffs and elliptic
regularity as in the proof of Lemma 2.1 in [7], given a coordinate chart Fν : Uν → B(rh),
we may find metrics gij on Rd which agree with the induced metric for |x| ≤ .9rh, and such
that gij = δij for |x| ≥ rh, and

(3.3) ‖∂2
xgij‖BMO + ‖gij‖Lip + ‖Rijkl‖L∞ ≤ C, ‖gij − δij‖L∞ ≤ c0.

It remains to note that we can take a partition of unity on M of the form χν ◦ Fν , with
supp(χν) ⊂ B(.6rh), and with ‖χν‖W 2,p ≤ C(p) for all p <∞. To see this, we observe that
by (3.1) the Riemannian distance function on M satisfies, for x, y ∈ B(.9rh),

.1|x− y| ≤ dM (F−1
ν (x), F−1

ν (y)) ≤ 1.1|x− y|,

provided that c0 is sufficiently small. In this case Fν(Uν ∩ Uµ) contains the rh/100 neigh-
borhood of B(.6rh)∩Fν ◦F−1

µ (B(.6rh)). Thus, elliptic regularity applied to the g-harmonic
function Fµ ◦F−1

ν yields uniform W 2,p bounds over an open neighborhood of B(.6rh)∩Fν ◦
F−1
µ (B(.6rh)), which in turn allows one to construct such a partition of unity.
By [7, Theorem 2.2], for −2 ≤ s ≤ 2 the Sobolev space defined on M by using local

coordinates and the above partition of unity,

‖f‖Hs(M) =
N∑
ν=1
‖(f ◦ F−1

ν ) · χν‖Hs(Rd),

is the same as the space defined intrinsically on (M, g) via the norm

‖f‖Hs(M) = ‖(1−∆g)s/2f‖L2(M).

The latter is expressed using the expansion of f in an orthonormal eigenfunction basis
for ∆g. Furthermore, the two norms are equivalent up to constants depending only on
K,D, V, d, which follows by the local equivalence, proven in [7, Theorem 2.2], and the
bound on the number N of coordinate charts.
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A consequence is the Sobolev embedding theorem for 2 ≤ q <∞, provided that 0 ≤ s ≤ 2,

(3.4) ‖f‖Lq(M) ≤ C(q)‖f‖Hs(M),
1
2 −

1
q

= s

d
, q <∞ , 0 ≤ s ≤ 2.

We now turn to the proof of Theorem 2.1. By local equivalence of the Sobolev norms,
finite propagation velocity, and the above partition of unity, it suffices to prove that, for ∆g
the Laplacian on Rd associated to a metric g satisfying (3.3), the following holds for some
T = T (K,D, V, d) > 0,

(3.5) ‖u‖Lq(Rd;L2([0,T ])) + ‖u‖L∞([0,T ];Hs(q)(Rd)) + ‖∂tu‖L∞([0,T ];Hs(q)−1(Rd))

≤ C(q)
(
‖f‖Hs(q)(Rd) + ‖g‖Hs(q)−1(Rd) + ‖F‖Lq∗(Rd;L2([0,T ]))

)
.

This was established for q = 2(d+1)
d−1 in [7, Theorem 2.3] in the case F = 0, but as noted

there the proof works for 2(d+1)
d−1 ≤ q < ∞ provided that s(q) ≤ 2. In particular, it holds

for F = 0 and q in the range of Theorem 2.1. We may also choose a C(q) = C for which
(3.5) holds with F = 0 for all q in the range of Theorem 2.1, by interpolation. We note
that similar arguments show that Theorem 1.2 follows from the Strichartz estimates in local
harmonic coordinate charts, which were established (in rescaled form) in [7, Theorem 2.3].

By a duality argument applied to the wave group, the F = 0 case of (3.5) for q = q∗′
implies the following energy estimate for the inhomogeneous equation,

(3.6) ‖u‖L∞([0,T ];Hs(q)(Rd)) + ‖∂tu‖L∞([0,T ];Hs(q)−1(Rd))

≤ C
(
‖f‖Hs(q)(Rd) + ‖g‖Hs(q)−1(Rd) + ‖F‖Lq∗(Rd;L2([0,T ]))

)
.

Here we have used that for q and q∗ as in Theorem 1.1, we have s(q) = 1− s(q∗′).
Following [7, Section 2], we introduce a paradifferential approximation P 2 to −∆g, where

P = p(x,D) is a self-adjoint pseudodifferential operator on Rd with principal symbol equal
to

∞∑
k=1

(∑
ij

gijk (x)ξiξj
)1/2

ψk(ξ).

Here, gijk (x) is a mollification of gij on the spatial scale 2−k/2, and ψk is a Littlewood-Paley
partition of unity. Then |p(x, ξ)− |ξ|| ≤ c0|ξ|, and as a result of [7, (2.7)] we have

(3.7) |∂βx∂αξ p(x, ξ)| ≤ C(α, β)(1 + |ξ|)1−|α|+ 1
2 max(0,|β|−1),

or equivalently p, ∂xp ∈ S1
1, 1

2
. Also, for g satisfying (3.3), it is shown in [7, Lemma 2.4] that

(3.8) ‖P 2f + ∆gf‖Hs−1(Rd) ≤ C ‖f‖Hs(Rd), 0 ≤ s ≤ 2.

We now decompose u = v + w, where v has vanishing Cauchy data at t = 0, and(
∂2
t + P 2)v(t, x) = (P 2 + ∆g

)
u(t, x),(

∂2
t + P 2)w(t, x) = F (t, x).
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By using the Duhamel formula and the bounds (3.6) and (3.8) to estimate v, the bound
(3.5) will follow from proving the following estimate,

‖w‖Lq(Rd;L2([0,T ])) ≤ C
(
‖f‖Hs(q)(Rd) + ‖g‖Hs(q)−1(Rd) + ‖(∂2

t + P 2)w‖Lq∗(Rd;L2([0,T ]))

)
.

Let E(t) denote the unitary group exp(itP ) for t ∈ R. Then as in [7, Section 2] the
preceding estimate reduces to the following mapping properties for E(t),

‖φ(t)〈D〉−s(q)E(t)f‖LqxL2
t (Rd+1) ≤ C(q) ‖f‖L2(Rd),

‖φ(t)〈D〉−s(q)
∫ t

0
E(t− s)φ(s)F (s, ·) ds‖LqxL2

t (Rd+1) ≤ C(q) ‖〈D〉1−s(q)F‖Lq∗x L2
t (Rd+1),

(3.9)

for a φ(t) ∈ C∞c ((.3T, .7T )) that equals 1 on [1
3T,

2
3T ].

The first estimate in (3.9) is [7, (2-15)], where it was established for 2(d+1)
d−1 ≤ q < ∞,

following the method used in [11] for smooth metrics.
The proof of the second estimate in (3.9) is more complicated than the situation in [7]

and [11], since the integral is over s < t, hence the operator of concern cannot be related
to the homogeneous wave group using the TT ∗ method. We will however follow the same
idea of [11] in microlocalizing in frequency to a cone along a given spatial direction, and
treating that direction as the time variable. The estimate is then obtained by interpolating
between energy type estimates and dispersive estimates.

By Littlewood-Paley theory in the spatial variable, and a finite conic partition of unity
in the spatial frequency variable, it suffices to consider Ee1

k (t) = E(t)ae1
k (D), where ae1

k (ξ)
is the product of a homogeneous cutoff to a small cone about the ξ1 axis with a smooth
radial cutoff supported in the shell 2k−1 ≤ |ξ| ≤ 2k+1, and prove that

(3.10)
∥∥∥φ(t)

∫ t

0
Ee1
k (t− s)φ(s)F (s, ·) ds

∥∥∥
LqxL

2
t (Rd+1)

≤ C(q) 2k ‖F‖Lq∗x L2
t (Rd+1).

By [7, Corollary 6.7], we can write

Ee1
k (t, x, y) = Ẽe1

k (t, x, y) +R(t),

where the operator Ẽe1
k (t) is frequency localized on both sides to the λ/100 neighborhood

of supp(ae1
k ), and for all N

(3.11) sup
t∈[0,T ]

‖R(t)f‖HN ≤ C(N) 2−kN‖f‖H−N .

Estimate (3.10) holds for R(t) by Sobolev embedding, so it suffices to prove (3.10) with
Ee1
k (t) replaced by Ẽe1

k (t).
Let K̃e1

k (t, x, y) be the integral kernel of Ẽe1
k (t). We will obtain (3.10) from the following

pair of bounds,

(3.12)
∥∥∥φ(t)

∫ t

0
K̃e1
k (t− s, x1, x

′, y1, y
′)φ(s)F (s, y′) ds dy′

∥∥∥
L∞
x′L

2
t (Rd)

≤ C 2k(d−1)(1 + 2k|x1 − y1|)−
d−1

2 ‖F‖L1
y′L

2
s(Rd),
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and

(3.13)
∥∥∥φ(t)

∫ t

0
K̃e1
k (t− s, x1, x

′, y1, y
′)φ(s)F (s, y′) ds dy′

∥∥∥
L2
x′L

2
t (Rd)

≤ C ‖F‖L2
y′L

2
s(Rd).

Interpolation of (3.12) and (3.13) yields∥∥∥φ(t)
∫
K̃e1
k (t− s, x1, x

′, y1, y
′)φ(s)F (s, y1, y

′) ds dy′
∥∥∥
L
qd
x′ L

2
t (Rd)

≤ C 22ksd |x1 − y1|
−1+ 1

q′
d

− 1
qd ‖F (·, y1, ·)‖

L
q′
d
y′ L

2
s(Rd)

,

where qd = 2(d+1)
d−1 , and sd = s(qd) = 1/qd. The Hardy-Littlewood inequality then yields∥∥∥φ(t)
∫ t

0
Ẽe1
k (t− s)φ(s)F (s, ·) ds

∥∥∥
L
qd
x L2

t (Rd+1)
≤ C 22ksd ‖F‖

L
q′
d
x L2

t (Rd+1)
.

Given q ≥ qd with q∗ ≤ q′d, Sobolev embedding now yields (3.10), where we use that
2
qd

+ d
( 1
qd
− 1
q

)
+ d

( 1
q∗
− 1
q′d

)
= 2
qd

+ d
( 1
qd
− 1
q′d

)
+ 2 = 1,

and we may assume that F is frequency localized to |ξ| ≈ 2k.
By [7, (6.15)] and the comments following it, we have

|K̃e1
k (t, x, y)| ≤ CN 2kd(1 + 2k|x− y|)−

d−1
2
(
1 + 2k

∣∣t− ρ(x, y)
∣∣ )−N ,

with ρ(x, y) the geodesic distance in g. Estimate (3.12) follows since

‖K̃e1
k (t, x, y)‖L1

t ([0,T ]) ≤ C 2k(d−1)(1 + 2k|x− y|)−
d−1

2 .

We now turn to (3.13). We first consider the case |x1− y1| ≥ 2−
k
2 . We will show that for

all N we have, uniformly over 0 ≤ t ≤ T and y1 ∈ R,

(3.14) sup
x1≥y1+2−k/2

∥∥∥∥ ∫ K̃e1
k (t, x1, x

′, y1, y
′)F (y′) dy′

∥∥∥∥
L2
x′ (R

d−1)
≤ C(N) 2−Nk ‖F‖L2(Rd−1),

which easily yields (3.13) for x1 ≥ y1 + 2−
k
2 . This also implies that if x1 ≤ y1 − 2−

k
2 , then∥∥∥∥φ(t)

∫ T

t
K̃e1
k (t− s, x1, x

′, y1, y
′)φ(s)F (s, y′) ds dy′

∥∥∥∥
L2
x′L

2
t (Rd)

≤ C(N) 2−Nk ‖F‖L2(Rd).

Thus, (3.13) for x1 ≤ y1 − 2−
k
2 will follow as a result of the following estimate∥∥∥∥φ(t)

∫ T

0
K̃e1
k (t− s, x1, x

′, y1, y
′)φ(s)F (s, y′) ds dy′

∥∥∥∥
L2
x′L

2
t (Rd)

≤ C ‖F‖L2(Rd),

which was proven in [7, Section 6] using a TT ∗ argument and the homogeneous energy
estimates [7, Theorem 6.9].

Estimate (3.14) results from the fact that bicharacteristics with co-direction in the sup-
port of ae1

k satisfy ∂tx1 ≈ −1, and the fact the kernel K̃e1
k (t, x, y) is highly concentrated, in
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a microlocal sense, within spatial distance t
1
2 2−

k
2 of the bicharacteristic flow. We outline

the details here for t ≥ 2−k; the analysis for 0 ≤ t < 2−k is the same as that for t = 2−k.
Given 2−k ≤ t ≤ T , and F ∈ L2(Rd−1), we expand ae1

k (D)(F ⊗ δy1) in a rescaled dyadic-
parabolic wave packet frame {φγ} on Rd as in [7, Section 7]. The elements of this frame are
rapidly decreasing outside a ball of diameter 2−

k
2 t

1
2 . Their Fourier transform is supported

by ξ in a cone of angle 2−
k
2 t−

1
2 , and where |ξ| ≈ 2k. As a result, the coefficients {cγ} in

the expansion of ae1
k (D)(F ⊗ δy1) are highly localized to where the spatial center of the

corresponding packet φγ is distance less than 2−
k
2 t

1
2 from x1 = y1, and cγ = 0 unless the

Fourier transform of φγ is supported within a small angle of the ξ1 axis.
If φγ(y) is an element of the frame, centered at (xγ , ξγ), then by [7, Corollary 7.5]

|Ẽe1
k (t)φγ |(x) ≤ C(N) 2k( d+1

2 )t−
d−1

2 (1 + 2
k
2 t−

1
2 |x− xt|)−N ,

where xt is the spatial coordinate of the bicharacteristic through (xγ , ξγ) at t = 0. In
particular, (xt)1 ≤ (xγ)1 − 1

2 t. If |(xγ)1 − y1| ≤ 2−
k
2 t

1
2 , and x1 ≥ y1 + 2−

k
2 , then

1 + 2
k
2 t−

1
2 |x− xt| ≥

1
8
(
1 + 2

k
4 + 2

k
2 t−

1
2 |x− xγ |

)
.

Since the number of indices γ at frequency scale 2k with center xγ contained in a given unit
ball is bounded by 2kd, estimate (3.14) follows easily since the coefficients in the expansion
have `2 norm bounded by 2

k
2 ‖F‖L2 . For frame elements φγ with |(xγ)1 − y1| ≥ 2−

k
2 t

1
2 , a

similar argument holds using rapid decrease of the coefficients {cγ} away from (xγ)1 = y1.

We now consider (3.13) for |x1−y1| ≤ 2−
k
2 , and without loss of generality take y1 = 0. We

will deduce bounds in this region from sideways energy estimates for the operator ∂t−iP . It
suffices to prove (3.13) with K̃e1

k (t) replaced by Ke1
k (t), since the estimate (3.13) is satisfied

by the difference R(t). We assume F (s, y′) is supported where .3T ≤ s ≤ .7T , and let

u(t, x) =
∫ t

0
E(t− s)ae1

k (D)(F (s, · )⊗ δ) ds.

Note that
‖ae1

k (D)(F (s, · )⊗ δ)‖L2(Rd) ≤ C 2
k
2 ‖F (s, · )‖L2(Rd−1),

hence by unitarity of E(t) we have an initial bound

(3.15) ‖u‖L2
t,x([0,T ]×Rd) ≤ C 2

k
2 ‖F‖L2 .

If ãe1
k (ξ) equals 1 on a λ/10 neighborhood of supp(ae1

k ), then since ãe1
k (D)Ẽe1

k (t) = Ẽe1
k (t),

from the bounds (3.11) for R(t) we have

(3.16) ‖(1− ãe1
k (D))u‖L∞t HN

x ([0,T ]×Rd) ≤ C(N)‖F‖L2 .

Since ∂tu = p(x,D)u the same holds for u replaced by ∂tu.
Fix β ∈ C∞c ((0, T )) with β(t) = 1 for t ∈ [.1T, .9T ], and let v(t, x) = β(t)ãe1

k (D)u(t, x).
Then

(3.17)
(
∂t − iP

)
v(t, x) = ∂tβ(t)ãe1

k (D)u(t, x) + iβ(t)[P, ãe1
k (D)]u(t, x) + ae1

k (D)(F ⊗ δ).
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By (3.15) and (3.7),

‖∂tβ(t)ãe1
k (D)u‖L2

t,x(Rd+1) + ‖β(t)[P, ãe1
k (D)]u‖L2

t,x(Rd+1) ≤ C 2
k
2 ‖F‖L2 .

We take the Fourier transform in t of both sides of (3.17), and express the equation as

(τ − p(x,D))v̂(τ, x) = Ĝ(τ, x),
where we have
(3.18) ‖Ĝ‖L2

τ,x(Rd+1) ≤ C 2
k
2 ‖F‖L2 .

For τ /∈ [2k−1, 2k+2], the symbol estimates (3.7) and elliptic regularity yield

‖Dxv̂(τ, · )‖L2(Rd) ≤ C 2
k
2 ‖Ĝ(τ, · )‖L2(Rd).

Since v is supported where |Dx| ≈ 2k, we deduce that
‖v̂‖L∞x1L

2
τ,x′ (τ /∈[2k−1,2k+2]) ≤ C ‖F‖L2 .

For τ ∈ [2k−1, 2k+2], we can use (3.7) and the fact that ∂ξ1p 6= 0 on supp(ãe1
k ) to factor

Dt − P over the support of ãe1
k (D),

τ − p(x,D) = c(τ, x,D)(D1 − q(τ, x,D′)) + b(τ, x,D),
where c, b ∈ S0

1, 1
2

with uniform estimates over τ , the symbol c is elliptic, and q ∈ S1
1, 1

2
is

self-adjoint in x′. We apply a parametrix for c(τ, x,D) to write

(3.19) (D1 − q(τ, x,D′))v̂(τ, x) = b1(τ, x,D)v̂(τ, x) + b2(τ, x,D)Ĝ(τ, x),
where bj ∈ S0

1, 1
2
, uniformly over τ . We may assume that bj(τ, x, ξ) is supported in |ξ| ≈ 2k,

as the remainder is smoothing on v. By self-adjointness of q, we have

‖v̂‖L∞x1L
2
τ,x′ (τ∈[2k−1,2k+2]) ≤ C ‖v̂‖L2

τ,x
+ C ‖Ĝ‖L2

τ,x
≤ C 2

k
2 ‖F‖L2 ,

where we use (3.15) and (3.18). Combined with (3.16), we obtain

‖u‖L∞x1L
2
t,x(t∈[.1T,.9T ]) ≤ C 2

k
2 ‖F‖L2 .

We now refine the estimate for u over small x1-intervals. Suppose that β ∈ C∞c ((.1T, .9T ))
with β(t) = 1 for t ∈ [.3T, .7T ]. We again let v = β(t)ãe1

k (D)u, and repeat the above steps
leading to (3.19) for τ ∈ [2k−1, 2k+2]. Since the integral kernel of b1(τ, x,D)ãe1

k (D) is
dominated by C(N) 2kd(1 + 2k|x− y|)−N , we have

‖b1(τ, x,D)v̂‖L∞x1L
2
τ,x′ (τ∈[2k−1,2k+2]) ≤ C ‖β̂u‖L∞x1L

2
τ,x′
≤ C 2

k
2 ‖F‖L2 .

Consider now the terms on the right of (3.17), which combine to produce G. From similar
bounds on the kernel of b2(τ, x,D) and b2(τ, x,D)[P, ãe1

k (D)], we have

‖b2(τ, x,D)ãe1
k (D)β̂′u‖L∞x1L

2
τ,x′ (τ∈[2k−1,2k+2]) ≤ C 2

k
2 ‖F‖L2 ,

‖b2(τ, x,D)[P, ãe1
k (D)]β̂u‖L∞x1L

2
τ,x′ (τ∈[2k−1,2k+2]) ≤ C 2

k
2 ‖F‖L2 ,

‖b2(τ, x,D)ae1
k (D)(F̂ ⊗ δ)‖L1

x1L
2
τ,x′ (τ∈[2k−1,2k+2]) ≤ C ‖F‖L2 .
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Put together, we conclude that for τ ∈ [2k−1, 2k+2],
‖(D1 − q(τ, x,D′))v̂(τ, x)‖L1

x1L
2
τ,x′ (|x1|<2−k/2,τ∈[2k−1,2k+2]) ≤ C ‖F‖L2 .

We use (3.14) and (3.11) to deduce that ‖v̂(τ, 2−
k
2 , x′)‖L2

τ,x′
≤ C‖F‖L2 , and conclude from

energy estimates and self-adjointness of q that
‖v̂(τ, x)‖L∞x1L

2
τ,x′ (|x1|≤2−k/2) ≤ C ‖F‖L2 .

Combined with (3.16) this yields the desired bound for |x1| ≤ 2−
k
2 ,

‖βu‖L∞x1L
2
t,x′ (|x1|≤2−k/2) ≤ C ‖F‖L2 ,

which concludes the proof of (3.13). �
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