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ON MULTILINEAR SPECTRAL CLUSTER ESTIMATES FOR
MANIFOLDS WITH BOUNDARY

Matthew D. Blair, Hart F. Smith, and Christopher D. Sogge

Abstract. We prove bilinear and trilinear estimates for the spectral cluster operator

on two and three-dimensional compact manifolds with boundary. These are the natural
analogs of earlier estimates for the boundaryless case of Burq, Gérard, and Tzvetkov [1],

[2]. Our theorem reduces to establishing inequalities over small cubes whose size depends

on frequency. After rescaling, these inequalities follow from mixed Lp norm estimates
on squarefunctions associated to the wave equation.

1. Introduction

Let (Mn, g) be a smooth, compact n-dimensional Riemannian manifold with boun-
dary and let ∆ be the corresponding Laplace-Beltrami operator acting on functions.
If the boundary is non-empty, we assume that either Dirichlet or Neumann conditions
are imposed along ∂Mn.

Consider the operators χλ defined as projection onto the subspace spanned by the
Dirichlet (or Neumann) eigenfunctions whose corresponding eigenvalues −λ2

j satisfy
λj ∈ [λ − 1, λ]. In the case that ∂Mn is empty, it was established in [11] that the
following, best possible L2 → Lq estimates hold for χλ:

(1.1) ‖χλ‖L2→Lq .

{
λ

n−1
2 ( 1

2−
1
q ) 2 ≤ q ≤ 2(n+1)

n−1

λn( 1
2−

1
q )− 1

2 2(n+1)
n−1 ≤ q ≤ ∞

Recently, in [1] and [2], Burq, Gérard, and Tzvetkov established multilinear versions
of these estimates, also under the assumption that the boundary of M is empty. To
state these, suppose that λ ≥ µ ≥ ν ≥ 1. Then

(1.2) ‖χλf χµg‖L2(M) . Λ(µ)‖f‖L2(M)‖g‖L2(M)

(1.3) ‖χλf χµg χνh‖L2(M) . (µν)
2n−3

4 ‖f‖L2(M)‖g‖L2(M)‖h‖L2(M)

where in the first estimate

Λ(µ) =


µ

1
4 n = 2

µ
1
2 (log µ)

1
2 n = 3

µ
n−2

2 n ≥ 4

With the exception of the logarithmic loss for n = 3, the linear estimate (1.1) with
q = 4 follows as a corollary of the bilinear estimate (1.2), by taking λ = µ and f = g.
Similarly, the trilinear estimate (1.3) implies (1.1) with q = 6. Moreover, by taking
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h constant and ν = 1, (1.3) implies (1.2) in case n = 2. For n ≥ 4, however, the
trilinear estimate can be improved by using (1.2) together with the L∞ bounds (1.1)
on h.

In the case where ∂Mn is nonempty, the issue of spectral cluster estimates is
considerably more intricate. Here the Rayleigh whispering gallery modes provide
examples of spectral clusters which concentrate in a λ−

2
3 × λ−

n−2
2 neighborhood of

a boundary geodesic (see Grieser [4]). These examples show that one cannot achieve
linear spectral cluster estimates better than

(1.4) ‖χλ‖L2→Lq .

{
λ( 2

3+ n−2
2 )( 1

2−
1
q ) 2 ≤ q ≤ 6n+4

3n−4

λn( 1
2−

1
q )− 1

2 6n+4
3n−4 ≤ q ≤ ∞

The estimates (1.4) were recently proven for dimension n = 2 in [10], along with
partial results in higher dimensions. The question of whether or not they hold in
general in higher dimensions remains open. It should be noted that the Rayleigh
mode construction can only be done near a portion of the boundary that is strictly
convex with respect to the metric g. When the boundary is strictly concave, χλ

actually satisfies (1.1), as was shown by Grieser [4] when n = 2, and subsequently for
all n by [9].

In this work, we establish the following multilinear spectral cluster estimates on
a general Riemannian manifold with boundary. We restrict attention to dimensions
n = 2, 3, since that is where our results are in some context sharp.

Theorem 1.1. Let (Mn, g) and χλ be as above, with either Dirichlet or Neumann
eigenfunctions, and let λ ≥ µ ≥ ν. Then the following bilinear estimate holds

(1.5) ‖χλf χµg‖L2(M) . Λ(µ) ‖f‖L2(M)‖g‖L2(M)

with Λ defined as

Λ(µ) =

{
µ

1
3 n = 2

µ
2
3 (log µ)

1
2 n = 3

In addition, the following trilinear estimate holds for n = 2, 3

(1.6) ‖χλf χµg χνh‖L2(M) . (µν)
3n−4

6 ‖f‖L2(M)‖g‖L2(M)‖h‖L2(M)

For n = 2, the bilinear and trilinear estimates imply the estimate (1.4), respectively
for q = 4 and q = 6. Moreover, (1.6) implies (1.5) for Neumann conditions by taking
h constant. For n = 3 this is no longer the case. However, the bilinear estimate
for n = 3 implies (up to a logarithmic loss) the best possible L4 linear estimate
for manifolds with Lipschitz metric, by the examples of [8], and our proof in fact
establishes Theorem 1.1 in this context.

As in [10], a key step is to work on the double M̃ of the manifold M , obtained
by attaching two copies of M along the boundary, and taking coordinate patches
along ∂M ⊂ M̃ which agree with geodesic normal coordinates (x′, xn) on each copy
of M . In these coordinates, the lift g̃ of g to M̃ is given by gij(x′, |xn|), and hence
g̃ extends to M̃ with a Lipschitz type singularity along ∂M . Dirichlet and Neumann
eigenfunctions on M correspond to eigenfunctions on M̃ which are, respectively, odd
or even under xn → −xn. Hence, Lq bounds on spectral clusters, and the multilinear
analogs we consider, can be obtained by proving the same bounds on (M̃, g̃).
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The linear estimates of [10] were obtained by establishing mixed-norm Lq
xL2

t esti-
mates on M̃ for the evolution of a spectral cluster under the wave equation, and we
follow a similar approach here. In that paper, the precise nature of the singularity
of g̃ along ∂M was used, and a microlocal decomposition of the cluster was made in
terms of angle from tangent to ∂M . Estimates were obtained over small slabs, with
size depending on the frequency and angle, and summing over slabs led to a frequency
dependent loss for the estimates on M̃ .

In contrast, the results of this paper go through generally for the case of a boundary-
free Riemmanian manifold with metric of Lipschitz regularity, as with the linear
spectral cluster estimates of [7], or the Strichartz estimates of Tataru [12]. As in those
papers, we obtain estimates over small slabs with size depending on the frequency,
and use a rescaling argument to reduce matters to obtaining estimates for C2 metrics.
We then use wave packet methods to obtain dispersive estimates, as in [5], [6] and
[12]. Summing over slabs then leads to a frequency dependent loss.

2. Microlocal Reductions

For the remainder of this paper, we assume M is a compact manifold without
boundary, and g is a metric of Lipschitz regularity. The condition that f, g, h be
spectrally localized can be relaxed, and we work instead with a quasimode condition.
We state the condition for f here, the condition for g and h being analogous. For
each local coordinate chart we write

(2.1) g d2f + λ2f = w , g d2 =
∑
j,k

gjk(x) ∂j∂k .

Given such an equation, we set

|||f |||λ = ‖f‖L2 + λ−1‖df‖L2 + λ−2‖d2f‖L2 + λ−1‖w‖L2 .

If f = χλf , then for φ a smooth cutoff to a local coordinate system, the function
φf satisfies the equation (2.1) on Rn, and

|||φf |||λ . ‖f‖L2(M) .

For the bilinear estimates it thus suffices to prove, for each coordinate chart, that

‖φf φg‖L2 . Λ(µ) |||φf |||λ |||φg|||µ ,

and analogously for the trilinear version.
By choosing appropriate coordinates, we may assume f satisfies (2.1) on Rn, with

f supported in the unit ball, and

‖gij − δij‖Lip(Rn) ≤ c0 ,

with c0 a constant to be chosen suitably small.
Let Sr = Sr(D) denote a smooth cutoff on the Fourier transform side to frequencies

of size |ξ| ≤ r. Let gλ = Sc2λg, for c to be chosen suitably small. Then

‖(g − gλ)d2f‖L2 . c−2λ−1‖d2f‖L2 ,

and thus we may replace g by gλ in (2.1) at the expense of absorbing the above term
into w, which does not change the size of |||f |||λ.
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We next take a microlocal partition of unity, 1 =
∑

Γ(D), where each Γ(ξ) is a
smooth symbol of order 0 supported in a cone of small angle. By the Coifman-Meyer
commutator theorem [3], since g is Lipschitz

[g,Γ(D)] d : L2(Rn) → L2(Rn) ,

hence Γ(D)f satisfies the equation (2.1), with |||Γ(D)f |||λ . |||f |||λ .
Since there are finitely many terms, we may replace f by Γ(D)f , which is no

longer compactly supported, but is rapidly decreasing and smooth outside the unit
ball. Without loss of generality we assume that Γ(ξ) is supported within a small
angle of the ξ1 axis. We similarly replace g and h by Γ′(D)g and Γ′′(D)h, localized
in frequency to small cones along general directions.

Letting x′ = x2 in case of dimension n = 2, and x′ = (x2, x3) in case of dimension
n = 3, we bound

‖fg‖L2 ≤ ‖f‖L∞x1
L2

x′
‖g‖L2

x1
L∞

x′

‖fgh‖L2 ≤ ‖f‖L∞x1
L2

x′
‖g‖L4

x1
L∞

x′
‖h‖L4

x1
L∞

x′

Since Γ(D)f is rapidly decreasing outside the unit ball, it suffices to take the norms
above over the ball of radius 2. Theorem 1.1 is then a result of the following.

Theorem 2.1. Suppose that f satisfies the equation

(2.2) gλd2f + λ2f = w

Then the following hold, where the norms on the left side are over a bounded set

‖f‖L2
x1

L∞
x′

. λ
2
3 (log λ)

1
2 |||f |||λ , n = 3(2.3)

‖f‖L4
x1

L∞
x′

.

{
λ

1
3 |||f |||λ , n = 2

λ
5
6 |||f |||λ , n = 3

(2.4)

Futhermore, if f̂(ξ) is supported in a small cone about the ξ1 axis, then

(2.5) ‖f‖L∞x1
L2

x′
. |||f |||λ

Proof. We start by localizing f dyadically in frequency. Let

f = Scλf + (Sc−1λ − Scλ)f + (1− Sc−1λ)f ≡ f<λ + fλ + f>λ .

Since [Scλ, gλ] d : L2 → L2, fλ satisfies (2.2), with |||wλ|||λ . |||f |||λ , and similarly
for f>λ and f<λ. Furthermore, by the frequency localization of gλ, each of wλ, w<λ,
and w>λ is also localized to the appropriate range of frequencies.

A simple integration by parts argument (see the proof of Corollary 5 of [7]) yields
that, for c sufficiently small,

λ‖f<λ‖L2(Rn) + ‖df>λ‖L2(Rn) . |||f |||λ .

Elliptic regularity additionally gives the bound

‖d2f>λ‖L2(Rn) . λ |||f |||λ .
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Sobolev embedding then yields each of the estimates (2.3)–(2.5) for f<λ and f>λ.
Indeed, there is a gain of λ

2
3 (log λ)

1
2 in the estimate (2.3), and a gain of λ

7
12 in the

estimate (2.4), for these terms.
Consequently, we are reduced to establishing (2.3)–(2.5) for the term fλ. We start

with (2.5). Let V denote the vector field

V = 2(∂1fλ) gλ dfλ +
(
λ2f2

λ − 〈gλ dfλ, dfλ〉
)−→e1 .

Then
div V = 2(∂1fλ) (div gλ) · dfλ + 2(∂1fλ) wλ − 〈(∂1gλ)dfλ, dfλ〉 .

Applying the divergence theorem on the set x1 ≤ r yields∫
x1=r

V1 dx′ . λ2‖fλ‖2
L2(Rn) + ‖dfλ‖2

L2(Rn) + ‖wλ‖2
L2(Rn) .

Since gλ is pointwise close to the flat metric, we have pointwise that

V1 ≥ 3
4 |∂1fλ|2 + 3

4λ2|fλ|2 − |∂x′fλ|2 .

The frequency localization of f̂λ to |ξ′| ≤ cλ yields∫
x1=r

V1 dx′ ≥ 1
2

∫
x1=r

|dfλ|2 + λ2|fλ|2 dx′ .

Consequently,

λ−1‖dfλ‖L∞x1
L2

x′
+ ‖fλ‖L∞x1

L2
x′

. ‖fλ‖L2(Rn) + λ−1‖dfλ‖L2(Rn) + λ−1‖wλ‖L2(Rn)

≤ |||fλ|||λ ,

yielding estimate (2.5).
For the remainder, we assume that f̂(ξ) is localized to a small cone along the direc-

tion ω. In this case, the above argument yields uniform L2 bounds over hyperplanes
of the form ω ·x = r. In the proof of (2.3)–(2.4) we will use the following consequence.
Suppose that SR is a slab of the form ω ·x ∈ I, where I is an interval of length |I| = R.
Then

(2.6) λ−1‖dfλ‖L2(SR) + ‖fλ‖L2(SR) . R
1
2 |||fλ|||λ .

We cover the bounded set on which the norms in (2.3) and (2.4) are taken by ≈ λ
1
3

slabs of the form ω · x ∈ I, where |I| = R = λ−
1
3 . Then

(2.7) ‖fλ‖Lp
x1L

∞
x′

. λ
1
3p sup

SR

‖fλ‖Lp
x1L

∞
x′ (SR) .

We will establish the following result. Suppose that QR is a cube of sidelength R =
λ−

1
3 , and Q∗

R its double. Then

(2.8) ‖fλ‖Lp
x1L

∞
x′ (QR)

. cp(λ)R− 1
2
(
‖fλ‖L2(Q∗

R) + λ−1‖dfλ‖L2(Q∗
R) + Rλ−1‖wλ‖L2(Q∗

R)

)
where

c2(λ) = λ
1
2 (log λ)

1
2 , n = 3 c4(λ) =

{
λ

1
4 , n = 2

λ
3
4 , n = 3
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If we cover the slab SR by disjoint cubes QR, then by (2.6) we obtain

‖fλ‖Lp
x1L

∞
x′ (SR) . cp(λ) |||fλ|||λ ,

and (2.7) yields (2.3)–(2.4).
The estimate (2.8) is scale-invariant. Precisely, if we change x → Rx, so that Q

becomes a cube of size 1, and fλ(R ·) is frequency localized at scale Rλ = λ
2
3 , then,

with µ = λ
2
3 , estimate (2.8) is equivalent to the following

(2.9) ‖fµ‖Lp
x1L

∞
x′ (Q) . cp(µ)

(
‖fµ‖L2(Q∗) + µ−1‖dfµ‖L2(Q∗) + µ−1‖wµ‖L2(Q∗)

)
.

Here, fµ(x) = fλ(λ−
1
3 x), which satisfies the equation

gµd2fµ + µ2fµ = wµ ,

with gµ(x) = gλ(λ−
1
3 x). Observe that

(2.10) ‖dgµ‖L∞ ≤ c0λ
− 1

3 = c0µ
− 1

2 ,

hence
‖gµ − gµ1/2‖L∞ ≤ c0µ

−1 ,

with gµ1/2 = Sc2µ1/2gµ . Thus fµ satisfies the equation

(2.11) gµ1/2d2fµ + µ2fµ = wµ ,

with the right-hand side of (2.9) of comparable size.
It follows from (2.10) that the metric gµ1/2 is of regularity C2. Indeed,

‖gjk
µ1/2 − δjk‖C2 ≤ c0 .

To establish (2.9), we may thus use techniques developed to establish dispersive esti-
mates for operators of principal type with C2 coefficients. We follow below the path
through squarefunction estimates for solutions to a first order hyperbolic equation,
by introducing a time variable, as in [6]. It should also be possible to establish the
dispersive estimates directly for (2.11) using methods of [5].

Let

p( · , ξ) = Sc2µ1/2

( ∑
j,k

gjk
µ1/2(·) ξj ξk

) 1
2

.

Then
‖p(x, D)2fµ + gµ1/2d2fµ‖L2(Rn) . µ ‖fµ‖L2 .

Thus, (
µ + p(x,D)

)(
µ− p(x,D)

)
fµ = wµ ,

with the error harmlessly absorbed into wµ. The operator µ + p(x,D) is elliptic on
the frequency support of

(
µ− p(x,D)

)
fµ, hence we may write(

µ− p(x, D)
)
fµ = µ−1wµ ,

with |||f |||λ still of comparable size. Finally, let

u(t, x) = e−itµfµ(x) , F = µ−1e−itµwµ .

Then (
∂t + ip(x, D)

)
u = F ,
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and it suffices to show that

(2.12) ‖u‖Lp
x1L

∞
x′L

2
t (Q×[0,1]) . cp(µ)

(
‖u‖L∞t L2

x([0,1]×Rn) + ‖F‖L1
t L2

x([0,1]×Rn)

)
.

Our proof of (2.12) follows very closely the proof of the linear spectral cluster
estimates in [6]; we outline just the main steps here. Following [6, §3], consider the
wave packet transform of uµ,(

Tµu
)
(t, x, ξ) = µ

n
4

∫
e−i〈ξ,z−x〉 φ

(
µ

1
2 (z − x)

)
u(t, z) dz ,

where φ is a real, even Schwartz function, with ‖φ‖L2 = (2π)−
n
2 , and with Fourier

transform supported in the unit ball {|ξ| ≤ 1} . Then

∂tTµu(t, x, ξ) =
(
dξp(x, ξ) · dx − dxp(x, ξ) · dξ

)
Tµu(t, x, ξ) + G(t, x, ξ) ,

where G(t, x, ξ) = 0 unless 1
8µ < |ξ| < 2µ, and

‖G‖L1
t L2

x,ξ
. ‖u‖L1

t L2
x

+ ‖F‖L1
t L2

x
.

Let χt denote the canonical transform on R2n
x,ξ = T ∗(Rn) generated by the Hamilton-

ian flow of p. Thus, χt(x, ξ) = γ(t), where γ is the integral curve with γ(0) = (x, ξ).
Then we have(

Tµu
)
(t, x, ξ) =

(
Tµu

)
(0, χ−t(x, ξ)) +

∫ t

0

G(r, χr−t(x, ξ)) dr .

Thus, Tµu(t, x, ξ) is an integrable superposition over r of 1t>r multiplied by a function
invariant under the Hamiltonian flow of p.

Since u(t, x) = T ∗
µ

(
Tµu

)
(t, x, ξ), it suffices to show

(2.13) ‖Wf̃‖Lp
x1L

∞
x′L

2
t (Rn×[0,1]) . cp(µ)‖f‖L2

x,ξ
,

where (
Wf̃

)
(t, x) = T ∗

µ

(
f̃ ◦ χ−t

)
(x) .

This is in turn equivalent to the following bounds

(2.14) ‖WW ∗F‖Lp
x1L

∞
x′L

2
t (Q×[0,1]) . cp(µ)2 ‖F‖

Lp′
x1L

1
x′L

2
t (Q×[0,1])

.

The operator WW ∗ has an integral kernel K which is highly localized to a µ−1

neighborhood of the light cone, with the dispersive rate of decay away from the origin,
see [6, (3.11)],

(2.15) |K(s, y; t, z)| . µn
(
1 + µ |y1 − z1|

)−n−1
2

(
1 + µ

∣∣ d(y, z)− |s− t|
∣∣ )−N

,

with d(y, z) the distance of y to z determined by p.
We remark that in [6] this estimate was established assuming the kernel was mi-

crolocalized near the ξ1 axis. That assumption, however, was necessary for L2-energy
estimates, not the above dispersive estimates. Indeed, the proof of [6, (3.11)] estab-
lishes (2.15) with |y1− z1| replaced by |y− z|, since |t− s| ≈ |y− z| on the light cone,
and hence holds without any assumption of conic micro-localization.

Estimate (2.15) implies that, for each (y1, z1),∥∥∥∫
K(s, y; t, z) v(t, z′) dt dz′

∥∥∥
L∞

y′L
2
s

. µn−1(1 + µ |y1 − z1|)−
n−1

2 ‖v‖L1
z′L

2
t
.
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For n = 3 and p = 2, estimate (2.14) follows from∫
|z1|≤2

µ2( 1 + µ |y1 − z1| )−1 ≤ µ log µ .

For p = 4, (2.14) follows from the Hardy-Litlewood-Sobolev inequality, together with
the bound

µn−1( 1 + µ |y1 − z1| )−
n−1

2 ≤ µn− 3
2 |y1 − z1|−

1
2 . �
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