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SUBCRITICAL L? BOUNDS ON SPECTRAL CLUSTERS
FOR LIPSCHITZ METRICS

HERBERT KOCH, HART F. SMITH, AND DANIEL TATARU

ABSTRACT. We establish asymptotic bounds on the LP norms of spectrally localized
functions in the case of two-dimensional Dirichlet forms with coefficients of Lipschitz
regularity. These bounds are new for the range 6 < p < co. A key step in the proof
is bounding the rate at which energy spreads for solutions to hyperbolic equations with
Lipschitz coefficients.

1. Introduction

The purpose of this paper is to establish P bounds on eigenfunctions, or more
generally spectrally localized functions, associated to Dirichlet forms on a compact
manifold. The question of interest is the dependance of the bounds on the Holder
regularity of the coefficients of the form. We consider here the case of Dirichlet forms
with Lipschitz coefficients for simplicity, but the proofs can be adapted to the case of
C* coefficients, where 0 < s < 2. Our work is restricted to the case of two-dimensional
manifolds, however.

Consider the eigenvalue problem for a Dirichlet form, where we work on a compact
manifold M without boundary,

d(adp) +Npp=0.

Here, a is a section of real, symmetric quadratic forms on T*(M), with associated
linear transforms a,, : T (M) — T, (M), and p is a real valued function on M. Here,
d* denotes the adjoint of d relative to a fixed volume form dx. We assume both a
and p are strictly positive, with uniform bounds above and below. We note that
this setting includes the Laplace-Beltrami operator on a Riemannian manifold. The
parameter A > 0 is referred to as the frequency of the eigenfunction ¢.

A spectral cluster of frequency M is a linear combination of eigenfunctions with
frequencies in the range [A — 1,A]. In the case that a and p are smooth, Sogge [9]
established the following best possible LP bounds on spectral clusters,

n—1¢1_1
< A2 (3 p)||fHL2(]\/[)7 2<p<p,
(1) HfHLp(M) ~ n(l_l _1
AT ||f||L2(M)7 Pn SPSOO
The critical index is p, = 72(::1). Semiclassical generalizations were obtained by

Koch-Tataru-Zworksi [4]. The bounds (1) hold in case a and p are of regularity C'*:!
by [5], but based on an observation of Grieser [2], and examples of Smith-Sogge [7]
and the authors [3], they fail for coefficients of C*® regularity if s < 2.
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For metrics of regularity C* with s < 2 (or Lipschitz in case s = 1) best possible
LP bounds on spectral clusters have been established on the range 2 < p < p,,, as well
as for p = oo; see [6] for the case 1 < s < 2, and [3] for the case s < 1. This leaves
open the subcritical case p,, < p < oo, where the upper bounds on the exponent of A
that can be obtained from [3] and [6] by interpolation do not match the lower bounds
that follow from the examples of [3] and [7].

In this paper we obtain bounds for p, < p < oo, for Lipschitz coefficients and
n = 2, which improve upon the results of [6]. They do not match the exponent
displayed by the Rayleigh whispering mode example noted in [2], but the difference
is exponentially small as p — co. Our results are restricted to n = 2, but all steps
adapt to C*® coeflicients for 0 < s < 2, and improve upon the results of [3] and [6] for
this range of p.

Thus, consider a Dirichlet form on a two-dimensional compact manifold without
boundary, with a and p of Lipschitz regularity. Let

7(p) 22(% - %) -3
be the exponent occuring in the subcritical estimates (1). By Theorem 2 of [6], in
this case the following no-loss estimates hold on cubes @Q of sidelength A~ 3,

(2) IfllEr@) S N PN Fllp2an » 6<p<oo.

This estimate was in fact proved under a weaker gquasimode condition (6) on f, which
is preserved under smooth cutoffs in x, as well as dyadic and conic localization in
frequency.

The Rayleigh whispering mode examples show that if p = 6 the size of ) cannot
be increased without increasing the exponent in (2). On the other hand, for p > 8,
the Rayleigh mode examples satisfy no-loss estimates on cubes @ of sidelength 1.

The main result of this paper is to establish log-loss estimates on cubes of larger

o(6-p)/2

sidelength for larger p. Precisely, for cubes @ of sidelength A3 , we establish

(3) Hf”L”(Q) S (IOgA)p76>\’Y(p)||fHL2(M) ) p= 6587107 127
If f is conically microlocalized in frequency, then (see [6, (14)-(15)]) @ can be replaced
by a thin slab of size 1 x A-F2EOTIE Summing over such slabs in local coordinate

charts, one obtains the following, for spectral clusters f of frequency A.

Theorem 1. Suppose that a and p are of Lipschitz reqularity, on a two-dimensional
compact manifold without boundary. Then, for p =6,8,10,12,...

6\o 6-p
(4) 1 1lzeary S (0g AP~ AP £l L2 a(p) =)+ 5,277 .

To place this result in context, the Rayleigh whispering mode eigenfunctions on
the disc, together with a reflection argument, show that, for Lipschitz coefficients and
n = 2, one cannot establish better estimates than the following

i MO fllaan,  2<p<s8
(5) HfHLP(M)N N Fllz2ar » 8<p< o0

The estimate (5) for 2 < p < 6 and p = co was established in [6]; interpolation then
establishes (4) with o(p) = v(p) + 3—117 for 6 < p < co. Thus, Theorem 1 improves
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upon [6] in the subcritical range, but misses the conjectured result (5) for 6 < p < oo
by a factor which decays exponentially as p — oo.

In a related direction, the bounds (5) were established in [8] for smooth Dirichlet
forms on two-dimensional manifolds with boundary, with either Dirichlet or Neumann
conditions at the boundary. A smooth Dirichlet form on a manifold with boundary
can be thought of as a special case of a form with Lipschitz coefficients on a manifold
without boundary, by extending coefficients evenly across the boundary in the geo-
desic normal coordinates determined by a. The examples of [7] for Lipschitz metrics
and n = 2 are generated by reflecting a Rayleigh whispering mode from the unit disc,
and currently no examples are known which exhibit larger growth in LP norm for
p > 6 than these ones.

The proof of (3) is inductive. The estimate for p + 2 is derived from the estimate
for p, together with an almost orthogonal decomposition of f into tubular pieces.
Essentially, one can localize f in frequency to a cone of angle §, and in space to a
characteristic tube of diameter 62, and control the energy flow over distance 6. For this
reason, the diameter of the log-loss cubes for p + 2 is the square root of the diameter
of the log-loss cubes for p. The argument that allows summation over different tubes
with a (log A\)? loss works only for n = 2, however. Improving Theorem 1 appears
then to hinge on controlling energy flow over longer distances, and improving the
summation argument to allow n > 3.

The bounds we obtain are proved for functions satisfying a quasimode condition
(6) d(adf) +Np [ =d'g1 + g2

Here, g5 and the components of g; are L? functions, and the norm of f as a quasimode
is taken as || ||z + g1l L2 + A7t g2]|z2- If f is a spectral cluster, then (6) holds on M
with ¢ = 0 and ||g2||z2 < Al f|lz2. Allowing the term g; makes localization arguments
simpler. In particular, (6) holds, with ||g1]/z2 < || fllz2 and [|g2]lr2 S Al f]lpz2, for the
product of a spectral cluster f with a unit size bump function, so we may smoothly
localize the function and the equation to a coordinate patch. After a linear change of
coordinates and extending the coefficients, we may assume that a and p are defined
on R? and globally close to the flat metric, in that for a constant cq which can be
taken sufficiently small as needed

(7) la*? = 67| Lip(rz) + o = Ll Lip(ee) < co-

We establish the estimate (3) by an induction argument, for which the starting point
is Corollary 7 of [6], which states that Hypotheses 2 holds for p = 6 and 4(Q) = A3,
At each step of the induction p increases by 2, and we establish estimates on cubes
of square-root the sidelength of the previous step. A loss of (log\)? is incurred at
each step, however. The hypothesis and induction step follow, and apply generally
to functions satisfying equation (6) on R?; futhermore, constants are uniform over a
and p given (7).
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Hypothesis 2. Suppose that f satisfies (6) on Q*, where Q* is the double of the
cube Q. Then the following inequality holds, where £(Q) denotes the sidelength of Q

1 llzo(@) < Cp Qog NP =N P (£Q) ™1 llz2e) + A Q) H Il 221
+ 6@ g2y + AR gallzaigr)) -

Theorem 3. Assume that Hypothesis 2 holds for a given p € [6,00), uniformly over
cubes Q of a given sidelength £(Q) = 6%, where 1 > § > A~6. Then Hypothesis 2
holds with p replaced by p + 2, uniformly over cubes Q of sidelength £(Q) = 4.

We remark that the norm on the right hand side in Hypothesis 2 should be thought
of as the L2-energy of f on Q*. If the functions involved are localized to frequencies
& of magnitude A, and ¢ in a small cone about the £; axis, then the right hand side is
a replacement for || f|[re r2 + [[Pfll: g, where Pf = d*(adf) + A2pf.

The outline of this paper is as follows. In Section 2, we establish the key decompo-
sition of f as a sum of terms, each supported in a thin tube of dimensions § x §2. This
decomposition at multiple scales is inspired by work of Geba-Tataru [1]. In Section 3
we establish £? bounds on the overlaps of collections of such tubes, which is applied
in Section 4 to complete the proof.

For the remainder of this section we carry out some simple initial reductions. Let
the function f satisfy (6) on R?. We first observe that, for Theorem 3, it suffices to
establish Hypotheses 2 for cubes with £(Q) = § with the norm on the right hand side
taken over R? instead of Q*. This is because the conclusion is unchanged if we replace
f by ¥ f, where 1 is a scaled bump function, supported in @* and equal to 1 on Q.
In subsequent steps we do not assume that f is compactly supported, however.

Next, we split f into components f = fox + fa + f>a, by localizing respectively
to frequencies smaller than c?\, comparable to )\, and larger than ¢~ 2\, where c is
a fixed small constant (assuming only that ¢y in (7) is sufficiently small.) By the
arguments of [6, Corollary 5],

Mfaallze + lldfsallez S Mfllee + A" df e + lgrllze + A7 g2l ze -

Since \2(z7%)~1 < )\"’(p)é(Qo)%, where we use that £(Q) > A~%, Sobolev embedding
yields that Hypothesis 2 holds with || f<a|lz» and || f>a|lz» on the left hand side. Thus
we restrict attention to the case that f is frequency localized to |£| ~ A. By further
decomposing f as a finite sum of terms, we may also assume that f is frequency
localized to |&2] < e.

Define the operator

Pys = daxs d+ N2pys

where the coefficients ays and pys are smoothly truncated in frequency to [¢] < e)d.

Provided ¢(Q) < J, then Hypothesis 2 is unchanged if we replace the defining
equation by Pysf = d*gq1 + go, since the difference (P — Pys)f can be absorbed into
g1 and go, leaving the right hand side of the inequality unchanged up to a constant.
To see this one uses the bound

la = axsllLe +[lp = prsllre= S (M)
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Given a cube @ and parameters A, d, we now set

_ 1 _ _ 1 _ 1
W fIxs.e =021 fllz2@) + A7 62 |df lr2@) + A 67 | Pas fllr2(q) -

We use ||| f]||x.s to denote the norm where Q is replaced by R?.
Since f is frequency localized to |£| &= A, as is Pysf, we may absorb the term d*g;
into go. Thus, by the preceeding comments, we are reduced to the following.

Theorem 4. Suppose that f € L?(R?) is frequency localized to |£| = X and |&2| < .
Then the following holds, uniformly on cubes @Q of sidelength ¢,

1 zre2 (@) S (og AP~ NTEHD||£|[x 6

under the assumption that the following holds, uniformly on cubes Q of sidelength 62,
1£llze @) S (log NP~ XT®|| fl| 52,0+

2. The tube decomposition

Let f be as in Theorem 4, and fix a cube Qg of sidelength § and center zy. As above,
let v =1 on @y and vanish outside Q. In this section we produce a decomposition

(8) bf=> fr+fo,
TeT

where fj is an error term whose LP norms can be appropriately bounded by Sobolev
embedding. Each fr will be compactly supported in a tube T. The index T varies
over a collection 7 of tubes of diameter 2 and length §, each oriented along one of
a set of bicharacteristic directions of Pys with angular separation . Each fT will be
concentrated (in a weighted L? sense) in a ball of diameter A\§. We further have the
bounds,

9) (ZIfﬂli,a) < O -
T

Let T’ be the characteristic set of Pys which lies near Qf x support(f),
U= {(2,6) : (ars(2) £,€) = Npxs(@) } N Qp x {|&2] < 2eA}.

Since ays and p)s are pointwise close to the flat metric, the set I' can be realized as the
union of two graphs &; = v4(x,&2). Since ays and pys are Lipschitz and |z — x| < 0,
the characteristic set I is contained in a Ad neighborhood of & = v (o, §2). Let ¢;(&)
be a finite-overlap collection of ~ §~! smooth bump functions, each supported in a
ball of diameter ~ A centered on &1 = (o, {2), so that ¢(§) = 13, ¢;(£) vanishes
on a Ad size neighborhood of the ¢-projection of I'. Thus, ¢(&)Pys(z,&)71 < (A26)7!

near Qf x support(f). Set
Uf =Y (@)q;(D)f +p(x)$(D)f -
J

Let q(z,€) = $(2)$(€) Pas(z,€)~" smoothly cutoff in ¢ to {|&1] ~ A, || < 2eA}.
Then

Q/J(x)(b(D)f :q(m,D)PMf—i—r(x,D)ﬂ
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where r is of size A\"1672. Precisely, ¢ and r are supported where |£| ~ ), and
A6qATT6 e, A6E), ASPr(AT T e, A68) € 50,
It follows that

(@) (D)l < 6721 lllas S AT fllIas, 6= A5
Since p > 6 we have y(p +2) > 1, and Sobolev embedding yields

[ (2)(D) fll oz S NP1 f]]]x5 4

hence we may take ¢ (z)¢(D)f as the term fj.

For each fixed j, now consider the term ¢ (z)g;(D)f, and let &; be the center of
the support of ¢;(¢). We can assume that the angular separation of the ; satisfies
£(&,&5) 2 i — j|. Let V; denote the vector

Vi = axs(w0)§; -

Observe that V; lies within a small angle of the z; axis.

We take a partition of unity {h},ecz on R?, such that for each h we have V;-dh = 0,
and the intersection of supp(h) with the zo axis is contained in an interval of length
§2. Multiplying by (x), we obtain a decomposition ¢ = ZTez 7, where Y

is supported in a tube T of dimension & x 62, and T varies over a collection of
approximately 6! tubes pointing in direction V;. We let 7 = U;7;, so that there are
672 tubes in the collection 7. With fr = ¢ (x)q;(D)f, we have the decomposition
expressed in (8).

We also have derivative bounds on ¥, for T' € 7;:

(10)  |(Vj - d)fgr| S AF6F, 05¢r| S 672 <672 i o] > 1,
where we use § > A~s. We then expand Pys(¢rq;(D)f) as
(11) (d*axsdyor) ¢ (D) f + 2(axsdr, d(q; (D) f)) + Y1 [Pxs, ¢ (D) f +4rq;(D)Prs f

and seek to show that
3D AT P (rg (D)) SIS -
Jj TET;

For the first term in (11), this follows by the finite overlap of the ¢¢ for T' € 7; and
the finite overlap of the ¢;(§), together with the pointwise bounds (10). The fourth
term is similary handled by the finite overlap properties.

For the third term in (11), we have the simple commutator bounds

1[Pxs, 4 (D)l 222 < A*(A0)~H = A0

Additionally, by the frequency localization of ays and p)s, the commutators have
finite overlap as j varies, yielding square summability over j.
We expand the brackets in the second term in (11) as

((axs(x) —axs(wo))dipr, dq; (D) f) +i(V;, dir) q;(D) f
+ (axs(zo)dyr, (d — i&;)(q; (D) f)) -

Each term has L? norm bounded by A6~!| f||z2, and finite overlap properties yield
square summability as above.
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The finite overlap properties similarly yield that
> IFzlize + A7ldfrlize < 11172 + A2 ldf (122
TeT

completing the verification of (9). O

We also need a stronger inequality. For T € T, let {1 equal & if T € 75, so |{r| = A
and fr = ¢¥rq;(D)f, with ¢;(§) centered on &7. The following lemma expresses the
fact that the frequencies of fr are concentrated in the Ad-ball about &p.

Lemma 5. The following bounds hold, for each «, (3,

N|=

(12) (Z A2l (A8) 29 D* (D ~ §T)BfTII2L;olL32> < Caplllflllsx-

T

Proof. Observe that we can write
A7) TPIDY(D = &r) 4 (2) 4;(D) = P () (D)

where @T(:E) and ¢;(&) satisfy similar support and derivative bounds as ¢ and g;.
Hence, the proof we present for the case « = 3 = 0 applies to the general case.
Let ¢;(£) be a smooth cutoff to the §\-neighborhood of support(g;). Then

11 = g (D)era; (D) fllre SA NI fllee. YN

Since the number of tubes is bounded by =2 < ), Sobolev embedding establishes the
desired bounds on these terms. We set f7. = ¢}(D) fr. By commutator arguments as
above we have ||| f7[|lsx < I|lf7lllsx- The proof will then follow from (9) by showing
that

(13) 1f7llees 22, S HF7llxs -

SR
We establish (13) by energy inequality arguments. Let V' denote the vector field
V = 200uf7) axs dfy + (Npas £ — (ars dfp, dfp)) el
Then
AV = 20uf7) Pasfr+ N (@1p0)f7" — (@raxs)dfp, dfy)
Applying the divergence theorem on the set z1 < r yields

PR R A A AR N TR S AT
T1=T

Since ays and pys are pointwise close to the flat metric, we have pointwise that
Vi > 3o frl* + 3Nl = 510afr

The frequency localization of fq’, to |&2] < e yields

2/ Vldx’z/ ldfp? + N2 fp|2da’ . O
T1=T Tr1=T
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3. Overlap estimates

In this section we establish simple bounds on the overlap of tubes, and resulting
£ bounds on the overlap-counting function.

Lemma 6. Let x and y be two points in Qo. Then the number of distinct tubes T € T
which pass within distance 46% of both x and y is bounded by C’min(é_l L).

ETEETY

Proof. For each j, there is a fixed bound on the number of tubes T € 7; which pass
within distance 462 of z. It thus suffices to bound the number of distinct j such that
the line through z in direction V; passes within distant ~ 6% of y. The above bound
is then a simple consequence of the fact that Z(V;,V;) 2 6|i — j|. O

Now consider a collection N' C T containing N distinct tubes. We make a decom-
position of the cube Qg into a =1 x §=1 grid Q of cubes Q of sidelength 2. Let ng
denote the number of tubes in A/ which intersect Q*,

ng=#{T eN:TNQ" +#0}.
Let [[nglleao) = (ZQEQ Ing|?) /4 denote the ¢ norm of the counting function ng.
By [[ngllerea we understand the mixed (% ¢% (Q) norm of ng, taken over the grid Q.

Corollary 7. The following bounds hold,

Inglleme: SN [nQllee~ < [log 257 N'E.
Furthermore, for ¢ > 3
(14) Ingllene) < 1logdfsd~aN" 7.

Proof. The first bound is an immediate consequence of the fact that, for each 7" and
r, there is a fixed upper bound on the number of cubes @) centered on the line z; = r
such that @Q* intersect T'. For the second bound, we consider the map

xr(@) =1, TnQ*#0
XT(Q):Ov TﬂQ*:(Z)

It suffices to show that W : (2(T) — £2¢°°(Q) with bound |logd|26~2. The map
WW?* takes the form

WWHeh(@) =D n(Q Qeq,  n(@Q.Q) =#{T:TNQ #0,T1Q" #0}.
Q

We need to show that WW* : £241(Q) — ¢2(>°(Q) with norm |log§|6~!. This is an

easy consequence of the bound from Lemma 6,

n(Q’,Q) < IIliIl((5_17 1) |331(Q’) _ xl(Q)|_1) )

Applying interpolation now yields the bounds

W{CT}:ZCTXT(Q) where {
T

Ingllese S Nlogdao™aN""a,  241=1,

Note that if ¢ > 3 then r < ¢, yielding (14). O
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4. Proof of Theorem 4

Given f and the cube Qo, we decompose ¥ f = > ;.7 fr + fo as in Section 2,
and control | fo||pr+2 by Sobolev embedding. We make a further decomposition by

collecting together tubes for which fr is of comparable energy. Precisely, decompose
T = Uk> ko N where T € N}, if

275 e < fzlllas + Yo AT TNDND — 0)° frllngs 2,
Jal+18/<3

<271 £1l1xs -
We handle the tubes for k > 2log,A by the Sobolev bound || fr[ < [DfrllLe r2

since there are at most =2 < A3 tubes in all. This leaves at most a2 log A values of k,
which we handle individually. We thus fix some A" = N}, and let N be the number
of tubes in /. We multiply f by a constant so that |||f|||x.s = 2¥, which by (9) and
(12) implies Nz < || £1]/x,6. We then need to establish the following.

Theorem 8. Suppose that f =) . fr, where each fr is supported in Qo, and
felllsn+ S AT908) DD = &) fr s 12, < 1.
lee|+181<3

Let N denote the cardinality of N'. Then, under the conditions of Hypothesis 2,
I lLr+2 < (log )\)P*5)\7(p+2)N% )

Proof. As above we decompose Q into cubes Q of size 62, Qy = UgQ. By hypothesis,
for each @ we have

1fllze (@) < Qog PN D37 fr [l o0 -
TNQ*#)
We first show that
(15) H| Z fr |H52,,\,Q* S ng
TNR*#0
For this, note that |ays — axs2| < (A62)~!, hence
D2 frllleag- < 2o AN Y0 DYrllpe e +A7] D0 Prsfr.-
TNQ*#£0 la|<2 TNQ*#£0 v TNQ*#£0

For each j, there are a bounded number of tubes T' with {7 = ; for which TNQ* # 0,
hence we can assume the different 7 in the above sum are spaced by distance AJ in
the & variable. Thus,

A

MY Dallp e S| D2 D0 A0 HIND — 6r)° DT s

TNQR*#0 [BIST TNQ*#0

1
< né
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To complete the proof of (15), we use that ng < 6! to bound

_ 1 1 1
AT Pufrlle <60 Y lfrlllsa < 0%ng < np.
TNQR*#0 TNQR*#0

By (15) and Hypothesis 2, we thus have

(16)

We

1
1£lle () S (log PN ®Ing .
next note the bound
1 1
I#rle~ < 20D = €0)frllE s s Mol oo,

<2267 Y (M) TIN(D = &0) frllns pz,

[Bl<1

Nl
Nl

<AZ§

Consequently,

(17)

I fllLe(o) < A202ng .

Combining (16)—(17) with (14) for ¢ = 3p and ¢ = oo respectively, we obtain

Inte

Obs

(1]
2]

|1l < (Qog A =*+ 2 X P50 N3~
[flle= S A262N

rpolation yields
p(p=6)+1

IlfllLr+2 S (log /\)T)\’Y(p-‘rQ)N%
erving that if p > 6 we have p(p —6) +1 < (p+2)(p—5) concludes the proof. [
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