ON THE L NORM OF SPECTRAL CLUSTERS FOR COMPACT
MANIFOLDS WITH BOUNDARY

HART F. SMITH AND CHRISTOPHER D. SOGGE

ABSTRACT. We use microlocal and paradifferential techniques to obtain L® norm
bounds for spectral clusters associated to elliptic second order operators on two-
dimensional manifolds with boundary. The result leads to optimal L? bounds, in the
range 2 < ¢ < oo, for L?-normalized spectral clusters on bounded domains in the
plane and, more generally, for two-dimensional compact manifolds with boundary. We
also establish new sharp L9 estimates in higher dimensions for a range of exponents
Gp < g < oo

1. INTRODUCTION

Let M be a compact two-dimensional manifold with boundary, and let P be an elliptic,
second order differential operator on M, self-adjoint with respect to a density du, and
with vanishing zeroeth order term, so that in local coordinates

L) (PH@=p@) Y 0(o) & @) 5 (@), dp= pla)da.

ij=1

We take g to be positive, so that the Dirichlet eigenvalues of P can be written as
{=2715%0-

Let x» be the projection of L?(du) onto the subspace spanned by the Dirichlet eigen-
functions for which \; € [\, A + 1]. In the case that M is compact without boundary of
dimension n > 2, and the coefficients of P are C'*° functions, Sogge [14] established the
following bounds

n—l(

(1.2) HX/\fHLq(M) sCA>

1_1
2 q)”fHLZ(M)a 2<q<gn-

(1.3) ||ka||Lq(M) <oz [FADZIRYSR Gn < q < 00.

Furthermore, the exponent of A is sharp on every such manifold (see e.g., [15]). In the
case of a sphere, the examples which prove sharpness are in fact eigenfunctions. For
(1.2) the appropriate example is an eigenfunction which concentrates in a A~z diameter
tube about a geodesic. For (1.3), the example is a zonal eigenfunction of L? norm AT
which takes on value comparable to A on a A~! diameter ball about each of the north and
south poles. Approximate spectral clusters with similar properties can be constructed
in the interior of any smooth manifold, showing that for spectral clusters (though not
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necessarily eigenfunctions) the exponents in (1.2) and (1.3) are also lower bounds on
manifolds with boundary.

In [13], the authors showed that, on a manifold of dimension n > 2 for which the
boundary is everywhere strictly geodesically concave (such as the complement in R™ of
a strictly convex set) the estimates (1.2) and (1.3) both hold.

On the other hand, Grieser [5] observed that in the unit disk {|z| < 1} there are
eigenfunctions of the Laplacian, for Dirichlet as well as for Neumann boundary conditions,
of eigenvalue —\? that concentrate within a A3 neighborhood of the boundary. These
are the classical Rayleigh whisphering gallery modes (see [9], [10]). The Fourier-Airy
calculus of Melrose and Taylor allows one to construct an approximate spectral cluster
with similar localization properties near any boundary point of M at which the boundary
is strictly convex (the gliding case). Consequently, if M is of dimension two and the
boundary has a point of strict convexity with respect to the metric g (for instance, any
smoothly bounded planar domain endowed with the Laplacian and either Dirichlet or
Neumann conditions) the following bounds cannot be improved upon

201_ 1
(1.4) F ey € CAETD N fllan,  2<g<8.

1_1y_1
(1.5) DSl oy < CXE372 | fllzan,  8<g< oo

In this paper we show that the estimates (1.4) and (1.5) hold on any two dimensional
compact manifold with boundary, for P as above and either Dirichlet or Neumann con-
ditions assumed. Estimate (1.4) follows by interpolation of the trivial case ¢ = 2 with
the case ¢ = 6, so we restrict attention to ¢ > 6 for (1.4). For ¢ > 6, the above estimates
are an immediate consequence of the following theorem (see for example [8] or [11]).

Theorem 1.1. Suppose that u solves the Cauchy problem on R x M
(1.6) Ou(t,z) = Pu(t,z), u(0,z) = f(z), Ou(0,z) =0,
and satisfies either Dirichlet conditions
u(t,z) =0 if x€dM,
or Neumann conditions, where N, is a unit normal field with respect to g,
N, -Vyu(t,z) =0 if x€dM.
Then the following bounds hold for 6 < q <8,

lulla 2 (ax=1,1)) < Clf g~ ar s (g) =3(3 - %) )
and the following bounds hold for 8 < q < oo,
”uHLZLf(Mx[fl,l]) <C ||f||H6<q)(M) . d(q) = 2(% - %) - %

In the statement of the theorem, the space H®(M) refers to the Sobolev space of order
s on M determined, respectively, by Dirichlet or Neumann eigenfunctions.

Our approach to proving Theorem 1.1 is to work in geodesic normal coordinates near
OM , and to extend both the operator P and the solution u across the boundary, to obtain
u as a solution to a wave equation on an open set, but for an operator with coeflicients of
Lipschitz regularity. We then adapt a frequency dependent scaling argument, originally
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developed to handle Lipschitz metrics, to metrics with the particular type of codimension-
1 singularities that the extended P will have.

We remark that, for operators of the type (1.1) with p and g of Lipschitz regularity,
the estimate (1.4) is known on the range 2 < ¢ < 6, as established by the first author
n [12], along with a weaker version of (1.5) having larger exponent if ¢ < co. It is not
currently known what the sharp exponents are for general Lipschitz P, since the known
counterexamples satisfy the estimates (1.5). The estimates for ¢ = co were established for
eigenfunctions recently by Grieser [6], while the sup-norm estimates for spectral clusters
were obtained by the second author in [16].

For ¢ = oo, the squarefunction estimate of Theorem 2.1 below was shown in [12] to
hold for operators P with Lipschitz coefficients, which in particular implies the ¢ = oo
case of Theorem 1.1 for P on a manifold with boundary. Our proof here of the case
q < oo, however, depends crucially on the fact that if w is appropriately microlocalized
away from directions tangent to dM, then better squarefunction estimates hold than do
for directions near to tangent. In other words, we exploit the fact that the more highly
localized eigenfunctions considered in [5] are associated only to gliding directions along
OM , not directions transverse to OM.

A historical curiosity is that the critical L? — L® bounds for x, have an analog in
Euclidean space which seems to be the first restriction theorem for the Fourier transform.
To explain this, we first notice that by duality our L? — L® bounds are equivalent to the
statement that yy : L3/7 — L? with norm O(\'/4). The Euclidean analog would say that
if x» : L¥7(R?) — L?(R?) denotes the projection onto Fourier frequencies |¢| € [\, A+ 1],
then this operator also has norm O(A'/4). An easy scaling argument shows then that the
latter result is equivalent to the following Fourier restriction theorem for the circle

27 R 1/2
([ 1Fcostusind )" < Cllflymreey, € CRo(RY).
0

Stein [17] proved this using a now standard T7T* argument, together with DeLeeuw’s [4]
observation that df maps L8/ "(R?) — L3(R?) by the Hardy-Littlewood-Sobolev theorem,
as \35| < Clz|~'/2. Since this argument does not use the oscillations of df, one can
strengthen the above restriction theorem to show that, for j > 1, one has the uniform
bounds

279 1/2 )
(1.7) (/O Fleostsin0)2d0) " < O f purniay. T € OB,

By the Knapp example, there is no small angle improvement for the critical L%/5 (R?) —
L?(S') restriction theorem of Stein-Tomas. A key step for us is that in the setting of
compact manifolds with boundary we also get the same O(277 / 8) improvement in our
L3-estimates when microlocalized to regions of phase space that correspond to bicharac-
teristics that are of angle comparable to 277 from tangency to the boundary.

In higher dimensions the natural analog of (1.4)-(1.5) would say that

2, mn—2yr1_ 1 n
(1.8) HX/\fHLq(M) <oNGTEET) £l z2(ary 5 2<q< 8l

n(l_1y_1 n
(1.9) S paary € CX G772 flizny, 24 < g <.
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By higher dimensional versions of the Rayleigh whispering gallery modes, this would be
sharp if true. At present we are unable to prove this estimate but, as we shall indicate
in the final section, we can prove the bounds in (1.9) for the smaller range of exponents
q>4ifn>4,and g > 5 if n = 3. We hope to return to the problem of proving sharp
results in higher dimensions in a future work.

Notation. We use the following notation. The symbol a < b means that a < C'b, where
C' is a constant that depends only on globally fixed parameters (or on N, a, 3 in case of
inequalities involving general integers.)

For convenience we will let z3 serve as substitute for the time variable t. We use
d = (dy,ds,ds) to denote the gradient operator, and D = —id.

2. DyaDIC LOCALIZATION ARGUMENTS

The estimates of Theorem 1.1 hold if u is supported away from M by the results of
[8]. Consequently, by finite propagation velocity and the use of a smooth partition of
unity we may assume that, for T small, the solution u(¢,2) in Theorem 1.1 is for |¢t| < T
supported in a suitably small coordinate patch centered on the boundary. Note that if
we establish Theorem 1.1 on the set |t| < T for some small T, it then holds for 7'=1 by
energy conservation.

We work in boundary normal coordinates for the Riemannian metric g;; that is dual
to g¥ of (1.1). Thus, x2 > 0 will define the manifold M, and z; is a coordinate function
on OM which we choose so that 0, is of unit length along OM. In these coordinates,
(2.1) go(r1,22) =1,  gu(21,0) =1,  gia(z1,22) = g21(z1,22) = 0.

The metric g¥ for P is the inverse to gi;, and the same equalities hold for it.

We now extend the coefficient g'' and p in an even manner across the boundary, so
that
(2.2) gt (z1, —a2) = g (w1, 22) , p(x1, —x2) = p(x1,22) .

The extended functions are then piecewise smooth, and of Lipschitz regularity across

x9 = 0. Because g is diagonal, the operator P is preserved under the reflection xo — —xs.

After multiplying p(z) by a constant, and rescaling variables if necessary, we may
assume that on the ball || < 1 the function p(z) is CV(R.) close to the function 1, and
g¥(z) is CN(R4) close to the euclidean metric, where N is suitably large, and ¢y will be
taken suitably small,

(2.3) [p=1levme) <co, g — 5ij||cN(Ri) <co-
We may then extend p and g% globally, preserving conditions (2.1)—(2.3), so that P is
defined globally on R? and such that

(2.4) o) =1, g@) =07 for a] > 5.

We then extend the initial data f and the solution u to be odd in x5 (respectively even
in x5 in case of Neumann conditions). This extension map is seen to map the Dirichlet
(respectively Neumann) Sobolev space H2(R" ) to H?(R"), hence H°(R") to H°(R") for
0 < § < 2. The extended solution u thus solves the extended equation ?u = Pu on
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R x R2, with the extended initial data f. The result of Theorem 1.1 is thus a direct
consequence of the following

Theorem 2.1. Suppose that the operator P takes the form (1.1), and that p and g satisfy
conditions (2.1)~(2.4) above. Let u solve the Cauchy problem on R x R?

(2.5) O?u(t,z) = Pu(t, ), u(0,z) = f(x), ou(0,z) = g(x).
Then the following bounds hold for 6 < q <8,
lullaze@exi-1ay S (Il +llgllav@-1), @) =3(3-7),
and the following bounds hold for 8 < q < oo,
||u‘|L§L§(R2x[71,1}) S (Hf”Hé(q) + HgHm(q)—l) ) 5(q) = 2(% - %) - %

We begin by reducing matters to compactly supported w satisfying an inhomogeneous
equation. Henceforth, we will use notation x3 = t. Let ¢(z) be a smooth even function
on R?, equal to 1 for |z| < 3/2, and vanishing for |x| > 2. We may then write

iDj (a”(x) Dj(@éU)(w)) = Zi: D, F(z),

where N N
a®(z) = plx),  a¥(z) = —p(x)g”(z) for j=1,2.
We express this equation concisely as DAD(¢u) = DF, and observe that for 0 < ¢ <2
oull s ey + 1 Fllmswey S 11 as + lgllzrs—r -

This is a consequence of energy estimates, which hold separately on ]Ri and R? , together
with the fact that DAD(¢u) is compactly supported and has integral 0, so may be written
as DF.

We may thus assume that u(z) is supported in the ball || < 2, and need to show that
(2.6) lullzore S llull v + 1 F @, 6<¢<8,

(2.7) lullpare S llullgs@ + [|Fllgo@ ., 8 <g< oo,
where DADu = DF .

Next let I'(§) be a multiplier of order 0, supported in the set i &3] < |€1, & < 4]&3],
which equals 1 on the set § [£3] < [£1,&| < 2|¢s|. The operator DAD is elliptic on the
support of 1 —I', and we may write

DAD(1—T(D))u = (1 —T(D))DF — D[A,T(D)] Du.
As a consequence of the Coifman-Meyer commutator theorem [2] (see also Proposition
3.6.B of [19]) the operator [A,T'(D)] maps H°~! — H® for 0 < § < 1. Hence, the right
hand side of the above belongs to H°~!, and by Sobolev embedding and elliptic regularity
(see, for example, Theorem 2.2.B of [19], which applies in the Sobolev setting) we have

11 =T(D))ullparz S N1 =T(D))ullgswr S lullgsw + I1Fl oo -
Indeed, there is an extra 3 derivative in §(¢q) + 1 beyond the Sobolev index n(3 — %), S0

this holds for all 2 < ¢ < co. Since y(g) > d(q) for ¢ < 8, this implies that (2.6) and (2.7)
hold for u replaced by (1 — I'(D))u on the left hand side.
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It thus remains to establish (2.6) and (2.7) with u replaced on the left by I'(D)u. We
take a Littlewood-Paley decomposition in £ to write

T(D)u=> Tp(D)u=> up,
k=1 k=1

with 2y is supported in a region where |¢1,&| ~ |€3] and |£] ~ 2¥. Since these regions
have finite overlap in the &3 axis, we have

IP(D)ullparz S llukllpazre S llunllepar:
where we use g > 2 at the last step.

Now let Ay denote the matrix of coeflicients obtained by truncating the frequencies of
a’(x) to |¢| < c2F for a fixed small c. We then have DAy Duy, = DFy, where

(2.8) Fr =Tx(D)F + [A,Ty(D)]Du+ (A — A)Duy, .

Note that the inhomogeneity F}, is now localized in frequency to &3] ~ |€] ~ 2% | by the
frequency localizations of Ay and uy.

We claim that, for 0 < § <1,

o0
> 2ME e S llullfs + I1FIIZs -
k=1

This follows by orthogonality for the first term on the right of (2.8), and the last term is
handled by the bound ||A — Ag||z~ < 27%. The middle term is handled by the Coifman-
Meyer commutator theorem, which yields that Y - ; e [A, Iy (D)] maps H°~' — H? for
all sequences ¢, = +1.

We thus are reduced to establishing uniform estimates for each dyadically localized
piece uy. We thus fix a frequency scale A = 2% for the rest of this paper. We then need
to prove the following estimates, where we now set DA)Duy = F},

Juallzazz@sy S AD (Jluallrz@sy + A Fallregs) ), 6<q <8,

luallparzms) S /\6(’1)( luall L2 (msy + )\71||F>\HL2(]R3) ) , 8<¢q¢< 0.

Since we are using x3 orthogonality to make this reduction, we must control the norms
of the uy globally. However, since u is supported in the ball of radius 2, it is easy to see
that the norm of uy over |z| > 3 is bounded by A~!||u|| .2, so in fact it suffices to establish
the above estimate with the left hand side norm taken over the cube of sidelength 3.

If we let vy denote the localization of uy to frequencies where &3] > 1 |¢5/, then the
square function estimates hold for vy as on an open manifold,

loallLarz(rs)y S Ad(q)(HUAHm(R-%) + [ Fxllz2(rs) ) , 6<g<o0.

This will follow as a consequence of the techniques we use to handle the part of u) with
frequencies localized to angle &~ 1 from the &3 axis.

Consequently, we will assume that

supp(ux) C {€ ¢ &l € [3A2)], &l < A, 16l e [3A20] )
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On this region, the operator DA, D is hyperbolic with respect to the x; direction. We
can thus take p(z,£’) a positive elliptic symbol in & = (&3,&3), so that

3
a)' (@) (& —p(x,&)?) =D ()€ if |Ql <IN, &l [2A3)],
j=1

and such that
p(z, &) =& if & ¢ [—sA A x [FA40].
We also smoothly set p(x,£’) = 1 near £’ = 0. Thus,

p(xvg/) ’ dzp(xvgl) € Sll,l ’
and p(z,&’) differs from |¢’| by a symbol supported in the dyadic shell |¢'] = .

Next, let py (', €) be obtained by truncating the symbol p(z,£’) to a’-frequencies less
than cA, where ¢ is a small constant. Then, uniformly over A,

pa(z, &) —plx, &) e S%l ., support (py —p) C {& ||~ A}.
Furthermore the symbol-composition rule holds for py to first order. Consequently, we
can write

(D1 —|—p>\(x, D,) ) (Dl —p)\(x, D/) )U)\ = F),\ s
where
[Fllz2@sy S AMluallzz@s)y + 1Fxllz2 sy -

The function u) can be written as the sum of four pieces with disjoint Fourier transforms,

according to the possible signs of & and £3. We restrict attention to the piece uj,

supported where & > 0 and &3 > 0. Estimates for the other pieces will follow similarly.
Since py is #'-frequency localized, F% also splits into four disjoint pieces. The symbol
&1+ p(x, &) is elliptic on the region & > 0, hence we may write
Dyuf — pa(z, D' )uf = FY,
where
IFY lr2@ey S luallze@ey + A7 I Fallzes) -
Finally, we have that
pa(z, D') = pa(a, D')* € Op(SY,1),
and is dyadically supported in £. We have thus reduced the proof of Theorem 2.1 to the
following.
Theorem 2.2. Suppose that the x'-Fourier transform of uy satisfies the support condition

supp(ux) C {€ ¢ |l < A, & e [3A2)] ],
and that
Diuy — Pyuy = Fy,
where Py = %(p,\(x,D’) —|—p,\(x,D’)*) . Then, for S =1[0,1] x R?,
luallzazz(s) S A (Jluallzerzcs) + 1Fallzzesy), 6<q<8,
(2.9)

lunllarzcs) S XD (Junllperzesy + | Fallrzs)), 8 <q<oo.

The use of the L>L? norm of uy is allowed by Duhamel and energy bounds. Here, as
in what follows, we are using the shorthand mixed-norm notation that LPL? = L? L1,.
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3. THE ANGULAR LOCALIZATION

In this section we take a further decomposition of uy, by decomposing its Fourier trans-
form dyadically in the & variable. The reductions of the previous section required only
the fact that the coefficients a’/(x) were Lipschitz functions. The reduction to estimates
for angular pieces depends on the fact that the singularities of a?/ (x), and hence the points
where the xo-derivatives of py(z,&’) are large, occur only at x5 = 0. Consequently, vari-
ous error terms that arise in this further reduction will be highly concentrated at zo = 0,
which we express through weighted L? estimates.

We will take a dyadic decomposition of the & variable, from scale &5 = A3 to & =
Thus, for 1 <j < Ny = %logQ A, let 5;(€') = B;(&2,&3) denote a smooth cutoff satisfying

supp(B;) C [27772A, 279N x [1X, 4],

2

and [y, supported in [f/\%,)\ﬁ] X [%)\,4/\] , such that, with 5_;(&2,&3) = 5;(—&2,&3)

Nx —1

DGENE Y BE) =1 if [@<gh and &€ [3A2).

Jj=1 J=1-Nx
Let

uj(x) = B;(D")ux ().
If we define
0; =271
then u; has frequencies localized to & ~ £, &3, or |&2| S /\_%53 in case j = N.
On the microlocal support of u;, the bicharacteristic equation for the principal symbol

&1 —pa(x, &) satisfies fi% ~ £0;, respectively as j > 0 or j < 0. A bicharacteristic curve
passing through the microlocal support of u; will satisfy this condition on an interval of
x1-length less than €6}, if € is a small constant. It is thus natural that we will have good
estimates for u; on slabs of width €60, in the x; variable, and it turns out this is sufficient
to prove Theorem 2.2.

In proving estimates for u;, it is convenient to work with the symbol p; obtained by
_1
truncating p(x,{’) to a'-frequencies less that cf; > A2 . This finer truncation than that of

px is chosen so that, after rescaling space by 6;, the rescaled symbol p;(8;x, -) will be 2'-

frequency truncated at /ﬁ, where = 0, is the frequency scale of the rescaled solution
u;j(6;x). This square root truncation is consistent with the wave packet techniques we
use, and is standard in the construction of parametrices for rough metrics.

The energy of the induced error term (P — P;)u will be large at z2 = 0, but decays
away from x5 = 0 at a rate that is integrable along bicharacteristic curves that traverse
the boundary at angle §;. This error term can thus be considered as a bounded driving
force, and we call this term G; below.

In the next two sections we will establish the following result.
Theorem 3.1. Let S denote the slab x1 € [kef;, (k + 1) e;], for 0 < k < =12l

Then, if
Dluj — PjUj = Fj + Gj ,
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it holds uniformly over j and k, and 6 < g < oo, that

3

1_3
lujllLarz(s, o S )\J(q)ef ‘ ( llujllLoor2cs, ) + 1FS |l Lirecs; 0

11 1 1 _ 1 -1 1 1
FATO[(N20; 220) M| ags, ) + AT TO; F([(AZ0; 2$2>QGJ‘||L2(SJ-J@)) '
For j = Ny, it holds that
1_3
il ar2(s, ) S X907 ( lwjlloor2s; ) + I1F5 + GjHle(sj,k)) :

1_3
The gain of the factor 0]»2 ¢ reflects the fact that, for ¢ > 6, there is an improvement in

the squarefunction estimates if the solution is localized to a small conic set in frequency.

The terms G; arise naturally in both the linearization step of Lemma 4.4 and the
paradifferential smoothing (6.2). They reflect the fact that the singularities of d?a’?(x)
are localized to 2 = 0. The weighted L? bound on u; is a characteristic energy estimate.

If 6; ~ 1, then the weighted L? bound on G; dominates the L. L2 = norm of Gj,
and exchanging x; and z2 we could treat G; and F} the same. In this case the bound
on u; would be dominated by the L2 L2 . norm. For small 6;, however, we cannot use
To as our “time” variable, and we are forced to work with the weighted L? norms. These
weighted norms can be thought of as an energy norm along the bicharacteristic flow at
angle 0;. Precisely, if one replaced o = 0;(z1 — ¢) in the weight, then the weighted
L? norms of u; and G; would behave like the L>*L? and L'L? norms respectively. The

crossing point c¢ differs, however, for different bicharacteristics.

The proof of Theorem 3.1 is contained in sections 4 and 5. In section 6 we establish the
appropriate bounds on the norms occuring on the right side if, as above, u; = §;(D")u.,
while F; and G; are defined in (6.1)-(6.2) below.

To state the bounds required, let ¢; ;, denote the term occuring inside parentheses on
the right hand side of Theorem 3.1. In section 6, we show that, if Dyuy — Pyuy = F},
then we have a uniform summability condition

(3.1) ch,k(j) S unllfoe sy + 1EAT2s) -
J

where k(j) denotes any sequence of values for k£ such that the slabs S j(;) are nested, in

that for j > 0 we have S; 11 x(j+1) C Sjk(s) (With the analogous condition for j < 0.)

In the remainder of this section we show how Theorem 2.2 follows from Theorem 3.1
together with the bound (3.1).

We first remark that, if ¢ is a fixed index with ¢ # 8, the bounds of Theorem 3.1 hold
(with constant depending on ¢) under the weaker assumption that the ¢;  are uniformly
bounded by the right side of (3.1). To see this, we sum over the 27! slabs and write

4
q

271 1 1
oy
luillzorecs) < (D0 Musllhoracs,p )" S A0 lesuleee
k=1

IS

1_
< )\é(q)gj? a (||UA||L°°L2(S) + ||F/\||L2(S)> :
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The values of 0; = 27171 vary dyadically from A~3 to 1. For q > 8 we can sum over j to
obtain

Jurllzarzcs) S XD (luallzorzsy + 1Fllzzcs) ) »
and for 6 < ¢ < 8 the sum yields

_1(l_4
luallazegs) S AP 75G7D (Jusl e r2gs) + [ FallL2cs) ) -

The above exponent of A equals v(q), yielding the desired bound. The geometric sum,

however, increases as ¢ — 8, and yields a logarithmic loss in A at ¢ = 8.

To obtain the bound at ¢ = 8, and hence uniform bounds over ¢ in Theorem 3.1, we
use the following worst-case branching argument. We consider terms with j > 0 here,
the negative terms being controlled by the same argument.

Let S) x(1) denote the slab at scale € 27! that maximizes ||ux|rsz2(s, ). Since the
decomposition of uy into u; is a Littlewood-Paley decomposition in the &, variable, we

have
e s,y S || (D usl?)
j=1

L8L2(S1 k(1))

By the Minkowski inequality,

(3o mr)
j=1

2

Ny 1g
<l (X [(Xwr)
LBL2(Syey) lerlzs p2cs, ) Z Z ]

2
)8
- L8L2(S.
S2,kCS1,k(1) J=2 (S2.%)

Ny

; 52
< Nl zags, o + 28 || (2 lusl?)
j=2

L8L2(S3 k(2))

1
where k(2) is chosen to maximize H(Z;iz u;?)? || L5(s, ) among the two slabs Sy
contained in Sy j(1). Repeating this procedure yields a nested sequence such that

1 2 4
et ||UA||2LBL2(S) < ”ulH%SL%SLk(l)) + 28 HU2H%8L2(SQ,W>) +28 ||u3||2L8L2(s3,,€(3)) + o

S ARE)( Cf,m) + Cg,k(z) + Cg,k(?)) +)

1_3 j
where the last holds by Theorem 3.1 since 9; 8§ =27%. (I

4. THE WAVE PACKET TRANSFORM

The purpose of this section and the next is to establish Theorem 3.1. We assume for
these two sections that we have fixed A and §;, and consider j > 0 so that £ > 0 (except

for the term j = Ny, where |&| < A )
We will rescale space by ;. Thus, we work with the function
u(z) = u;(0;2),
which for j # Ny is supported in the set
&€ [10;12050] &€ [Gu4u],

where
o= 9j )\
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is now the frequency scale for u(z). For j = Ny, we have |&] < ,u%, and Oy, = p 3

Let g(z,&’) denote the rescaled symbol
q(.’IJ, g/) = ejp] (93.'1,', 0;1§/) )

which is truncated to z/-frequencies less than cu?. For |€'| = p, the symbol ¢ satisfies
the estimates

/ 1—|a\7 =0,
(1) |0%08q(r.e)| < {“ i

co (14 pdIP=09; (ubaa) =N ) pt=lel g > 1.
This follows from (6.32).

In the remainder of this section and the next, we will drop the index j. The quantities
f and p are the two relevant parameters for our purposes. After rescaling the estimates
of Theorem 3.1, and translating S; in x; to 1 = 0, we are reduced to establishing the
following. Here, S denotes the (x1,z’) slab [0,¢] x R2.

Theorem 4.1. Suppose that u(€) is supported in the set
€2 € [300,20u], &€ [qm4p],

_1
2

respectively |€o] < ,u% in case 0 = u~2 . Suppose that u satisfies

Diu—q(z, D) u=F+G

on the slab S, where q satisfies (4.1), and is truncated to x'-frequencies less than c,u%.
Then the following bounds hold, uniformly over 0 and p, and 6 < g < oo,

1_3
||UHL‘1L2(S) < Hé(q)ez a ( HUHLOOL?(S) =+ ||F||L1L2(S)
1.1 1 _1 _1,.-1 1 2
0% | (phaa) Mullas) + 1305 F (pd22) G luas) )

and for 0 = ,u_%

3

1_3
ull porzcs) S p° @902 ( lull oo r2(sy + |1 F + GHLlLZ(S)) .

We introduce the wave-packet transform which will be used to establish Theorem 4.1.
This transform is essentially the Cordoba-Fefferman wave packet transform, which was
used by Tataru in [18] (and its precedents) to establish Strichartz estimates for low regu-
larity metrics. The main difference is that in our applications we use a Schwartz function
with compactly supported Fourier transform, instead of the more standard Gaussian
function, as the fundamental wave packet. Our transform will act on the ' = (22, z3)
variables.

We use the notion of previous sections: © = (21, x2,23) = (z1,2'), where z3 denotes
the variable t.

Fix a real, radial Schwartz function g(z') € S(R?), with [|g|[2r2) = (27)7!, and
assume that its Fourier transform g(¢’) is supported in the ball {|¢'| < ¢} . For u > 1, we
define T, : S'(R?) — C°°(R*) by the rule

(Tll«f) (mlag) = M% /e_i(5/7y/—:c’> g('u

N

(' —2)) f()dy".
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A simple calculation shows that

£ =t [T gk~ a) (Buf) (@) da
so that 777, = I. In particular,
(4.2) [Ty fll2 @y = [[fll2e2) -

It will be useful to note that this holds in a more general setting.

Lemma 4.2. Suppose that g, ¢/(y') is a family of Schwartz functions on R?, depending
on the parameters x' and &', with uniform bounds over ¥’ and & on each Schwartz norm
of g. Then the operator

(T.f)(«',€) = p2 /6”“"7"*/> gore (02 — ")) F() dy
satisfies the bound
1T fllLz@ey S IFllL2(re) -

Proof. T), is bounded if and only if T is bounded. Since ||} F||3 < | T, T F||2||F ||z, it
suffices to see that T, T is bounded on L?(dy'd¢").

The operator T, T}; is an integral operator with kernel

Ky ;o' €)= Mei(nﬂy/)—i(é/,x/) /ei<f,_"/’z/>gy/ ” (,u
A simple integration by parts argument shows that
_1 1 -N
K@y 52 ) S (L p 2y =&+ p2ly =),
with constants depending only on uniform bounds for a finite collection of seminorms

of g, ¢ depending on N. The L?*(R*) boundedness of T,T »; then follows by Schur’s
Lemma. |

[N

(Z/ - y/)) G €' (M% (Z/ - l‘/)) dZ/ .

A corollary of this lemma is that, for N positive or negative,

(4.3) 12 2) N T f | 2y S 1 2a) Y Fllz2e2)

Ng(y').

Lemma 4.3. Let q(z,£') satisfy the estimates (4.1). Suppose that |&'| ~ p. Then, if
q(y, D,)* acts on the y' variable, and y1 = x1, we can write

by considering ¢,/ (y) = <u%z2>N</ﬁx2 — )~

(q(y’ D:l;)* _ ng/q(l‘,fl) . dz/ + Zdz’q(‘r,é-/) ) dg[ ) |:ei<€/’y/_q;/> g(’u%(y/ _ :I:/)):|
=&V g e (uE (Y — )
where g,.¢(+) denotes a family of Schwartz functions on R? depending on the parameters

x and &', each of which has Fourier transform supported in the ball of radius 2¢. If || - ||
denotes any of the Schwartz seminorms, we have

1 1 _
9ol S 14 cop?O{pzas)™?,

where cq is the small constant of (2.3).



LP NORM OF SPECTRAL CLUSTERS 13

Proof. Letting § denote the Fourier transform with respect to y’, we write
8'0 (q(y’ Dy/)* _ ng’q(aj,é—/) . da:’ + ’de/q(l',f/) X dg/ ) |:€i<€/’y/—m/> g(ué (y/ _ ZC/)) i| (77/)

= e T T g (' - €))

where g, ¢ (1) is equal to
/e‘“"l’y/> [q(x +uT2 L+ pEy) — (@, €) = dw eg(@,€) - (1 2y  po ) } 9(y) dy'

1
= / (1-o0) {/ eii(ﬂ/’wf}‘f(q(cﬂ + a;f%y”f/ + op%n’)> a(y) dy'} do .
0

The spectral restriction on ¢ and g imply that this vanishes for |n’| > 2¢. Consequently,
it suffices to establish C'*° bounds in n’ for the term in brackets, uniformly over o € [0, 1]
and |n'| < 2c. Since the effect of differentiating the integrand with respect to 7’ is
innocuous, as the rapid decrease in g(y’) counters any polynomial in y’, we content
ourselves with establishing uniform pointwise bounds on the term in brackets. Note that

&+ opin'| = p.
The effect of 92 is to bring out factors of ui%7 and to differentiate ¢ twice. If ¢ is
differentiated at most once in z’, then the bounds

|ax’a§’q(x7§/)| 5 17 |8§2/(J(337§I)‘ S.z /1'_1 ) for |£l| ~ W,

yield bounds of size 1 on the term. If ¢ is differentiated twice in z’, then by (4.1) we have
the bounds, for |¢'| ~ pu,

p R + o2y €| Sco+ cop? O xa + o)
S+ cop?0{pdan) 3 (y)?.
The rapid decrease of g(y’) absorbs the term (y5)3, leading to the desired bounds. |

We now take the wave packet transform of the solution w(z) with respect to the 2’
variables, and introduce the notation @(z,¢’) = (Tj,u)(x,&') . The functions F(x,£’) and
G (z,&’) in the next lemma, though, include terms in addition to the transforms of F and
G of Theorem 4.1. Let S denote the (z1,2’,€) slab [0,e] x R* = § x RZ.

Lemma 4.4. Under the above conditions, we may write
(2 = derqe,€) - dur + durg(a, ) - der i, &) = Fla,€) + Gl ).

where
(44) NFllpspags) + o707 5 [ (1722)°Cll a5

< Nullp= sy + 1Pl pazeaes) + 0% [(p2zo) " ul pagsy + p~ 1072 [ (12 22)2Cl|2(s) -
Furthermore, F and G are supported in a set where &g = O, €3 ~ .

In case § = ,u_%, then
(4.5) IF +Gllppees) S lullooorzesy + I1F + Glloias)

and F + G is supported where |&] < p? and & ~ p.



14 HART F. SMITH AND CHRISTOPHER D. SOGGE
Proof. Applying T, to the equation Diu = F' + G + g(z, D")*u yields
dyii(z, &) = i(T,F) (2, &) +i(T,G) (z,€)
+i/ﬁ/ q(an,y’,D;)*[6“5"-’!'*”9(#%(3/’ —x’))} u(zy,y') dy' .

The terms T, F" and T),G satisfy the bounds required of F and G respectively, the latter
by the estimate (4.3) in the case of (4.4). By Lemma 4.3, we can write the last term as

(dg (,&) - dy — dprq(x, &) dE)
+

M

ub / =) g (1

For x5 such that u%9<u%x2>_3 < 1, the latter term is absorbed into F' by Lemmas 4.2
and 4.3. For x5 such that p26(u2x,)~3 > 1, the term can be absorbed into G, by (4.3)
and Lemma 4.3. Here we use the snnple fact that (4.3) holds for operators of the type in
Lemma 4.2. Note that if 6 = u~ 2 the entire term can be absorbed into F'.

(v — ")) u(zr,y') dy' .

The support condition on F and G follows from the support condition on @, and the
fact that g, ¢ has Fourier transform supported in the ball of radius 2c. Alternatively, we
may multiply both sides of the equation defining F' + G by a cutoff supported in the set
&3 =, & ~ O (respectively |&o] < ﬂ%), which equals 1 on the support of . a

Let O, denote the canonical transform on R}, ., = T*(R2,) generated by the Hamil-
tonian flow of ¢. Thus, O, ,(2',£’) = 7(s), where « is the integral curve of the vector
field

di —deq(z,&') - dy + dpq(x, ) - de
with v(r) = (2/,&’). Note that O, is symplectic, thus preserves the measure dz’d¢’,
hence induces a unitary mapping on L?(R?*). Furthermore, O, maps a set of the form
& = 0&5 to a set of similar form, provided |s — r| < 1. This follows since |dy q(z,£')| <
c01¢'| for ¢ a small constant.

We can now write

(4.6)
u(x = 1(0,0¢ 4, (2", & F (5,05 x1 LE)) ds + G 8,04 2, 2, &) ds.
(z,&) (0,00 / z', &) /0 ( 2 (7€)

By the preceding comments, for each s the integrands are supported in the flowout under
O, of the set &5 ~ p, & ~ Op (respectively |&o| S ©e).

Writing u = T);u shows that u(x) can be written as a superposition of functions, each
of which is the restriction to x1 > s of the image under T}; of a function invariant under
the Hamiltonian flow of q. However, in view of the bounds (4.4), the term G has large
L'L? norm if § is small. As a result, one cannot directly apply (4.6) to reduce matters
to considering estimates for such flow-invariant functions. Nevertheless, we can use an
argument from Koch-Tataru [7] together with (4.4) to see that we may indeed reduce
consideration to the case that @ is invariant under the flow of q. Precisely, we show here
that Theorem 4.1 is a consequence of the following theorem, which will be proven in the
next section.
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Theorem 4.5. Suppose that f € L*(R*) is supported in a set of the form &3 ~ pu,
Eo = Ou, or a set of the form &3 =~ |§2|<u2 in case O = 75.

Then, if u="T,; [f(©0,0, (2',€"))], we have for q > 6
1_3
Jullparzesy S w9027 ||l p2a) -
In the remainder of this section, we demonstrate the reduction of Theorem 4.1 to

Theorem 4.5. In the case of @ = ™2, it is a simple consequence of (4.5) and (4.6).

For general 6 this reduction requires the introduction of the space ng of functions on

S with bounded 2-variation along the Hamiltonian flow of ¢. Recall that O, s preserves
the measure da’ d¢’. Then, following Koch-Tataru [7] we define

a7z = 11a(0, )17z sy +SUPZ l(sj, ) = t(sj-1, 05, 1.5, (D72 sy »
j>1

where P denotes the family of finite partitions {0 = so < 51 < ... < 8, = €} of [0,¢].

By Lemma 6.4 of [7], if [|a|v2 < oo, we may decompose

oo o0
i=Y cpig,  with Y ex| < [y,
k=1

k=1

where each function 4 is an atom, in the sense that for some partition {s;} in P
m
= Z 1[81-71,81')(1‘1)]6]‘ (@O,xl (xlv 5/)) )
j=1

where, for each ¢ > 2, it holds that

(angnm ) <o

Note that one may bound Cy < Cg for ¢ > 6, so we may take C, uniformly bounded,
since we work with ¢ > 6.

We also note that each f; arising in the atomic decomposition of @ will be supported
in the region & ~ p, & =~ O . This follows from the inductive construction of f; in [7],
together with the comments surrounding (4.6).

Consider uy = T}ty . Then, assuming Theorem 4.5, for ¢ > 6 we may bound

||ukumas><(2|| 53O0 (D] pegs)) (anjnmw)

Summing over k yields |[uf|zaz2(s) < ||@[lvz . It thus remains to demonstrate that

(4.7) lallvz S 1100, llza@s + 1Fl s gy + 177072 (12 22) Gl o)

since by Lemma 4.4 and boundedness of T}, the right hand side here is dominated by the
right hand side in Theorem 4.1.
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We use the decomposition (4.6), and note that the qu norm of the first two terms on

the right hand side of (4.6) are easily bounded by the first two terms on the right hand
side of (4.7), the latter since

gj:” /O”ﬁ<s,95,sj<x',5/>>ds_ /O F(s. 00,0 €)) ds||

<Z</

S
= Z (/ I1F (s, )l 22 () dS) < ||F||L1L2

using the invariance of dz’d¢’ under © in the second equality.

We thus reduce to the case that F' =0 and @(0,2’,£") = 0, and hence by (4.6) that

L2(R*)

2
1F (s, ©s,s, (2, €)) | 2 (1) ds>

iz, &) :/0 Gi(s, 040, (2, €)) ds

Note that, by the group property of ©, we have

(48) sy ) = (s52,0u,s Wlan = | [ 6500 ()

2

L2(RY)

Given a partition {0 = sg < 81 < ... < 8, = €}, we first consider the sum of the quantity
(4.8) over those indices j for which |s; — s;_1| < 1~ 20~1. By the Schwarz inequality we
may bound the sum by

— 1. = —1
Ze 1/14 ZHG(Sa@S,Sj (I/agl))”%Q([sj_l,sj]x]R‘l) SpzoT ”GHL2(S)
J

Next, consider an index j for which |s; — s;_1] > p 2071 . We split the interval
[s;,5;—1] into a union of intervals I; for which 1|I;| < p= 201 < |I;|. We claim that we
may bound

2

O RRCTOANRIT (S 1 [Ty g

where s; denotes the right endpoint of I. Given (4.9), we may apply the Schwarz
inequality as before (together with the fact that the weight (/ﬁxg>2 is essentially preserved
by ©s_s, , since g% ~ 6 on the domain of integration and |s — sz| < p=26~1) to bound

the sum over k and then j by the right hand side of (4.7).

2

L2(rY)’

To prove (4.9), we write

/ GS 9551 , dS—Z'Uk Sk, s] 75/))a

with
B, €) = / G(5, O .0y (2, €)) ds

Iy



LP NORM OF SPECTRAL CLUSTERS 17

Then (4.9) will follow by showing that

| [ 51O, ) @ €
| [ 100 0,6 T € '

Sk = K72 ({2 22) 20k | o ey |1 (12 2) 2o | 2 s -

This, in turn, is a simple consequence of the fact that % ~ 6 on the domain of integra-
tion, and hence, letting x5 denote the xo-coordinate function,

| 20(Ogy 5, (2, €")) — o] ~ O sy, — spr| ~ 2|k — K]
Consequently,
(12 22(Oy s, (2, €N 2 p2an) 2 S |k — K72, O

5. HOMOGENEOUS ESTIMATES

In this section we prove Theorem 4.5. For notational convenience, the variables z =
(22,23) and ¢ = ({2, (3) will be used as dummy variables in the role of 2’ and &', as will
w and 7. We also use real variables 7, s,t as dummy variables in the role of x; and y;.
For f € L?(dx’ d¢'), define Wf by the rule

Wf(x) =T, (f o 90,951)(55/) .

Let By(¢') be a cutoff to the region & =~ p, & ~ Ou, (respectively |€| < pz in case
0= ;F%). Then Theorem 4.5 is equivalent to establishing the bound

180(D YW | zaza(s) S 10 @231 fll 2y
which is equivalent to the bound
_s6
(5.1) 186 (D YWW*Bg(D") F || Lara(sy S #2004 | Fll s p2s) -
The operator WW™* takes the form

(WW'F)(2) = /O T (TF) (s, ) 0 O] (a!) ds.

If applied to functions truncated by (y(D’), then WW* may be replaced by the integral
kernel

K(r,a'ss,y/) = u/ei(C,w'—z}—i(Cs,r,y/—zs,r>g(M%(x’ —2)) g(u3 (Y = 25)) Bo(C) dzdC
where we use the shorthand notation

(5.2) (Zs,m Cs,r) = Gs,r(za C) .

The factors Bp(D’) in (5.1) can now be ignored (since they are bounded in the desired
norms), and we are reduced to establishing mapping properties for K. We observe that
(5.1), and hence Theorem 4.5, can be reduced to establishing the following pair of bounds:

/K(r, a'ss,y") f(y) dy'

(5.3) sup

r,5€[0,e]

P < | fllz2e)
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and
60 | Kowisa) 1)

1
Sud (1+p0?r—s|) 1 flle, L2 @)

2 2 Y2 Y3
Lgg L2, (R?)

To see this, note that interpolation yields the bound

| [ Kt sy ay

N|=

1-2 1
< 20, _ ,
L3, L2, (&) ™ (u0) " (14 %I —s1)" ||fHL52L§3(R2)'

By the convolution property L3 LY ¢ L9, and the bound
1-2 2 i3 L 1-2,1-6  95(g)p1-C
G [ D S e A
we obtain the following bound equivalent to (5.1)

H/K(’"v a'ss,y) Fs,y) ds dy S @ ||P|

LILE, L2, (S) ~

’ ’ .
LY L§, L3, ()

The bound (5.3) follows immediately from the L? boundedness of T),, and the fact that
O, preserves the measure dz d(, so it remains to establish (5.4). We start by estimating
the derivatives of the Hamiltonian flow with respect to the initial parameters z and (.
We only need bounds for curves lying entirely in the region

Gs € [3m,2u] and (o € [10p,204]

(respectively |¢o] < p? in case # = p~2). In order to avoid extrancous powers of i it
is convenient to exploit homogeneity to reduce to the case |(| ~ 1. For the purposes of
the rest of this section, we thus assume that the symbol ¢ (and hence the flow O, ,) is
homogeneous of degree one in ¢, and agrees with our previous definition of g on the above
region (which had smoothly set ¢ = |{| outside the region (3] &~ p, |(| S 2p.)

Theorem 5.1. Let z,, and (s, be defined as functions of (z,¢) by (5.2). Let d¢ and d.
respectively denote the (-gradient and z-gradient operators. Then, for (3 =1 and (3 ~ 0
(respectively |Ca| < W2 in case 0 = ,u_%) the following bounds hold.

}dzzs7T—I| Sls—rl, ’dczw’ Sls—rl,
(5.5)

|d§Cs,r*I{ s ‘57T|7 |dzCs,r| ST
Also,

| @Z2sr| S (uls = 1), |42, 0| S 1
(5.6)

| dedezr| S |s =7l uzls = 1), |dadeCor| S (u2ls —rl).

Furthermore, for k > 2,
(5.7) |d€ 20| + |dECar] S |s =7l (u]s —r|)F".

Proof. We start with the relation

Zs,r =z+ / (dCQ)(ta Zt,ra Ct,’r) dt7 Csw = C - / (dzq)<t7 Ztﬂ‘? Ct,r) dt .
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Differentiating with respect to z and ( yields

dzs r dz s dzy r
(5.5) _ T / M(t, 20, Cor) - dt,
dCs,r dC " dgtﬂ"

where

(d:dca)  (dedca)
M=

_(dzdz(I) _(dCdZQ)
The key estimate is that, for i + j = 2,
S s—r|, i<1,
[tz Gl de 5 {' s

This follows by (4.1) (recall that 2z equals x2), and the fact that |(d;z;,)2| = 6 in case

0 > p~2. Inthe case § = i~ 7, estimate (4.1) shows that the integrand is in fact uniformly
bounded.

An application of the Gronwall lemma yields
dzep| S 1, [dGer| ST,
and plugging this into (5.8) yields (5.5).

To control higher order derivatives we proceed by induction. For k > 2, we write

s (Eq(t
i | )
T\ Ea(t)

d’gzsm d’gzt,r

= / M(tvzt,ruCt,r) .
gc.,)

where FEj(t) is a sum of terms of the form
(dzidg—HQ) (t7 Zt,ry Ct,r) : (dlglzt,r) te (dlz Zt,r) (d’zHlQ,r) te (d?ﬂ Ct,r)

and FEy is similarly a sum of such terms, but with dz”ldgq. In both cases, k, < k for
each n, and ki +--- + k;4; = k. By induction we may thus assume that the estimates
(5.5) and (5.7) hold for all terms arising in E; and Ej.

The bound (4.1) implies, as above, that for |(| =1

dlg(t,r

0
(5.9) / (d dq) (b, 20, Cor) | dE S {'81(.7"'1)’ !
prt
The induction hypothesis yields that

(A 2 ) o (dE 2 ) (A G ) - (A o) | STt =l B [t — | YE 7777

Together these yield
/ Ea()] dt < |s — | (ud]s —r )1,

and the same holds for E7. The estimate (5.7) follows by the Gronwall lemma.
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To establish the first line of (5.6), we write
dz Zt,r E1 (t)

dzzsw R
dt + / dt,
dth,r r E2(t)

(5.10) :/ M{(t, 2y Cor) -
d2Cs.r r

where now

[m@ast, [ imwag.

A first application of Gronwall yields |d2z, .| + |d2C.r| < p?, and plugging this into
(5.10) and using (5.9) yields the first line of (5.6). The second line follows by similar
considerations. ]

Corollary 5.2. The following bounds hold for (s =1 and (3 ~ 0,

‘dgzw _ / d24(t,01,0(2,C)) dt

where ¢ can be made small by taking the constant ¢y in condition (2.3) small.

SC‘S—TP,

Proof. Given ¢, choosing the constant ¢y small yields the bounds
dedecal < c, [ 1€att.0copldr <.
Together with the bounds (5.5), plugging this into (5.8) yields successively the bounds

|deCor = Il < cs =1,

dCzs,r - / de(ta @t,r(’va))dt S C|S - T|2 N D

Lemma 5.3. Suppose that |¢| ~ p1, and 0 is a number with 6 > 1% and pd?s—r| < 1.
Then, for all o and j,

(5.11) (¢ - de) (u00)“u30dcz,r| S1,
and for all o and j with j + || > 1,
(5.12) (¢ - de) (100c)* nBldc oy — 2en)| S (Ely — 20 -

Proof. First consider (5.11). By homogeneity of z,, and its derivatives, it suffices to
consider j = 0. We then have, by (5.5)—(5.7) and homogeneity,

Here we use that pf2 > 1, so that p26|s — r| < 1. For (5.12), note that if |o| = 0 and
j # 0 then the term vanishes by homogeneity, so we may assume || > 1. By homogeneity
we may also restrict to the case j = 0. First consider the case where all derivatives fall
on (s . The resulting term is bounded by

1
) Su2ly — zor]) -

Y 1 1= 1
p s — vl (u2]s — r[ )1 |y — 20| S (020 ]s — )N (p2ly — 240
If one or more derivatives falls on 2, ., the term is bounded by

pf!1 s — r| (p%|s — )T < s — | <M%§ s —r)* Tt S 1
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Recall that the kernel we are proving (5.4) for is

K(’f’, x/;s,y/) _ u/ei<C,m’_z>—i<Cs,r,y/_z3,r,~>g(M%(xl _ Z)) Q(M%(y/ _ Zs,r)) ﬁa(c) dz d(,

1
2.

where (5(() is a cutoff to {3 ~ p and (s = Opu, respectively [(o| < u% in case 0 =

In what follows, for the case 6 > ,u*% we will need to consider finer angular decompo-
sitions in ¢, depending on |s — r|. We will assume, for the following theorem, that £5(¢)
is a smooth cutoff to a set of the form

G2
€
where 0’ =~ 0, and where ,u_% <0 <6. For § = u_%, we need consider only 85 = .

Theorem 5.4. Consider the kernel K with B4(C) replaced by (5(C), with B35 as above.
Suppose that u6*|s —r| < 1. Fiz a vector &' in the support of B5(C), and let (% s Vs, )

be the projection of O (x',&") onto the cosphere bundle. Thus, ¥, = 2z, and vs, =
|Csr| 2o if 2 =2" and ¢ =E&'. Then

<0

~Y )

—0

C3%,ua <2%0Ma

K (r 2’ 5,9)| S 020 (14 u0 |y — ol |+ p| oy — 2l ) )

Proof. We introduce the differential operators, where z, , and ¢, , are as in (5.2),

1 ({6 = 2) = (ot~ Zar)) (o)

Ly ;
1+ | <C7I/ - Z> - <CS,T3 y/ - Zs,r> |

Y

and _
1 —dpd (:c’ —z—deCor- (Y — zsm)) -d¢
1+ (262 | o —z—deCor- (Y — zs,r)|2 .
Each of these preserves the phase function in K, and an integration by parts argument,
using the estimates (5.11) and (5.12), bounds |K(r, z’; s,y’)| by the following integral

L,

u/(1+u§’x/ _Z_dCCS,r . (y/ _Zs,r)|)_N(1+ ’ <<;$/ _Z> - <Cs,rayl _zs,r> |)_N
x (1+pbla’ —2) V(14 by = 2o,) " dzdc,

where the integral is over the support of 85(¢), which has volume z20. We will show
below that

(5.13) N6_|dCCS,r : (I;,r — Zsyr) — (SC/ —2)|+ ‘<<S,T7x{§,r - Zsm> - <<ax, - 2|
S14pla’ — 22,
This implies that the integrand is dominated by

= —-N 1 -N
(1+#9|d<Cs,r'(y’*I§,r)\+|<Cs,ray'*l’;,r>|) (1+,Lté‘x'72|) :
By (5.5), the matrix d¢(s, is invertible. Also by (5.5), the angle of (,, to pv, , is less

than 6 + |2/ — z|. Since pf > pz, and |€s.r| = p, together these dominate the integrand

by
(1+ 18y — |+ plvery — b)) (14 pEla’ —2) 7

from which the theorem follows easily.
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We now establish (5.13). Consider the first term on the left. By homogeneity, we may
assume that 1 = || = |¢'], so that |¢ — &'| < 0. By (5.6) and Taylor’s theorem, we then
have

|‘r{€,r — Zs,r (dzzsm)(x/ —2) = (dézs,r)(f/ - Q)|
< (utls —rl) o = 2+ |s =l (uF]s — 7 ) (6 + Bla’ —2]).

~

After multiplication by uf, each term on the right is bounded by 1 + u |z’ — z|?. Also,
10| (dezs,r)(C =€ S pb|s —r] < 1.
Since d(s , A dzs, = d¢ A dz, we have
0¢,Csyr» Oz 260 — O¢, 25,0+ 0z, Cs o = 0ij
where - pairs the z;, and (,, indices. By (5.5), we have
p | dezar] [doCon| l0' — 2| S p2 ]2’ — 2]
Together, this yields
PO | deCsyr - (w0, — 260) = (& = 2)| S 1+ pla’ — 2%,
which concludes the bound for the first term.
To handle the second term, it suffices by homogeneity to show that, for |(| = |¢'| = 1,
(o @ = 260) = (G " = 2)| S fa’ — 2> + 6|5 — 7]
We calculate

d

o Wy = o) =

- <(dZQ)(37 @S’T(Z, C))v x,s,r - ZS,T> + <Cs,rv (dCQ)(Sv @sm(x/a 5/)) - (dCQ)(sv 98,?”(27 C))> .
By homogeneity, the right hand side equals

(5.14) q(s,05,(z",€)) = (5,057 (2,0)) = (Os,r (¢, ) = Os,r(2,€)) - (d2,ca) (5, O, (2, ()
plus an error which, since q¢ is Lipschitz, is bounded by

(5.15) |0r(2,&) = Osr(2,0)? < |2 — 2> + 62,

Let 75 (t) = 004, (2',&') + (1 — 0)O4 »(2,¢) . Then (5.14) equals

1 s
2
| ] 0= 000w .€) = 005, 0) (62 ca) 1,70 (1)) drr
0 T
By (5.15), the integral of terms involving d.d¢q and d%q are bounded by
ls — 7|2’ — 22 +|s—r| 0% < |2’ — 2> + 0%|s —r]|.

The integral of terms involving d2q are bounded by

S
(sup lef =2, ) sup [ (@)t de S 1o = 2 + s = o
r<t<s o r

where we use (5.5), (4.1), and the fact that ({4)2 &~ 0 in the case 6 > ™ 2. O
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Proof of estimate (5.4). We establish (5.4) by showing that

(5.16) sup /|K(r’x’;57y/)|dy3§u9(1+u92|5—r\)_%.

T2,23,Y2

Transposing (s,y’) and (r,z’) in the formula for K leads to the same kernel if 3y(¢) is
replaced by B9(¢rs(y',()), and the same proof will show that

[N

sup /|K(r,x’;s,y’)|dx3§u9(1+u€2|s—r|)_ :

x2,Y2,Y3

yielding (5.4) by Schur’s lemma.

Suppose first that p6?|s — 7| < 1. Then (5.16) follows immediately from Theorem 5.4
with 6 = 0, since vy, = |Cs,| 71 (s, is within a small angle of the &; axis.

1

If 462%|s —r| > 1, we let @ = = 2|s — r|~2, and decompose K into a sum of terms by
writing 3(C) = >_; 8;((), with each 3;(¢) a cutoff to a sector of angle .

We fix 7/ in the support of 3;(¢), with
(7)s =p, and (') = (')a| = pOli = jl.
We then have decomposed K =}, K, where by Theorem (5.4)

_ _ . . . _N
|K;(roass,y) | S pP0 (L+pf |y —wl |+ p|(wl,y —wl ) .

where (w] ., ] ) is the projection onto the cosphere bundle of O ,.(z',77). Since (14 ,.)3 ~

1, we have

_ ~ - -N
/ K (r,a’ss,y )| dys S pf (1+ pf | y2 — (w,)2]) .

Since puf ~ pb (1 + pb?|s — r|)~2, it suffices to show that

sup S (L pfye — (wl,)el) N S,

x2,T3,Y2 j
which we do by recalling that ©6%|s — r| = 1, and showing that
Wy )2 = (Wl )] = 0s —r]]i = j].

We finally show this by noting that, for {3 = 1 and |(3| < %, we have dgzq ~ 1. Corollary
5.2 thus yields d¢, (zs,r)2 = s — r for such ¢. Consequently,

2 (@, 0') = 2o (@ ") = ™ s =7l [ ()2 = ()2l = O]s —r[li—j|. O

6. ENERGY FLUX ESTIMATES

In this section we complete the proof of Theorem 2.2 by establishing the endpoint esti-
mates where ¢ = 8. We do this by establishing the nested square-summability condition
(3.1). Recall that we are assuming

Dyuy — Pyuy = Fly,
where 2Py = px(x, D’) + px(z, D')*, and we write
Dluj — PjUj = Fj + Gj s
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where u; = 3;(D’)uy, the operator P; = p;(x, D") has symbol truncated to z’- frequencies
1
2

less than )\%9; , and

(6.1) Fj = Bj(D")Fx + [8;(D"), Pjlux + B;(D")(Px — pa(z, D)) ux,
(6.2) G; = B;(D") (pA(ac7 D) — pj(amD'))uA.
Let

1.1 1.1 _
(6:3) ¢jh = llujllzoera(s, ) +AT0; [[AA20; 22a) " uyll Lo, )
_1,.-1 1,—-1
B s, + A 50, T AB65 2 02)2G s, ) -

We need to show that

Ny
(6.4) Zc?,k(j) S ||U/\||2LooL2(S) + ||F/\||2L2(5) )

j=1
where k(j) denotes any sequence of values for k& such that the slabs S ;(;) are nested, in
that for j > 1 we have Sj i1 k(j+1) C Sj k). The analogous bound for j < 0 will follow
by an identical proof.

6.1. Estimates on u;. We begin by establishing the square-summability estimates for
the first two terms on the right hand side of (6.3). By translation invariance we may
assume each S; ;) contains z1 = 0. We then take S; to be the slab [0,£277] x R?, and
will show that

1.1 1L
S (il sy + A0 IR0, P ) M wiliZagsy ) S NunlFe e+ IFA

The same bounds will hold for z; € [-£277,0].

Since F) € LilLﬁ/, by Duhamel we can reduce matters to the homogeneous case

F\ = 0. Assume this, and let f(z') = ux(0,2’). Let W denote the solution operator for
the Cauchy problem associated to Py, so that uy = W[, It then suffices to show that
1 _1
(6.5)  |B:(D YW B; (D) fll o sy + A0 [(A26; 2a0) ™ Bi(D")W B, (D) f | 2s:
S 24 fll e

To prove (6.5), we will construct for each given j a function v which satisfies the following
conditions.

(6.6) v(0,2") = ﬁj(D’)f(x’) , Gi(Dyv=0 if |i—j]>5,
(6.7) [vllzez2(s,y S IIfllze
1,1 1.1 _
(6.8) ATOF(AZ0; 220) 0l Logs,) S If e
and such that
1.3 1
(6.9) [D1v — Pavllpipecs;) S (A207)72 || fllr2,

3 _1
(6.10) 1Dy — Paollpzacs;) S (A202)7H[ONE0; 22 fl 12 -
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Let us show that these imply the estimate (6.5). Consider the first term on the left
hand side of (6.5). We will prove the stronger statement

(6.11) 18D YW (r)B;(D) Iz, 273V fllge,  Ir| < e max(27,277).

By self adjointness (the adjoint of W (r) is the wave map going the other way), we can
then assume that 6; = 277 > 6; = 27*. This assumption now means we need to control
data at angle 277 for time €277,

We write W3;(D’) f = v—w. The desired estimate holds for the v term by (6.7), since
we may assume |i — j| < 4 by (6.6) (and we may shrink e by a factor of 16.)

To control w, we note that
w(0,2') =0, Diw — Pyw = Dyv — Pyv.
Energy estimates and (6.9) thus yield

1

3
(6.12) lwllzeras,) < (A205) 7 [1£]z2 -
Since A2 > Q%i, this yields the desired bound on w.

To estimate the second term in (6.5), we first consider the case 6; < ;. We again
write W3;(D’)f = v — w, and note that the desired estimate on v follows by (6.8) and

(6.6). (The operator 3;(D’) preserves the L?-weight ()\%0;%@%1 since )\%9;% <27\
The estimate on w for 6; < 6; follows by (6.12),

11 13 _3 3
A0 wll2es,) < A10! [[wl|peor2s;) S 0; 107 [ fllz2 -

Now consider the case §; < 6;. The above steps handle the case |i — j| < 4, so we
assume ¢ > j + 5. We take adjoints to reduce matters to showing that, for 7 > ¢+ 5,

[ / B(D YW (s) 5DV F (s, ) ds || | S A=H0, % 21 AR 0 3 a) Fll g,
[s|<eb;
This bound, in turn, follows from showing that, for |r| < &2~ and j > i + 5,

1,3 1,1
18;(D"YW*(r)Bi(D") flle £ (A267) 7 [(A26; 2 w2) f 2 -
We may replace W*(r) by W(r), since W* is the Cauchy map for data at ;1 = r to
21 = 0, and after exchanging 7 and j this bound is a consequence of (6.10).

6.2. The construction of v. We assume that 6; is now fixed, and rescale spatial vari-
ables by 6;. We thus need to construct v on the slab S = [0,¢] x R%  As before, let
p = A0;, and let 5;(D’) denote the rescaled localization operators, which will localize to
&~ 0;jp, &~ p. Let f denote the rescaled initial data ;(D")f(0; ).

In these rescaled variables it suffices to produce v satisfying
(6.13) v(0,2") = f(2), Bi(Dy=0 if |i—j]>5,
(6.14) lvllzerz(sy S 1 fllze

1.1 1 _
(6.15) pi6? {2 2e) " ol L2(s) S IIfllee s
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and such that
(6.16) 1Dy — Quollzacsy S (u20;) 7 ||fll 12 ,
1 _ 1
(6.17) D10 — Quollpizzsy S (1260;) " {2 @2) fll 2 -

Here @, is the rescaled operator Py, which has symbol truncated to a’-frequencies less
than cp.

We will construct v using the modified FBI/Cordoba-Fefferman transform T}, intro-
duced in §4. The key idea is that this transform conjugates the operator @, to the
Hamiltonian flow field, plus a bounded error which is roughly local. Precisely, we will
show that

1,Q,T; =D, + K,
where D, is the Hamiltonian vector field of the symbol ¢ (which we recall is frequency
localized to /ﬁ), and where K is an operator on Li,é,, depending on parameter 1, for
which we establish weighted L? estimates.

The transform @ = T),u of the exact solution u to Diu — @ u = 0, with initial data f,
satisfies

Dyii— Dyt = K,  a(0,2,&') = f(a/,€).
The operator K will introduce terms which are well-behaved after integration along the
flow of D1 — Dy at angle 6;. We will construct the approximate solution v by truncating
the operator K to such angles. For this purpose we introduce cutoffs ¢;(¢) and ;(¢’),
with slightly larger supports than 3;(¢’), such that

dist (supp(1 — ¢;),supp(3;)) > 277",
dist (supp(1 — ¢;), supp(¢;)) > 277",
and also that
dist (supp(;), supp(B)) > 27970 if |i—j| > 5.

The ¢-support of f lies in the ¢y~ neighborhood of the support of B;(&'). Since
ck1,6; > 12, and |dyq(z, )] < cb;|¢'|, we can assume that every integral curve of
D, — D, passing through this neighborhood remains &’-distance at least 2*1(’#0]- away
from the support of (1 — ¢;).

Furthermore, we can assume that any integral curve of D1 — D, passing at any point
through the support of 1; does not meet the c,u*% neighborhood of the support of 3;(¢'),
provided |i — j| > 5.

We will take v = T where v solves

(6.18) D1 — Dyv =9 K0, 0(0,2',¢&") = f(2,&).

The cutoff v; restricts the right hand side to & ~ 6;u, where the integral of K along
Dy — Dy is under control. Furthermore, since the support of ¥ will be contained in the
union of the integral curves of Dy — D, passing through the support of ¢; at some point
x1, then v will satisfy 3;(D")v = 0 for |i — j| > 5.

Next, since Q,T,; =T;D, +T;K, it holds that
Dyv = Quv = —T;((1 - 4;)K?),
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so estimates (6.16) and (6.17) will follow from

(6.19) 10— ) Kl o gy S (120,)7% (1 e
and
(6.20) (1 =) K[l 125y S (020) [z 2) fll 2 -

where S = [0, ] x Ry ¢ -

We thus need to show that Ko is small away from the set £, ~ 6;u, which we do
by establishing weighted norm estimates on v, and decay estimates on the kernel K.
The weights involve the natural distance function on Ri/,g/ associated to the Cordoba-
Fefferman transform,

dist, (2, €59/, ) = p? |2’ — o/ |+ p 2 |E =]

Let K(2',&;y',n") denote the integral kernel of K (we supress the parameter x1). Then
we will show that

(6.21) |K(z', &9, 7)) < (1 + distu(x',ﬁ’;y’,n'))_N
1 P _1 _ 1 _1 -N
o p20;(pras) N (T3 lg — el ) (L p2la =y |+ u T2 lG =l )
where ¢ is the small constant of (2.3).
Let Ey be the subset of Ri,,gl
Eo =R, x supp(5;(€)),

and let E;, be the image of Ey under the flow along D; — D, for time ;. We consider
the weight function

M(z,&') = M, (2/,&) =1 +dist, (2, & Eyy)

The weighted norm estimates we establish for solutions of (6.18) are

(6.22) ||M77HLOCL2(§) S ||Mf||L2 )
(6.23) (2 ) ™ MBI 25 S (12 60;) 2 | MF|| 2
and

1 _ ~ 1 _ 1 =
(6.24) (12 22) 2M 1 25y S (2 0;) 7 (2 22) MF | 2

Let us show how (6.14)—(6.17) follow from (6.21) and (6.22)—(6.24). The bounds (6.14)
and (6.15) are direct consequences of (6.22) and (6.23), since M = 1 on the support of
f- Also, (6.16)—(6.17) follow from (6.19)—(6.20), so we focus on (6.19)—(6.20).

We write K = K7 + K3, where the kernels K; and K are respectively dominated by
the first and second terms on the right hand side of (6.21).
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First note that, since diste/ (supp(1 — ¢;), Bz, ) > 2710u6; for all x4, it follows from
(6.22)—(6.24) that
1= 63)8]l e 1205y S (1705) (1 Fll2
N a) ™ (1= 6)0l a3y S (0360,)7 3 FllL=
I{p22) ™21 = 65)6ll 1 23y S (120572 [ (2 2) fll e
By the bounds on K; and K5 and Schur’s Lemma we thus have
1K1 (L= 6300l e 28y S (1263) I Fllne
1Ko (1= 65)0] 12(5) S (126) 2 1 Fllz2
1Ko (= 63000 pags) S (230,) o) Flle

Next, we note that the integral of K, as well as the integral of (/J,%ej)_1</l,%y2>K2, over
the set |¢ — 7| > 271946, is bounded by (26,)!, which yields by (6.22)-(6.24) that

10— 95) K165l o 125) S (076) 7 il
1= ) Koyl ) S (126;) %I Fll 2
10— 950 K205l as) S (020) (b 2) Flla
Together these yield the estimates (6.19) and (6.20).
We turn to the proof of estimates (6.22)—(6.24).

Lemma 6.1. Take E C R* and let M(2',&') = 1 + dist,(z/,&'; E). Also, let r— =
%(M — ). Then, for postive integers k and n, and real number r,

||M<M%1‘2>k</ﬁ($2 - 7")—>nK19||L2(R4) N ||M<M%$2>k<ﬂé($2 - 7“)—>”9||L2(1R4) )
and
1M (e )™ (0 (w2 — 7)) Kagl| 12 ga)
1 1 _ 1 n
S ep?0;|| M (pzag) N (u2 (m2 — 1)) gl L2gey -

The bounds are uniform over all subsets E C R* and real numbers r.

Proof. Let K denote the integral kernel
1 -2 1 1
Ko(2',&5y' n') = (L p 2 — &l ) (L 4+ p2ly — 2|+ p” % ns — &)

By the rapid decrease of K in z’ and &3, both estimates are a simple of the following
bound

—-N

[M Kogllr> < [|Mgl|> -

By making the measure preserving change of variables (z/,¢') — (p2a’, p"2¢'), we may
assume p = 1. By the rapid decrease of Ky in the z’ and &3 variables, we may bound

||M(Ilvfl)/Ko(ﬂﬂ',f/;y/,nl)g(y/ﬂ/)dy/ dn' || L2 (da’ ae)

S /M(ylaﬁz,ﬂsx'& —m2) "2 g(y', ") dna || L2 (ags ay’ dns) -
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We are thus reduced to the following consequence of the Calderon commutator theorem
[1].
Lemma 6.2. Let M(r) denote a weight function on the real line, satisfying

ME)=1, M) = M(s)| <|r—s|.

Then the convolution kernel (r)=2 is bounded on L*(M(r)dr) by a uniform constant.

Proof. We need to show that the integral kernel

M(r) M(s)"! _ M(r) = M(s) o 1
(r—s)? n (r—s)? M(s)™" + (r —s)2

is bounded on L?(dr). Since M(s)~! <1 and the latter kernel is integrable, it suffices to
show that the map
© M(r) — M(s)
O d
B = CE
is bounded on L?(dr). Clearly
M (r) — M(s)
= f(s)ds
[r—s|<1 <’I“—S>2

is bounded on L?(dr), and so it suffices to show that

/|T_s|>1 M(r) — M(s)

(r—s)?

f(s)ds < Cfllz2(ar)-

(6.25) ‘
L2(dr)

But
M(r) — M(s) M(r) — M(s) [M(r) —M(s)] 1
(r—s)? (r—s)2 “{r—s)2(r—s5)2 ~ |r—s®’

which means that (6.25) holds if and only if the map
M(r)— M(s
po [ MR s as
[r—s|>1 (T - 5)

is bounded on L?(dr). But since M is Lipschitz, this follows from the classical commu-
tator estimate of Calderén (Theorem 2 in [1]). O

In the following steps, we will use r and s as real variables that take the place of z.

Let J, s : R* — R* denote the flow along D; — D,, starting at the slice z; = s and
ending at z; = r. We will also use J,. 5 to denote the unitary map on L?(R*)

(JT,Sf) (xl7£/) = f(JS,T‘(xl7£,)) .
This map is unitary since the Hamiltonian flow is symplectic, hence preserves dx’ d¢’.
We also use the fact that, if [&o], |72] = pb; and (€3], 93| =~ p, then the map J,
approximately preserves dist,,, in that
disty, (Jrs (2, €); rs (v, 1)) 22 distyu (2, €5y, 01') -
By homogeneity of the Hamiltonian flow, this follows from the fact that the flow is
Lipschitz on the set |¢'| = 1, which is a consequence of Theorem 5.1.
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The function v satisfies

Do — Dgo =¢; K0, 0(0,2",¢") = f(',¢).
Let U denote the map, taking the space of functions on S to itself, defined by
s
UF(r, -) :/ JrsWi KF (s, -)ds.
0

Thus, (D; — Dy)UF = ¢, KF . If we let F(r, -) = J,of , so that D;F — D,F = 0, then
we can formally write the solution v as

V= iU"F.
n=0

We need to show this sum converges in the appropriate norm, which we do by showing
that U is a contraction. We split U = U;+U5, corresponding to the splitting K = K1+ K.

The estimates we require for U; are:
(6.26) MU || oo 25y S € IMF| oo 125
1,01 PR
(6.27) (1205)2 | M(p2 o) " "UNF | 125y S € |MF || e 12(5) -
For the Us term we require the bounds:
101 T
(6.28) IMULF | 23y S € (02 05) 2 [ M {2 a2) ™ Fll a3
PR PR
(6.29) M {(u222) " U F| 125y S clIM{uZaa) ™ Fl 125

The inequality (6.26) is a consequence of Lemma 6.1 with k = n = N = 0, and the
fact that J,. s preserves the distance function dist,, hence the weight M.

For (6.27), we apply Cauchy-Schwarz to yield
€
MUFR ' ) Se [ O1EE) s Tl ) ds.
0

We multiply by (u2x5)~2 and integrate dz’ d¢’, changing variables by Js.r on the right,
to obtain

F
||M<:u2'7;2> 1U1F||2Lz(§)
Se / / / </ﬁa:2 o JT,S>*2|M¢jK1F|2(s,x’,f’) dx' d¢' dsdr.
o Jo Jr4
We next observe that, for ¢’ in the support of 9;,
(6.30) /w%xz o Jrs)2dr < (ur6;) 7",

which holds since ‘%2 ~ 6;. Lemma 6.1 with k =n = N = 0 now yields (6.27).
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To show (6.28), we write

2
(MUF)(r, 2", &) <

/OT (Mp; Ko F) (s, Js (', &) ds

S (n20;) 7" / | M (o) iy Ko [ (s, Jo (2, €1)) ds

where we use (6.30). To conclude (6.27) we take the integral dz’ d¢’ of both sides, using
the fact that J,, preserves the measure, and apply Lemma 6.1 with k =1, n = 0, and
N =2.

For (6.29), we write as above
(MU F)(r,a/ &) < (u20;) 7" /OEIM (2o KoF | (s, T, (2, €)) ds
For ¢ in the support of ¢; we have
(o)™ by 0 Jur) ™ < (ubOlr — 5]) 72,
and consequently
(wtaea) ™2 |(MUF) (2! )
S0 [ oyl = o) 2 MGty e s ) .

We take the integral da’d¢’, changing variables by J;, on the right, and apply Lemma
6.1 with k =2, n =0 and N = 3, to yield (6.29).
We now turn to the proof of (6.22)—(6.24). First, note that by (6.26)—(6.27) and
(6.28)—(6.29), for small ¢ and € the map U is a contraction in the norm
1.1 1 _
PN = IMF| oo 25y + 1207 [|M (2 22) " F | 25
Recall that 0 = Y2 (U™ F , where F(r, -) = T,0f . Furthermore,the bound (6.30) yields
IFN S 1M Fll e -
Consequently
ol < 1M fllez
which implies (6.22) and (6.23).

To derive (6.24), we use the fact that each of the estimates (6.26)—(6.29) holds if M is
in each instance replaced by the weight

M (o — c26;21)-)

where co > 0 is a constant such that %2 > cof; on curves of Dy — D, passing through
the support of ;. This holds since (uz(-)_) is positive and decreasing, and hence, if
1 (€') # 0 and r > s, then

(12 (230 Jps — c20;) ) < (u? (x5 — c20;8)) .
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Consequently,

(= 0;) 7% || M (p? (w2) ) f 2

1E0,)7F | M{uZ o) f 2 -

1M (% (2 = c26j1) ) (2 w2) 710l 2 )

/AR ZAN

—~

On the other hand, for x; > 0,
(12 (w2 — c20jm1) ) (n2x2) 2 (n20;m1),
hence
1M {2 22) 720 11 o3y S (02 0;)7 7 | M {2 (w2 — ea0m1) ) (p2 w2) " 0l 12 »
yielding (6.24).

6.3. The estimate on K. We establish here the estimate (6.21) for the integral kernel
K defined by

1,QuT, =Dy + K.
Here, Q, = %(q“(x, D" +q,(z, D’)*)7 where g,, is the symbol py rescaled by 6;, and hence
truncated to x’-frequencies less than cu. The symbol ¢, on the other hand, is obtained
by truncating g, to z’-frequencies less than c,u%.

It is a simple consequence of Lemma 4.3 and Lemma 4.2 that the kernel of the operator
71” Q(xa D/)* T;: - Dq

satisfies the estimate (6.21). By taking adjoints the same applies with g(x, D’)* replaced
by ¢q(z,D’), and we are reduced to establishing the estimates (6.21) for the kernel of the
operator

TM (qM(-T7 D/) - Q($>D/) ) T;j .

The kernel K (2/,&’;y’,n') of this operator takes the form (we suppress the irrelevant
parameter x1)

[ e g, ¢) = ) G = 1) gt - o)

Suppose that p(z') is a smooth function on x5 > 0, which is constant for x5 > 1. We
extend p in an even manner to r2 < 0. Let g, = Su[p(0; )], and ¢ = S z[p(0; - )] , where
Sy denotes smooth truncation of the Fourier transform to frequencies less than cA. It
then follows that

(6.31) 1D, (g (") — (")) | S 0,12 177D (3 20) ™ | Dupllon o0y s 18] <1,
|D2 (qu(2) — q(a"))] S 6; (u% (uze)~N + u<w:2>’N) 1 Darpllov+2(zy50) -

Indeed, it suffices to verify these bounds for x2 > 0, and by splitting up p to separately
consider the case that p is smooth across xo = 0 and constant for |zs| > 1, and the case
that p is smooth on xo < 0 and vanishes for x5 > 0. The latter case is handle by simple
size bounds on the convolution kernels S, and S /7. For the smooth part, we have bounds

_ 1. _1_ _
Ipx = S, 4 pal(B52) S (05 2) T N (0522) = [ D ]l co
J

—1 1 —
S O;n7 2 (u2a2) ™Y DI pllco
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and the same bounds apply to derivatives.

By the condition (2.3), we easily obtain the following bounds for |('| &~  and §; < 2,
19208 () — 0l )| £ o8 (B baa) ™ + plpza) )11

In the formula for K we can integrate by parts at will with respect to u%DC/ and u‘é D,,,
and twice with respect to ,u’%DZ27 to dominate K by

o [ (1t aten) ™ o+ lpza) ™) (e (7 = )N (7 =)

X A3 (¢ =) TN T E (G = €)M (T E (G — &) R A

which is dominated by

1,1 1 _ _1 _ _1 _
co by 2 (n2aa) N (2 (2’ =y )TN (uE (& —ma)) N (T (G — )
yielding the desired bounds on K. |
We note here that similar considerations to the above yield the bounds, for || ~ u,
el g8 =0
6.32 Bosq(x, e <M ’
(6:32)  |0708q(&)| 3 {CO (14 pd0PI-Dg, (ubag)~N ) pi-lel | 18] > 1.

6.4. Estimates on F; and G;. We conclude by establishing the square summability of
the inhomogeneities F; and G;. Recall that

F; = B3;(D")Fx +[8;(D'), Pjlux + 3;(D")(Px — pa(x,D"))ux ,
Gj = B;(D")(px(z,D") — pj(z, D)) ux
We need to show that

1 1 1 _%
DO NE T e,y + A0 (AR, 2 22)2Cl1Fa(s,) S lunllZoo p2gs) + I FaZas) -
J

The first term in F} is handled by noting that
Z 185 (D)Eall7a s,y < Z 185 (D) Fall7z(s) < 1FAll72(s) -

Consider next the term [P, 3;(D’)]ux. Since the symbol of P; is truncated to z'-
frequencies less than c;ﬁ < c¢Ojpu, it holds that

[Py, B;(D)]ux = [P}, 3;(D)] (D" )ux
We claim that, uniformly over z1,
(6.33) 1185, 85D ] 2, S 20z, -
Given this, we can bound
1175, 85D N (D Vsl s,y 2 N b5 urlliazags,) < Nl éy(DVull ags;)

since S; is of length 277 in x1. Since ¢;(D’)uy involves B;(D")uy only for |i — j| < 4,
this term is square summable over j.
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To prove (6.33), it suffices to replace P; by p;(x, D’). The symbol p; equals |¢’| outside
of the region [£'| ~ A, and p;(a’,¢’) satisfies S] , estimates for 2" derivatives of order at
most 1. Consquently, after subtracting off the term |D’|, we may take p;(z, D’) to have
kernel K (2,2’ — y') where

K@, )]+ IDLE (@, )] S A0 (1 A1) 7
On the other hand, §;(D’) is a convolution kernel Ks(z' — y') where
12 Ka(2') |1, S 2727

The estimate (6.33) follows by applying Taylor’s theorem to
(K1, Ko (2',y) = /Kg(x' =) (K1 (2,2 =) - K1 (2,2 —y)) d?.

To control the last term in F; we note that, since the estimates on K; above also apply
to pa(x, D'), we have uniform bounds

1(Px = paz, D)) Fl 2, = 3]l (oA, D)7 = pa(, D) | 2, S U £llz2, -
The last term in F} is orthogonal over j, and thus has square sum bounded by ||u|z2(s)-.
We now estimate the term G;. We split this up
Gj = B;(D")(pa(z, D) = pj(x, D)) ¢;(D"Yur + B;(D")pa(a, D) (1 — ¢;(D"))ux.
Consider the second term in G;. We write
B (D' )pa(z, D) (1 = ¢;(D"))ux = B;(D") (pa(z, D) = pxo, (2, D")) (1 = ¢;(D") ) ux
where pyg; is the symbol p truncated to x’-frequencies of size less than cAf;. The symbol

PA — Pxp, is supported in the region [£| & A, and by arguments similar to those deriving
(6.31) (without the rescaling step), we have the estimates
102 (px — pae; ) (@, €)| S 051 (NGjaz) ~ N ATIeL
Its integral kernel is thus bounded by
071 (A0j22) N A2 (14 A2/ — ')

Since Af; > )\%0»_%, it follows that, uniformly in x1,
11 1 -1 1 -3
AT, [[(A20; % w2)? (pa(w, D') — pao, (2, D")) fll 2, < A 10, Iz,
and the same holds for p(x, D') —pag, (x, D) replaced by 3;(D’) (pk (w,D") —pao, (, D’))

1
since 3;(D’) averages on scale smaller than )\_%9;. Thus

=S

ATRO; (AR 2 2)2 35 (D )pa(, D) (1 = 65(D"))unll Las;y < A28 fJun | o pags) -

Since 27 runs from 1 to )\%, the right hand side is square summable over j.

N

Recalling that the symbol p;(xz,{’) is truncated to z’-frequencies less than )\%Qj_ ,
similar arguments show that

A0, 220)28;(D") (pa(e, D') — pj(w, D)) 65 (D'Yunll 2 (s,)
SATOFNTO; 2 w0) " (D Yun (s, -

AT10;
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The right hand side involves wu; for | — j| < 4, hence, by the earlier estimate for w;, is
square summable over j.

7. RESULTS FOR HIGHER DIMENSIONS

We show here that the steps of the preceeding sections yield sharp L? estimates for
spectral clusters on compact Riemannian manifolds M with boundary, of dimension n >
3, provided ¢ is sufficiently large. Precisely, we have the following
Theorem 7.1. Suppose that u solves the Cauchy problem on R x M

d?u(t, x) = Pu(t, ), u(0,2) = f(x), Ou(0,2) =0,
and satisfies either Dirichlet conditions
u(t,z) =0 if x€IM,
or Neumann conditions, where N, is a unit normal field with respect to g,
N, -Vyu(t,z) =0 if x€dM.
Then the following bounds hold for 4 < q < oo, ifn >4, and 5 < q< o if n=3.

lull s zarsi—1,ay < C M lmswan . 0(@) =n(3 —21) = 3.

These bounds of course imply that the estimates in (1.9) hold for the spectral projector
operators, xx, when ¢ > 5 forn =3 and g > 4 if n > 4.

As noted in the introduction, these estimates are expected to hold in the larger range
q> g:ﬁfi, in which case they (and their interpolation with the trivial L? estimate) would
be best possible. Establishing this larger range would require exploiting dispersion in di-
rections tangent to M for time 1, rather than times on the order of the microlocalization

angle 6.

Following the earlier sections, we work in a neighborhood of M in geodesic normal co-
ordinates, and extend the operator P evenly, and solution u oddly or evenly, in the case of
Dirichlet or Neumann conditions respectively. We set x, 11 = t, and ' = (z2,...,Zn41).

We then fix a frequency scale A and microlocalization angle 6; € [)\_%,c] . After fac-

torizing DA,D, we set
Q($7€I) = ]pj(ejxa 9]—151) )

which is z’-frequency localized at scale /ﬁ, where p = 6\ is the frequency scale of
the rescaled solution w(fz) (we suppress the index j.) We work with the wave packet
transform @ of u with respect to the z’ variables, and let © denote the Hamiltonian flow
along & — q(z,&’). The reduction steps of sections 2 through 4 can then be adapted to
reduce matters to establishing the following.
Theorem 7.2. Suppose that f € L*(R*™) is supported in a set of the form &,41 =~ .,
(€2, nma| S, &~ O or €] S pF in case 0 = pTE.

Then, if u="T, [f(©0,0, (2',€"))], we have for ¢ > 2%

1_1
Jullparzcsy S p0 90277 || £l 2ren) ,
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2 1
and for 2 < g < 2
1 1

lullparz(s) S M‘S(Q)g(n—l)(f_a)_7

This implies Theorem 7.1 for ¢ such that the exponent of 6 is at least %. For n > 4,
this happens for ¢ > 4 > % For n = 3 this holds for ¢ > 5.

In applying the reductions of section 2, care must be taken since §(g) > 1 for large n,
whereas the commutator [A,T'(D)] maps H°~™' — H only for 0 < § < 1. Here, T'(D)
is a conic cutoff to the set |{,41| = |€1,...,&|. To get around this problem, in case
0(q) > 1 we write 0(q) = m+6, with 0 < ¢ < 1. Let dp = (d1,...,dn—1,dn+1) denote the
tangential derivatives, and d7' the collection of tangential derivatives of order at most m.
Then the extended and ¢-localized solution u satisfies

ld7ull s + 1d7 Fll s S N fllzsco -
Since di' A is Lipschitz, it is easy to see that
ld7[A, T(D)]Dul s < lld7wllas -
We also gain powers of df' in the elliptic regularity arguments, and deduce that
ld7 (1 = T(D))ullgrs+r S lld7ullgs + A7 Fllgs -

The norm on the left is sufficient to control [|(1 — I'(D))ul[ar2, and we are reduced to
considering I'(D)u. This term, however, has Fourier transform supported outside of a
conic neighborhood of the §, axis, hence

IT(D)ull s ~ [|d7T(D)ullgs -
The remaining reductions of section 2 then follow.

To prove Theorem 7.2, we establish mapping properties for the kernel K of WW™*,
localized in ¢ = ({a,...,(n+1) by a cutoff 55(¢) to the set

Cn+1z,u? |(C2,...,Cn,1)‘SC,U/7 Cnvaellﬂ
(respectively |(,| < ©~2 in case 0 = ,u_%.) The bounds we establish, analogous to (5.3)
and (5.4), are

(7.1) sup

r,s€[0,¢]

;0

t/Kmfwaﬂyﬂd

<
i, Sl

and

(7.2) H/K(r,w';s,y')f(y')dyHLw L2

T,eTn Ty
n—2

SH T (Lt plr—s[) 7 (14 u0?[r—s|) ? |If]

To see that this implies Theorem 7.2, note that interpolation yields the bound

L! L2

Y2, ¥n Ynit1

H/K(T’, z’;s,y’)f(y’)dy’

Ly, wp L2

_2 (1
S0 T (1 plr =)D (1 =)y

Q=
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If ¢ > 2% then (n — 2)(
obtain

H/K(ﬁx’;s,y’) F(s,y’)dy‘

% — %) > % , and by the Hardy-Littlewood-Sobolev lemma we

_2
SO P,

Li L2 S35 Un Py 4

(R TR R

I 2 > g2 2050 then

—(i_1
(14 plr — s )~ (=G (1+ p62r — s) (=9 < pmagmat=0=9) Ir— s|7%
and Hardy-Littlewood-Sobolev yields Theorem 7.2 for this case.

We now turn to the proof of (7.1) and (7.2). The estimate (7.1) follows as does the
estimate (5.3) from the boundedness of T}, and the fact that ©, ; preserves the measure
da’ d¢'. To establish (7.2), we consider as before separate cases, depending on |r — s|.

Consider the case uf?|r —s| > 1. We fix 6 < 0 so that uf?|r — s| = 1, and decompose
B(¢) into a sum of cutoffs §;({), each of which is localized to a cone of angle 6 about
some direction. As in the proof of (5.16), we have that

—17n— = ; -N
/IKJ‘(TJ?’;&@/')\dynH St (1 4+ pbl(y — wl ) ml)

where the w! . give a (1) ™" separated set after projection onto the (2,...,n) variables.
Adding over j yields the desired bounds, since

n—1

n—lgn—1 _ M"T*‘ Ir—s|=™

U
In case pf?|r —s| < 1, let § > 0 be given by
0= min(,u_%h"— Sl_% 1),

We set ¢ = (C2,- -+, Cn—1,Cn+1), and let B3; be a partition of unity in cones of angle 6 on
R™» 1. We then decompose

Bo(¢) = Zﬁe(C) B3;(¢").

Let K = Zj K denote the corresponding kernel decomposition. As in the proof of
Theorem 5.4, we can bound K; by

n A -N
w2 /( 1+ po |d€”<sm : (yl - xls,r)| + pb |anCS,r : (y/ - x/s,r)‘ + |<Cs.,rayl - x;,'r‘>| )
X (1+u%|:17’ fz\)dede.

Here, (25,5 ) = s (2, £}), with £} a fixed vector in ’Ehe supportlof B9(€)B;(¢"). Also,
(25,7, Cs,r) = Osr(2,¢). Since d¢(s, is invertible, and pf > pf > p2, the first two terms
in the integrand dominate p2 |y’ — |-

We first show that we may replace (s, by &, = (s(2',§}) in the third term in
parentheses above. By homogeneity, we may consider |(| = |¢;|. We take a first order
Taylor expansion, and use bounds (5.7) on d%Csm to write

Cor = Cor(2,E) = (C = €4) - deCo + O(IC = & Pu % s — 7)) .
Since - -
C=&)"1Sub, (=&l Spud,  pbls—r[<1,
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this shows we may replace (s by (s(2,&)), as the errors are absorbed by the first two
terms in parentheses. On the other hand, by (5.5)

| (Cor(2',65) = C(2,65) sy — 2 ) | S pla’ — 2| |y — 2],
which is also absorbed by the other terms.

We next use (5.5) to see that we may replace d¢(s , by the identity matrix, since the
error induced is dominated by

= 1
pls —rlly — oy, | < p2ly’ — o,

Consequently, since f;vr has n + 1 component comparable to p, we obtain

—1An— = —N
/IKj(nx';&y')ldynH Su PO (1 + 0 |(y — 2, )2 mal)

The points z7 ,. are 10 separated in the (2,...,n — 1) variables as j varies, which follows
by Corollary 5.2 and the fact that g(z, ¢) is close to ||, hence we can add over j to obtain

— _n—2
/|K(7"795/§87Z/)|dyn+1§un719"729§u"719(1+u|r—s|) = O
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