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Abstract. We use microlocal and paradifferential techniques to obtain L8 norm
bounds for spectral clusters associated to elliptic second order operators on two-

dimensional manifolds with boundary. The result leads to optimal Lq bounds, in the

range 2 ≤ q ≤ ∞, for L2-normalized spectral clusters on bounded domains in the
plane and, more generally, for two-dimensional compact manifolds with boundary. We

also establish new sharp Lq estimates in higher dimensions for a range of exponents

qn ≤ q ≤ ∞.

1. Introduction

Let M be a compact two-dimensional manifold with boundary, and let P be an elliptic,
second order differential operator on M , self-adjoint with respect to a density dµ, and
with vanishing zeroeth order term, so that in local coordinates

(1.1)
(
Pf
)
(x) = ρ(x)−1

n∑
i,j=1

∂i

(
ρ(x) gij(x) ∂jf(x)

)
, dµ = ρ(x) dx .

We take gij to be positive, so that the Dirichlet eigenvalues of P can be written as
{−λ2

j}∞j=0 .

Let χλ be the projection of L2(dµ) onto the subspace spanned by the Dirichlet eigen-
functions for which λj ∈ [λ, λ+ 1]. In the case that M is compact without boundary of
dimension n ≥ 2, and the coefficients of P are C∞ functions, Sogge [14] established the
following bounds

(1.2)
∥∥χλf

∥∥
Lq(M)

≤ C λ
n−1

2 ( 1
2−

1
q ) ‖f‖L2(M) , 2 ≤ q ≤ qn .

(1.3)
∥∥χλf

∥∥
Lq(M)

≤ C λn( 1
2−

1
q )− 1

2 ‖f‖L2(M) , qn ≤ q ≤ ∞ .

Furthermore, the exponent of λ is sharp on every such manifold (see e.g., [15]). In the
case of a sphere, the examples which prove sharpness are in fact eigenfunctions. For
(1.2) the appropriate example is an eigenfunction which concentrates in a λ−

1
2 diameter

tube about a geodesic. For (1.3), the example is a zonal eigenfunction of L2 norm λ
n−1

2

which takes on value comparable to λ on a λ−1 diameter ball about each of the north and
south poles. Approximate spectral clusters with similar properties can be constructed
in the interior of any smooth manifold, showing that for spectral clusters (though not
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necessarily eigenfunctions) the exponents in (1.2) and (1.3) are also lower bounds on
manifolds with boundary.

In [13], the authors showed that, on a manifold of dimension n ≥ 2 for which the
boundary is everywhere strictly geodesically concave (such as the complement in Rn of
a strictly convex set) the estimates (1.2) and (1.3) both hold.

On the other hand, Grieser [5] observed that in the unit disk {|x| ≤ 1} there are
eigenfunctions of the Laplacian, for Dirichlet as well as for Neumann boundary conditions,
of eigenvalue −λ2 that concentrate within a λ−

2
3 neighborhood of the boundary. These

are the classical Rayleigh whisphering gallery modes (see [9], [10]). The Fourier-Airy
calculus of Melrose and Taylor allows one to construct an approximate spectral cluster
with similar localization properties near any boundary point of M at which the boundary
is strictly convex (the gliding case). Consequently, if M is of dimension two and the
boundary has a point of strict convexity with respect to the metric g (for instance, any
smoothly bounded planar domain endowed with the Laplacian and either Dirichlet or
Neumann conditions) the following bounds cannot be improved upon

(1.4)
∥∥χλf

∥∥
Lq(M)

≤ C λ
2
3 ( 1

2−
1
q ) ‖f‖L2(M) , 2 ≤ q ≤ 8 .

(1.5)
∥∥χλf

∥∥
Lq(M)

≤ C λ2( 1
2−

1
q )− 1

2 ‖f‖L2(M) , 8 ≤ q ≤ ∞ .

In this paper we show that the estimates (1.4) and (1.5) hold on any two dimensional
compact manifold with boundary, for P as above and either Dirichlet or Neumann con-
ditions assumed. Estimate (1.4) follows by interpolation of the trivial case q = 2 with
the case q = 6, so we restrict attention to q ≥ 6 for (1.4). For q ≥ 6, the above estimates
are an immediate consequence of the following theorem (see for example [8] or [11]).

Theorem 1.1. Suppose that u solves the Cauchy problem on R×M

(1.6) ∂2
t u(t, x) = Pu(t, x) , u(0, x) = f(x) , ∂tu(0, x) = 0 ,

and satisfies either Dirichlet conditions

u(t, x) = 0 if x ∈ ∂M ,

or Neumann conditions, where Nx is a unit normal field with respect to g,

Nx · ∇xu(t, x) = 0 if x ∈ ∂M .

Then the following bounds hold for 6 ≤ q ≤ 8,

‖u‖Lq
xL2

t (M×[−1,1]) ≤ C ‖f‖Hγ(q)(M) , γ(q) = 2
3

(
1
2 −

1
q

)
,

and the following bounds hold for 8 ≤ q ≤ ∞,

‖u‖Lq
xL2

t (M×[−1,1]) ≤ C ‖f‖Hδ(q)(M) . δ(q) = 2
(

1
2 −

1
q

)
− 1

2 .

In the statement of the theorem, the space Hs(M) refers to the Sobolev space of order
s on M determined, respectively, by Dirichlet or Neumann eigenfunctions.

Our approach to proving Theorem 1.1 is to work in geodesic normal coordinates near
∂M , and to extend both the operator P and the solution u across the boundary, to obtain
u as a solution to a wave equation on an open set, but for an operator with coefficients of
Lipschitz regularity. We then adapt a frequency dependent scaling argument, originally
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developed to handle Lipschitz metrics, to metrics with the particular type of codimension-
1 singularities that the extended P will have.

We remark that, for operators of the type (1.1) with ρ and gij of Lipschitz regularity,
the estimate (1.4) is known on the range 2 ≤ q ≤ 6, as established by the first author
in [12], along with a weaker version of (1.5) having larger exponent if q < ∞. It is not
currently known what the sharp exponents are for general Lipschitz P , since the known
counterexamples satisfy the estimates (1.5). The estimates for q = ∞ were established for
eigenfunctions recently by Grieser [6], while the sup-norm estimates for spectral clusters
were obtained by the second author in [16].

For q = ∞, the squarefunction estimate of Theorem 2.1 below was shown in [12] to
hold for operators P with Lipschitz coefficients, which in particular implies the q = ∞
case of Theorem 1.1 for P on a manifold with boundary. Our proof here of the case
q < ∞, however, depends crucially on the fact that if u is appropriately microlocalized
away from directions tangent to ∂M , then better squarefunction estimates hold than do
for directions near to tangent. In other words, we exploit the fact that the more highly
localized eigenfunctions considered in [5] are associated only to gliding directions along
∂M , not directions transverse to ∂M .

A historical curiosity is that the critical L2 → L8 bounds for χλ have an analog in
Euclidean space which seems to be the first restriction theorem for the Fourier transform.
To explain this, we first notice that by duality our L2 → L8 bounds are equivalent to the
statement that χλ : L8/7 → L2 with norm O(λ1/4). The Euclidean analog would say that
if χλ : L8/7(R2) → L2(R2) denotes the projection onto Fourier frequencies |ξ| ∈ [λ, λ+1],
then this operator also has norm O(λ1/4). An easy scaling argument shows then that the
latter result is equivalent to the following Fourier restriction theorem for the circle(∫ 2π

0

|f̂(cos θ, sin θ)|2 dθ
)1/2

≤ C‖f‖L8/7(R2), f ∈ C∞0 (R2).

Stein [17] proved this using a now standard TT ∗ argument, together with DeLeeuw’s [4]
observation that d̂θ maps L8/7(R2) → L8(R2) by the Hardy-Littlewood-Sobolev theorem,
as |d̂θ| ≤ C|x|−1/2. Since this argument does not use the oscillations of d̂θ, one can
strengthen the above restriction theorem to show that, for j ≥ 1, one has the uniform
bounds

(1.7)
(∫ 2−j

0

|f̂(cos θ, sin θ)|2 dθ
)1/2

≤ C 2−j/8‖f‖L8/7(R2), f ∈ C∞0 (R2).

By the Knapp example, there is no small angle improvement for the critical L6/5(R2) →
L2(S1) restriction theorem of Stein-Tomas. A key step for us is that in the setting of
compact manifolds with boundary we also get the same O(2−j/8) improvement in our
L8-estimates when microlocalized to regions of phase space that correspond to bicharac-
teristics that are of angle comparable to 2−j from tangency to the boundary.

In higher dimensions the natural analog of (1.4)-(1.5) would say that

(1.8)
∥∥χλf

∥∥
Lq(M)

≤ C λ( 2
3+ n−2

2 )( 1
2−

1
q ) ‖f‖L2(M) , 2 ≤ q ≤ 6n+4

3n−4 .

(1.9)
∥∥χλf

∥∥
Lq(M)

≤ C λn( 1
2−

1
q )− 1

2 ‖f‖L2(M) ,
6n+4
3n−4 ≤ q ≤ ∞ .
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By higher dimensional versions of the Rayleigh whispering gallery modes, this would be
sharp if true. At present we are unable to prove this estimate but, as we shall indicate
in the final section, we can prove the bounds in (1.9) for the smaller range of exponents
q ≥ 4 if n ≥ 4, and q ≥ 5 if n = 3. We hope to return to the problem of proving sharp
results in higher dimensions in a future work.

Notation. We use the following notation. The symbol a . b means that a ≤ C b, where
C is a constant that depends only on globally fixed parameters (or on N, α, β in case of
inequalities involving general integers.)

For convenience we will let x3 serve as substitute for the time variable t. We use
d = (d1, d2, d3) to denote the gradient operator, and D = −id.

2. Dyadic Localization Arguments

The estimates of Theorem 1.1 hold if u is supported away from ∂M by the results of
[8]. Consequently, by finite propagation velocity and the use of a smooth partition of
unity we may assume that, for T small, the solution u(t, x) in Theorem 1.1 is for |t| ≤ T
supported in a suitably small coordinate patch centered on the boundary. Note that if
we establish Theorem 1.1 on the set |t| ≤ T for some small T , it then holds for T = 1 by
energy conservation.

We work in boundary normal coordinates for the Riemannian metric gij that is dual
to gij of (1.1). Thus, x2 > 0 will define the manifold M , and x1 is a coordinate function
on ∂M which we choose so that ∂x1 is of unit length along ∂M . In these coordinates,

(2.1) g22(x1, x2) = 1 , g11(x1, 0) = 1 , g12(x1, x2) = g21(x1, x2) = 0 .

The metric gij for P is the inverse to gij , and the same equalities hold for it.

We now extend the coefficient g11 and ρ in an even manner across the boundary, so
that

(2.2) g11(x1,−x2) = g11(x1, x2) , ρ(x1,−x2) = ρ(x1, x2) .

The extended functions are then piecewise smooth, and of Lipschitz regularity across
x2 = 0. Because g is diagonal, the operator P is preserved under the reflection x2 → −x2.

After multiplying ρ(x) by a constant, and rescaling variables if necessary, we may
assume that on the ball |x| < 1 the function ρ(x) is CN (R+) close to the function 1, and
gij(x) is CN (R+) close to the euclidean metric, where N is suitably large, and c0 will be
taken suitably small,

(2.3) ‖ ρ− 1‖CN (R2
+) ≤ c0 , ‖ gij − δij‖CN (R2

+) ≤ c0 .

We may then extend ρ and gij globally, preserving conditions (2.1)–(2.3), so that P is
defined globally on R2 and such that

(2.4) ρ(x) = 1 , gij(x) = δij for |x| ≥ 3
4
.

We then extend the initial data f and the solution u to be odd in x2 (respectively even
in x2 in case of Neumann conditions). This extension map is seen to map the Dirichlet
(respectively Neumann) Sobolev space H2(Rn

+) to H2(Rn), hence Hδ(Rn
+) to Hδ(Rn) for

0 ≤ δ ≤ 2. The extended solution u thus solves the extended equation ∂2
t u = Pu on



Lp NORM OF SPECTRAL CLUSTERS 5

R × R2, with the extended initial data f . The result of Theorem 1.1 is thus a direct
consequence of the following

Theorem 2.1. Suppose that the operator P takes the form (1.1), and that ρ and g satisfy
conditions (2.1)–(2.4) above. Let u solve the Cauchy problem on R× R2

(2.5) ∂2
t u(t, x) = Pu(t, x) , u(0, x) = f(x) , ∂tu(0, x) = g(x) .

Then the following bounds hold for 6 ≤ q ≤ 8,

‖u‖Lq
xL2

t (R2×[−1,1]) .
(
‖f‖Hγ(q) + ‖g‖Hγ(q)−1

)
, γ(q) = 2

3

(
1
2 −

1
q

)
,

and the following bounds hold for 8 ≤ q ≤ ∞,

‖u‖Lq
xL2

t (R2×[−1,1]) .
(
‖f‖Hδ(q) + ‖g‖Hδ(q)−1

)
, δ(q) = 2

(
1
2 −

1
q

)
− 1

2 .

We begin by reducing matters to compactly supported u satisfying an inhomogeneous
equation. Henceforth, we will use notation x3 = t. Let φ(x) be a smooth even function
on R3, equal to 1 for |x| ≤ 3/2, and vanishing for |x| ≥ 2. We may then write

3∑
j=1

Dj

(
ajj(x)Dj(φu)(x)

)
=

3∑
j=1

DjFj(x) ,

where
a33(x) = ρ(x) , ajj(x) = −ρ(x) gjj(x) for j = 1, 2.

We express this equation concisely as DAD(φu) = DF , and observe that for 0 ≤ δ ≤ 2

‖φu‖Hδ(R3) + ‖F‖Hδ(R3) . ‖f‖Hδ + ‖g‖Hδ−1 .

This is a consequence of energy estimates, which hold separately on R3
+ and R3

−, together
with the fact that DAD(φu) is compactly supported and has integral 0, so may be written
as DF .

We may thus assume that u(x) is supported in the ball |x| ≤ 2, and need to show that

‖u‖LqL2 . ‖u‖Hγ(q) + ‖F‖Hγ(q) , 6 ≤ q ≤ 8 ,(2.6)

‖u‖LqL2 . ‖u‖Hδ(q) + ‖F‖Hδ(q) , 8 ≤ q ≤ ∞ ,(2.7)

where DADu = DF .

Next let Γ(ξ) be a multiplier of order 0, supported in the set 1
4 |ξ3| ≤ |ξ1, ξ2| ≤ 4|ξ3| ,

which equals 1 on the set 1
2 |ξ3| ≤ |ξ1, ξ2| ≤ 2|ξ3| . The operator DAD is elliptic on the

support of 1− Γ, and we may write

DAD
(
1− Γ(D)

)
u =

(
1− Γ(D)

)
DF −D

[
A,Γ(D)

]
Du .

As a consequence of the Coifman-Meyer commutator theorem [2] (see also Proposition
3.6.B of [19]) the operator [A,Γ(D)] maps Hδ−1 → Hδ for 0 ≤ δ ≤ 1. Hence, the right
hand side of the above belongs to Hδ−1, and by Sobolev embedding and elliptic regularity
(see, for example, Theorem 2.2.B of [19], which applies in the Sobolev setting) we have

‖
(
1− Γ(D)

)
u‖LqL2 . ‖

(
1− Γ(D)

)
u‖Hδ(q)+1 . ‖u‖Hδ(q) + ‖F‖Hδ(q) .

Indeed, there is an extra 1
2 derivative in δ(q) + 1 beyond the Sobolev index n( 1

2 −
1
q ), so

this holds for all 2 ≤ q ≤ ∞. Since γ(q) ≥ δ(q) for q ≤ 8, this implies that (2.6) and (2.7)
hold for u replaced by (1− Γ(D))u on the left hand side.
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It thus remains to establish (2.6) and (2.7) with u replaced on the left by Γ(D)u. We
take a Littlewood-Paley decomposition in ξ to write

Γ(D)u =
∞∑

k=1

Γk(D)u =
∞∑

k=1

uk ,

with ûk is supported in a region where |ξ1, ξ2| ≈ |ξ3| and |ξ| ≈ 2k. Since these regions
have finite overlap in the ξ3 axis, we have

‖Γ(D)u‖LqL2 . ‖uk‖Lq`2kL2 . ‖uk‖`2kLqL2 ,

where we use q ≥ 2 at the last step.

Now let Ak denote the matrix of coefficients obtained by truncating the frequencies of
aii(x) to |ξ| ≤ c 2k for a fixed small c. We then have DAkDuk = DFk, where

(2.8) Fk = Γk(D)F +
[
A,Γk(D)

]
Du+

(
Ak −A)Duk .

Note that the inhomogeneity Fk is now localized in frequency to |ξ3| ≈ |ξ| ≈ 2k , by the
frequency localizations of Ak and uk.

We claim that, for 0 ≤ δ ≤ 1,
∞∑

k=1

22kδ‖Fk‖2
L2 . ‖u‖2

Hδ + ‖F‖2
Hδ .

This follows by orthogonality for the first term on the right of (2.8), and the last term is
handled by the bound ‖A−Ak‖L∞ . 2−k. The middle term is handled by the Coifman-
Meyer commutator theorem, which yields that

∑∞
k=1 εk

[
A,Γk(D)

]
maps Hδ−1 → Hδ for

all sequences εk = ±1.

We thus are reduced to establishing uniform estimates for each dyadically localized
piece uk. We thus fix a frequency scale λ = 2k for the rest of this paper. We then need
to prove the following estimates, where we now set DAλDuλ = Fλ,

‖uλ‖LqL2(R3) . λγ(q)
(
‖uλ‖L2(R3) + λ−1‖Fλ‖L2(R3)

)
, 6 ≤ q ≤ 8 ,

‖uλ‖LqL2(R3) . λδ(q)
(
‖uλ‖L2(R3) + λ−1‖Fλ‖L2(R3)

)
, 8 ≤ q ≤ ∞ .

Since we are using x3 orthogonality to make this reduction, we must control the norms
of the uλ globally. However, since u is supported in the ball of radius 2, it is easy to see
that the norm of uλ over |x| ≥ 3 is bounded by λ−1‖u‖L2 , so in fact it suffices to establish
the above estimate with the left hand side norm taken over the cube of sidelength 3.

If we let vλ denote the localization of uλ to frequencies where |ξ2| ≥ 1
8 |ξ3|, then the

square function estimates hold for vλ as on an open manifold,

‖vλ‖LqL2(R3) . λδ(q)
(
‖uλ‖L2(R3) + ‖Fλ‖L2(R3)

)
, 6 ≤ q ≤ ∞ .

This will follow as a consequence of the techniques we use to handle the part of uλ with
frequencies localized to angle ≈ 1 from the ξ3 axis.

Consequently, we will assume that

supp
(
ûλ

)
⊆
{
ξ : |ξ1| ∈

[
1
2λ, 2λ

]
, |ξ2| ≤ 1

10λ , |ξ3| ∈
[
1
2λ, 2λ

] }
.
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On this region, the operator DAλD is hyperbolic with respect to the x1 direction. We
can thus take p(x, ξ′) a positive elliptic symbol in ξ′ = (ξ2, ξ3), so that

a11
λ (x)

(
ξ21 − p(x, ξ′)2

)
=

3∑
j=1

ajj
λ (x)ξ2j if |ξ2| ≤ 1

9λ , |ξ3| ∈
[
1
3λ, 3λ

]
,

and such that
p(x, ξ′) = |ξ′| if ξ′ /∈

[
− 1

8λ,
1
8λ
]
×
[
1
4λ, 4λ

]
.

We also smoothly set p(x, ξ′) = 1 near ξ′ = 0. Thus,

p(x, ξ′) , dxp(x, ξ′) ∈ S1
1,1 ,

and p(x, ξ′) differs from |ξ′| by a symbol supported in the dyadic shell |ξ′| ≈ λ.

Next, let pλ(x′, ξ) be obtained by truncating the symbol p(x, ξ′) to x′-frequencies less
than cλ, where c is a small constant. Then, uniformly over λ,

pλ(x, ξ′)− p(x, ξ′) ∈ S0
1,1 , support ( pλ − p) ⊂

{
ξ′ : | ξ′| ≈ λ

}
.

Furthermore the symbol-composition rule holds for pλ to first order. Consequently, we
can write (

D1 + pλ(x,D′)
)(
D1 − pλ(x,D′)

)
uλ = F ′λ ,

where
‖F ′λ‖L2(R3) . λ ‖uλ‖L2(R3) + ‖Fλ‖L2(R3) .

The function uλ can be written as the sum of four pieces with disjoint Fourier transforms,
according to the possible signs of ξ1 and ξ3. We restrict attention to the piece u+

λ ,
supported where ξ1 > 0 and ξ3 > 0. Estimates for the other pieces will follow similarly.
Since pλ is x′-frequency localized, F ′λ also splits into four disjoint pieces. The symbol
ξ1 + p(x, ξ′) is elliptic on the region ξ1 > 0, hence we may write

D1u
+
λ − pλ(x,D′)u+

λ = F ′′λ ,

where
‖F ′′λ ‖L2(R3) . ‖uλ‖L2(R3) + λ−1‖Fλ‖L2(R3) .

Finally, we have that
pλ(x,D′)− pλ(x,D′)∗ ∈ Op(S0

1,1) ,
and is dyadically supported in ξ′. We have thus reduced the proof of Theorem 2.1 to the
following.

Theorem 2.2. Suppose that the x′-Fourier transform of uλ satisfies the support condition

supp
(
ûλ

)
⊆
{
ξ′ : |ξ2| ≤ 1

10λ , ξ3 ∈
[
1
2λ, 2λ

] }
,

and that
D1uλ − Pλuλ = Fλ ,

where Pλ = 1
2

(
pλ(x,D′) + pλ(x,D′)∗

)
. Then, for S = [0, 1]× R2,

‖uλ‖LqL2(S) . λγ(q)
(
‖uλ‖L∞L2(S) + ‖Fλ‖L2(S)

)
, 6 ≤ q ≤ 8 ,

(2.9)

‖uλ‖LqL2(S) . λδ(q)
(
‖uλ‖L∞L2(S) + ‖Fλ‖L2(S)

)
, 8 ≤ q ≤ ∞ .

The use of the L∞L2 norm of uλ is allowed by Duhamel and energy bounds. Here, as
in what follows, we are using the shorthand mixed-norm notation that LpLq = Lp

x1
Lq

x′ .
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3. The Angular Localization

In this section we take a further decomposition of uλ, by decomposing its Fourier trans-
form dyadically in the ξ2 variable. The reductions of the previous section required only
the fact that the coefficients ajj(x) were Lipschitz functions. The reduction to estimates
for angular pieces depends on the fact that the singularities of ajj(x), and hence the points
where the x2-derivatives of pλ(x, ξ′) are large, occur only at x2 = 0. Consequently, vari-
ous error terms that arise in this further reduction will be highly concentrated at x2 = 0,
which we express through weighted L2 estimates.

We will take a dyadic decomposition of the ξ2 variable, from scale ξ2 ≈ λ
2
3 to ξ2 ≈ λ.

Thus, for 1 ≤ j < Nλ = 1
3 log2 λ, let βj(ξ′) = βj(ξ2, ξ3) denote a smooth cutoff satisfying

supp(βj) ⊂ [2−j−2λ, 2−j+1λ]× [ 14λ, 4λ] ,

and βNλ
supported in [−λ 2

3 , λ
2
3 ]× [ 14λ, 4λ] , such that, with β−j(ξ2, ξ3) = βj(−ξ2, ξ3)

Nλ∑
j=1

βj(ξ′) +
−1∑

j=1−Nλ

βj(ξ′) = 1 if |ξ2| ≤ 1
8λ and ξ3 ∈ [ 12λ, 2λ] .

Let
uj(x) = βj(D′)uλ(x) .

If we define
θj = 2−|j| ,

then uj has frequencies localized to ξ2 ≈ ±θj ξ3 , or |ξ2| . λ−
1
3 ξ3 in case j = Nλ.

On the microlocal support of uj , the bicharacteristic equation for the principal symbol
ξ1 − pλ(x, ξ′) satisfies dx2

dx1
≈ ±θj , respectively as j > 0 or j < 0. A bicharacteristic curve

passing through the microlocal support of uj will satisfy this condition on an interval of
x1-length less than εθj , if ε is a small constant. It is thus natural that we will have good
estimates for uj on slabs of width εθj in the x1 variable, and it turns out this is sufficient
to prove Theorem 2.2.

In proving estimates for uj , it is convenient to work with the symbol pj obtained by

truncating p(x, ξ′) to x′-frequencies less that c θ−
1
2

j λ
1
2 . This finer truncation than that of

pλ is chosen so that, after rescaling space by θj , the rescaled symbol pj(θjx, · ) will be x′-
frequency truncated at µ

1
2 , where µ = θjλ is the frequency scale of the rescaled solution

uj(θjx). This square root truncation is consistent with the wave packet techniques we
use, and is standard in the construction of parametrices for rough metrics.

The energy of the induced error term (Pλ − Pj)u will be large at x2 = 0, but decays
away from x2 = 0 at a rate that is integrable along bicharacteristic curves that traverse
the boundary at angle θj . This error term can thus be considered as a bounded driving
force, and we call this term Gj below.

In the next two sections we will establish the following result.

Theorem 3.1. Let Sj,k denote the slab x1 ∈ [kεθj , (k + 1) εθj ] , for 0 ≤ k ≤ ε−12|j| .

Then, if
D1uj − Pjuj = Fj +Gj ,
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it holds uniformly over j and k, and 6 ≤ q ≤ ∞, that

‖uj‖LqL2(Sj,k) . λδ(q)θ
1
2−

3
q

j

(
‖uj‖L∞L2(Sj,k) + ‖Fj‖L1L2(Sj,k)

+ λ
1
4 θ

1
4
j ‖〈λ

1
2 θ
− 1

2
j x2〉−1uj‖L2(Sj,k) + λ−

1
4 θ
− 1

4
j ‖〈λ 1

2 θ
− 1

2
j x2〉2Gj‖L2(Sj,k)

)
.

For j = Nλ, it holds that

‖uj‖LqL2(Sj,k) . λδ(q)θ
1
2−

3
q

j

(
‖uj‖L∞L2(Sj,k) + ‖Fj +Gj‖L1L2(Sj,k)

)
.

The gain of the factor θ
1
2−

3
q

j reflects the fact that, for q > 6, there is an improvement in
the squarefunction estimates if the solution is localized to a small conic set in frequency.

The terms Gj arise naturally in both the linearization step of Lemma 4.4 and the
paradifferential smoothing (6.2). They reflect the fact that the singularities of d2ajj(x)
are localized to x2 = 0. The weighted L2 bound on uj is a characteristic energy estimate.

If θj ≈ 1, then the weighted L2 bound on Gj dominates the L1
x2
L2

x1,x3
norm of Gj ,

and exchanging x1 and x2 we could treat Gj and Fj the same. In this case the bound
on uj would be dominated by the L∞x2

L2
x1,x3

norm. For small θj , however, we cannot use
x2 as our “time” variable, and we are forced to work with the weighted L2 norms. These
weighted norms can be thought of as an energy norm along the bicharacteristic flow at
angle θj . Precisely, if one replaced x2 = θj(x1 − c) in the weight, then the weighted
L2 norms of uj and Gj would behave like the L∞L2 and L1L2 norms respectively. The
crossing point c differs, however, for different bicharacteristics.

The proof of Theorem 3.1 is contained in sections 4 and 5. In section 6 we establish the
appropriate bounds on the norms occuring on the right side if, as above, uj = βj(D′)uλ,
while Fj and Gj are defined in (6.1)-(6.2) below.

To state the bounds required, let cj,k denote the term occuring inside parentheses on
the right hand side of Theorem 3.1. In section 6, we show that, if D1uλ − Pλuλ = Fλ,
then we have a uniform summability condition

(3.1)
∑

j

c2j,k(j) . ‖uλ‖2
L∞L2(S) + ‖Fλ‖2

L2(S) ,

where k(j) denotes any sequence of values for k such that the slabs Sj,k(j) are nested, in
that for j > 0 we have Sj+1,k(j+1) ⊂ Sj,k(j) (with the analogous condition for j < 0.)

In the remainder of this section we show how Theorem 2.2 follows from Theorem 3.1
together with the bound (3.1).

We first remark that, if q is a fixed index with q 6= 8, the bounds of Theorem 3.1 hold
(with constant depending on q) under the weaker assumption that the cj,k are uniformly
bounded by the right side of (3.1). To see this, we sum over the 2jε−1 slabs and write

‖uj‖LqL2(S) ≤
( 2jε−1∑

k=1

‖uj‖q
LqL2(Sj,k)

) 1
q

. λδ(q)θ
1
2−

4
q

j ‖cj,k‖`∞j `∞k

. λδ(q)θ
1
2−

4
q

j

(
‖uλ‖L∞L2(S) + ‖Fλ‖L2(S)

)
.
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The values of θj = 2−|j| vary dyadically from λ−
1
3 to 1. For q > 8 we can sum over j to

obtain
‖uλ‖LqL2(S) . λδ(q)

(
‖uλ‖L∞L2(S) + ‖Fλ‖L2(S)

)
,

and for 6 ≤ q < 8 the sum yields

‖uλ‖LqL2(S) . λδ(q)− 1
3 ( 1

2−
4
q )
(
‖uλ‖L∞L2(S) + ‖Fλ‖L2(S)

)
.

The above exponent of λ equals γ(q), yielding the desired bound. The geometric sum,
however, increases as q → 8, and yields a logarithmic loss in λ at q = 8.

To obtain the bound at q = 8, and hence uniform bounds over q in Theorem 3.1, we
use the following worst-case branching argument. We consider terms with j > 0 here,
the negative terms being controlled by the same argument.

Let S1,k(1) denote the slab at scale ε 2−1 that maximizes ‖uλ‖L8L2(S1,k) . Since the
decomposition of uλ into uj is a Littlewood-Paley decomposition in the ξ2 variable, we
have

‖uλ‖2
L8L2(S1,k(1))

.
∥∥∥( Nλ∑

j=1

|uj |2
) 1

2
∥∥∥2

L8L2(S1,k(1))
.

By the Minkowski inequality,∥∥∥( Nλ∑
j=1

|uj |2
) 1

2
∥∥∥2

L8L2(S1,k(1))
≤ ‖u1‖2

L8L2(S1,k(1))
+
( ∑

S2,k⊂S1,k(1)

∥∥∥( Nλ∑
j=2

|uj |2
) 1

2
∥∥∥8

L8L2(S2,k)

) 2
8

≤ ‖u1‖2
L8L2(S1,k(1))

+ 2
2
8

∥∥∥( Nλ∑
j=2

|uj |2
) 1

2
∥∥∥2

L8L2(S2,k(2))

where k(2) is chosen to maximize
∥∥(∑∞

j=2 |uj |2
) 1

2 ‖L8(S2,k) among the two slabs S2,k

contained in S1,k(1). Repeating this procedure yields a nested sequence such that

ε
1
4 ‖uλ‖2

L8L2(S) ≤ ‖u1‖2
L8L2(S1,k(1))

+ 2
2
8 ‖u2‖2

L8L2(S2,k(2))
+ 2

4
8 ‖u3‖2

L8L2(S3,k(3))
+ · · ·

. λ2δ(8)
(
c21,k(1) + c22,k(2) + c23,k(3) + · · ·

)
where the last holds by Theorem 3.1 since θ

1
2−

3
8

j = 2−
j
8 . �

4. The Wave Packet Transform

The purpose of this section and the next is to establish Theorem 3.1. We assume for
these two sections that we have fixed λ and θj , and consider j > 0 so that ξ2 > 0 (except
for the term j = Nλ, where |ξ2| ≤ λ

2
3 .)

We will rescale space by θj . Thus, we work with the function

u(x) = uj(θjx) ,

which for j 6= Nλ is supported in the set

ξ2 ∈
[
1
4θjµ, 2θjµ

]
, ξ3 ∈

[
1
4µ, 4µ

]
,

where
µ = θjλ
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is now the frequency scale for u(x). For j = Nλ, we have |ξ2| ≤ µ
1
2 , and θNλ

= µ−
1
2 .

Let q(x, ξ′) denote the rescaled symbol

q(x, ξ′) = θjpj(θjx, θ
−1
j ξ′) ,

which is truncated to x′-frequencies less than cµ
1
2 . For |ξ′| ≈ µ, the symbol q satisfies

the estimates

(4.1)
∣∣∂β

x∂
α
ξ′q(x, ξ

′)
∣∣ . {µ1−|α| , |β| = 0 ,

c0
(
1 + µ

1
2 (|β|−1)θj 〈µ

1
2x2〉−N

)
µ1−|α| , |β| ≥ 1 .

This follows from (6.32).

In the remainder of this section and the next, we will drop the index j. The quantities
θ and µ are the two relevant parameters for our purposes. After rescaling the estimates
of Theorem 3.1, and translating Sj,k in x1 to x1 = 0, we are reduced to establishing the
following. Here, S denotes the (x1, x

′) slab [0, ε]× R2.

Theorem 4.1. Suppose that û(ξ) is supported in the set

ξ2 ∈
[
1
4θµ, 2θµ

]
, ξ3 ∈

[
1
4µ, 4µ

]
,

respectively |ξ2| ≤ µ
1
2 in case θ = µ−

1
2 . Suppose that u satisfies

D1u− q(x,D′)u = F +G

on the slab S, where q satisfies (4.1), and is truncated to x′-frequencies less than cµ
1
2 .

Then the following bounds hold, uniformly over θ and µ, and 6 ≤ q ≤ ∞,

‖u‖LqL2(S) . µδ(q)θ
1
2−

3
q

(
‖u‖L∞L2(S) + ‖F‖L1L2(S)

+ µ
1
4 θ

1
2 ‖〈µ 1

2x2〉−1u‖L2(S) + µ−
1
4 θ
− 1

2
j ‖〈µ 1

2x2〉2G‖L2(S)

)
,

and for θ = µ−
1
2

‖u‖LqL2(S) . µδ(q)θ
1
2−

3
q

(
‖u‖L∞L2(S) + ‖F +G‖L1L2(S)

)
.

We introduce the wave-packet transform which will be used to establish Theorem 4.1.
This transform is essentially the Cordoba-Fefferman wave packet transform, which was
used by Tataru in [18] (and its precedents) to establish Strichartz estimates for low regu-
larity metrics. The main difference is that in our applications we use a Schwartz function
with compactly supported Fourier transform, instead of the more standard Gaussian
function, as the fundamental wave packet. Our transform will act on the x′ = (x2, x3)
variables.

We use the notion of previous sections: x = (x1, x2, x3) = (x1, x
′), where x3 denotes

the variable t.

Fix a real, radial Schwartz function g(z′) ∈ S(R2), with ‖g‖L2(R2) = (2π)−1, and
assume that its Fourier transform ĝ(ζ ′) is supported in the ball {|ζ ′| ≤ c} . For µ ≥ 1, we
define Tµ : S′(R2) → C∞(R4) by the rule(

Tµf
)
(x′, ξ′) = µ

1
2

∫
e−i〈ξ′,y′−x′〉 g

(
µ

1
2 (y′ − x′)

)
f(y′) dy′ .
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A simple calculation shows that

f(y′) = µ
1
2

∫
ei〈ξ′,y′−x′〉 g

(
µ

1
2 (y′ − x′)

) (
Tµf

)
(x′, ξ′) dx′ dξ′ ,

so that T ∗µTµ = I . In particular,

(4.2) ‖Tµf‖L2(R4) = ‖f‖L2(R2) .

It will be useful to note that this holds in a more general setting.

Lemma 4.2. Suppose that gx′,ξ′(y′) is a family of Schwartz functions on R2, depending
on the parameters x′ and ξ′, with uniform bounds over x′ and ξ′ on each Schwartz norm
of g. Then the operator(

Tµf
)
(x′, ξ′) = µ

1
2

∫
e−i〈ξ′,y′−x′〉 gx′,ξ′

(
µ

1
2 (y′ − x′)

)
f(y′) dy′

satisfies the bound
‖Tµf‖L2(R4) . ‖f‖L2(R2) .

Proof. Tµ is bounded if and only if T ∗µ is bounded. Since ‖T ∗µF‖2
2 ≤ ‖TµT

∗
µF‖2‖F‖2, it

suffices to see that TµT
∗
µ is bounded on L2(dy′dξ′).

The operator TµT
∗
µ is an integral operator with kernel

K(y′, η′;x′, ξ′) = µ ei〈η′,y′〉−i〈ξ′,x′〉
∫
ei〈ξ′−η′,z′〉gy′,η′

(
µ

1
2 (z′ − y′)

)
gx′,ξ′

(
µ

1
2 (z′ − x′)

)
dz′ .

A simple integration by parts argument shows that∣∣K(y′, η′;x′, ξ′)
∣∣ . ( 1 + µ−

1
2 |η′ − ξ′|+ µ

1
2 |y′ − x′|

)−N
,

with constants depending only on uniform bounds for a finite collection of seminorms
of gx′,ξ′ depending on N . The L2(R4) boundedness of TµT

∗
µ then follows by Schur’s

Lemma. �

A corollary of this lemma is that, for N positive or negative,

(4.3) ‖〈µ 1
2x2〉NTµf‖L2(R4) . ‖〈µ 1

2x2〉Nf‖L2(R2) ,

by considering gx′(y) = 〈µ 1
2x2〉N 〈µ

1
2x2 − y2〉−Ng(y′) .

Lemma 4.3. Let q(x, ξ′) satisfy the estimates (4.1). Suppose that |ξ′| ≈ µ . Then, if
q(y,D′

y)∗ acts on the y′ variable, and y1 = x1, we can write(
q(y,D′

y)∗ − idξ′q(x, ξ′) · dx′ + idx′q(x, ξ′) · dξ′

)[
ei〈ξ′,y′−x′〉 g

(
µ

1
2 (y′ − x′)

)]
= ei〈ξ′,y′−x′〉 gx,ξ′

(
µ

1
2 (y′ − x′)

)
where gx,ξ′( · ) denotes a family of Schwartz functions on R2 depending on the parameters
x and ξ′, each of which has Fourier transform supported in the ball of radius 2c. If ‖ · ‖
denotes any of the Schwartz seminorms, we have

‖gx,ξ′‖ . 1 + c0 µ
1
2 θ〈µ 1

2x2〉−3 ,

where c0 is the small constant of (2.3).
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Proof. Letting F denote the Fourier transform with respect to y′, we write

F ◦
(
q(y,D′

y)∗ − idξ′q(x, ξ′) · dx′ + idx′q(x, ξ′) · dξ′

)[
ei〈ξ′,y′−x′〉 g

(
µ

1
2 (y′ − x′)

) ]
(η′)

= e−i〈η′,x′〉 µ−1 ĝx,ξ′
(
µ−

1
2 (η′ − ξ′)

)
,

where ĝx,ξ′(η′) is equal to∫
e−i〈η′,y′〉

[
q(x+ µ−

1
2 y′, ξ′ + µ

1
2 η′)− q(x, ξ′)− dx′,ξ′q(x, ξ′) ·

(
µ−

1
2 y′, µ

1
2 η′
) ]
g(y′) dy′

=
∫ 1

0

(1− σ)
[∫

e−i〈η′,y′〉∂ 2
σ

(
q
(
x+ σµ−

1
2 y′, ξ′ + σµ

1
2 η′
))
g(y′) dy′

]
dσ .

The spectral restriction on q and g imply that this vanishes for |η′| ≥ 2c . Consequently,
it suffices to establish C∞ bounds in η′ for the term in brackets, uniformly over σ ∈ [0, 1]
and |η′| ≤ 2c . Since the effect of differentiating the integrand with respect to η′ is
innocuous, as the rapid decrease in g(y′) counters any polynomial in y′, we content
ourselves with establishing uniform pointwise bounds on the term in brackets. Note that
|ξ′ + σµ

1
2 η′| ≈ µ .

The effect of ∂2
σ is to bring out factors of µ±

1
2 , and to differentiate q twice. If q is

differentiated at most once in x′, then the bounds

|∂x′∂ξ′q(x, ξ′)| . 1 , |∂2
ξ′q(x, ξ

′)| . µ−1 , for |ξ′| ≈ µ ,

yield bounds of size 1 on the term. If q is differentiated twice in x′, then by (4.1) we have
the bounds, for |ξ′| ≈ µ ,

µ−1|∂2
x′q(x+ σµ−

1
2 y′, ξ′)| . c0 + c0 µ

1
2 θ〈µ 1

2x2 + σy2〉−3

. 1 + c0 µ
1
2 θ〈µ 1

2x2〉−3〈y2〉3 .

The rapid decrease of g(y′) absorbs the term 〈y2〉3, leading to the desired bounds. �

We now take the wave packet transform of the solution u(x) with respect to the x′

variables, and introduce the notation ũ(x, ξ′) = (Tµu)(x, ξ′) . The functions F̃ (x, ξ′) and
G̃(x, ξ′) in the next lemma, though, include terms in addition to the transforms of F and
G of Theorem 4.1. Let S̃ denote the (x1, x

′, ξ′) slab [0, ε]× R4 = S × R2
ξ′ .

Lemma 4.4. Under the above conditions, we may write(
d1 − dξ′q(x, ξ′) · dx′ + dx′q(x, ξ′) · dξ′

)
ũ(x, ξ′) = F̃ (x, ξ′) + G̃(x, ξ′) ,

where

(4.4) ‖F̃‖L1L2(S̃) + µ−
1
4 θ−

1
2 ‖〈µ 1

2x2〉2G̃‖L2(S̃)

. ‖u‖L∞L2(S) + ‖F‖L1L2(S) + µ
1
4 θ

1
2 ‖〈µ 1

2x2〉−1u‖L2(S) + µ−
1
4 θ−

1
2 ‖〈µ 1

2x2〉2G‖L2(S) .

Furthermore, F̃ and G̃ are supported in a set where ξ2 ≈ θµ , ξ3 ≈ µ .

In case θ = µ−
1
2 , then

(4.5) ‖F̃ + G̃‖L1L2(S̃) . ‖u‖L∞L2(S) + ‖F +G‖L1L2(S) ,

and F̃ + G̃ is supported where |ξ2| . µ
1
2 and ξ3 ≈ µ.
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Proof. Applying Tµ to the equation D1u = F +G+ q(x,D′)∗u yields

d1ũ(x, ξ′) = i
(
TµF

)
(x, ξ′) + i

(
TµG

)
(x, ξ′)

+ i µ
1
2

∫
q(x1, y′, D′

y)∗
[
ei〈ξ′,y′−x′〉 g

(
µ

1
2 (y′ − x′)

) ]
u(x1, y

′) dy′ .

The terms TµF and TµG satisfy the bounds required of F̃ and G̃ respectively, the latter
by the estimate (4.3) in the case of (4.4). By Lemma 4.3, we can write the last term as(

dξ′q(x, ξ′) · dx′ − dx′q(x, ξ′) · dξ′

)
ũ(x, ξ′)

+ µ
1
2

∫
e−i〈ξ′,y′−x′〉 gx,ξ′

(
µ

1
2 (y′ − x′)

)
u(x1, y

′) dy′ .

For x2 such that µ
1
2 θ〈µ 1

2x2〉−3 ≤ 1, the latter term is absorbed into F̃ by Lemmas 4.2
and 4.3. For x2 such that µ

1
2 θ〈µ 1

2x2〉−3 ≥ 1, the term can be absorbed into G̃, by (4.3)
and Lemma 4.3. Here we use the simple fact that (4.3) holds for operators of the type in
Lemma 4.2. Note that if θ = µ−

1
2 the entire term can be absorbed into F̃ .

The support condition on F̃ and G̃ follows from the support condition on û, and the
fact that gx,ξ′ has Fourier transform supported in the ball of radius 2c. Alternatively, we
may multiply both sides of the equation defining F̃ + G̃ by a cutoff supported in the set
ξ3 ≈ µ, ξ2 ≈ θµ (respectively |ξ2| . µ

1
2 ), which equals 1 on the support of ũ. �

Let Θs,r denote the canonical transform on R4
x′,ξ′ = T ∗(R2

x′) generated by the Hamil-
tonian flow of q. Thus, Θs,r(x′, ξ′) = γ(s), where γ is the integral curve of the vector
field

d1 − dξ′q(x, ξ′) · dx′ + dx′q(x, ξ′) · dξ′

with γ(r) = (x′, ξ′). Note that Θs,r is symplectic, thus preserves the measure dx′ dξ′,
hence induces a unitary mapping on L2(R4). Furthermore, Θs,r maps a set of the form
ξ2 ≈ θξ3 to a set of similar form, provided |s − r| ≤ 1. This follows since |dx′q(x, ξ′)| ≤
c θ |ξ′| for c a small constant.

We can now write
(4.6)

ũ(x, ξ′) = ũ(0,Θ0,x1(x
′, ξ′)) +

∫ x1

0

F̃ (s,Θs,x1(x
′, ξ′)) ds+

∫ x1

0

G̃(s,Θs,x1(x
′, ξ′)) ds .

By the preceding comments, for each s the integrands are supported in the flowout under
Θs,0 of the set ξ3 ≈ µ, ξ2 ≈ θµ (respectively |ξ2| . µ

1
2 ).

Writing u = T ∗µ ũ shows that u(x) can be written as a superposition of functions, each
of which is the restriction to x1 > s of the image under T ∗µ of a function invariant under
the Hamiltonian flow of q. However, in view of the bounds (4.4), the term G̃ has large
L1L2 norm if θ is small. As a result, one cannot directly apply (4.6) to reduce matters
to considering estimates for such flow-invariant functions. Nevertheless, we can use an
argument from Koch-Tataru [7] together with (4.4) to see that we may indeed reduce
consideration to the case that ũ is invariant under the flow of q. Precisely, we show here
that Theorem 4.1 is a consequence of the following theorem, which will be proven in the
next section.
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Theorem 4.5. Suppose that f ∈ L2(R4) is supported in a set of the form ξ3 ≈ µ ,

ξ2 ≈ θµ , or a set of the form ξ3 ≈ µ , |ξ2| . µ
1
2 in case θ = µ−

1
2 .

Then, if u = T ∗µ
[
f
(
Θ0,x1(x

′, ξ′)
)]
, we have for q ≥ 6

‖u‖LqL2(S) . µδ(q)θ
1
2−

3
q ‖f‖L2(R4) .

In the remainder of this section, we demonstrate the reduction of Theorem 4.1 to
Theorem 4.5. In the case of θ = µ−

1
2 , it is a simple consequence of (4.5) and (4.6).

For general θ this reduction requires the introduction of the space V 2
q of functions on

S̃ with bounded 2-variation along the Hamiltonian flow of q. Recall that Θr,s preserves
the measure dx′ dξ′. Then, following Koch-Tataru [7] we define

‖ũ‖2
V 2

q
= ‖ũ(0, · )‖2

L2(R4) + sup
P

∑
j≥1

‖ũ(sj , · )− ũ(sj−1,Θsj−1,sj
( · ))‖2

L2(R4) ,

where P denotes the family of finite partitions {0 = s0 < s1 < . . . < sm = ε} of [0, ε].

By Lemma 6.4 of [7], if ‖ũ‖V 2
q
<∞, we may decompose

ũ =
∞∑

k=1

ck ũk , with
∞∑

k=1

|ck| ≤ ‖ũ‖V 2
q
,

where each function ũk is an atom, in the sense that for some partition {sj} in P

ũk(x, ξ′) =
m∑

j=1

1[sj−1,sj)(x1)fj(Θ0,x1(x
′, ξ′)) ,

where, for each q > 2, it holds that( m∑
j=1

‖fj‖q
L2(R4)

) 1
q ≤ Cq .

Note that one may bound Cq ≤ C6 for q ≥ 6, so we may take Cq uniformly bounded,
since we work with q ≥ 6.

We also note that each fj arising in the atomic decomposition of ũ will be supported
in the region ξ3 ≈ µ , ξ2 ≈ θµ . This follows from the inductive construction of fj in [7],
together with the comments surrounding (4.6).

Consider uk = T ∗µ ũk . Then, assuming Theorem 4.5, for q ≥ 6 we may bound

‖uk‖LqL2(S) ≤
( m∑

j=1

‖T ∗µ
[
fj

(
Θ0,x1( · )

)]
‖q

LqL2(S)

) 1
q

.
( m∑

j=1

‖fj‖q
L2(R4)

) 1
q

. 1 .

Summing over k yields ‖u‖LqL2(S) . ‖ũ‖V 2
q
. It thus remains to demonstrate that

(4.7) ‖ũ‖V 2
q

. ‖ũ(0, · )‖L2(R4) + ‖F̃‖L1L2(S̃) + µ−
1
4 θ−

1
2 ‖〈µ 1

2x2〉2G̃‖L2(S̃) ,

since by Lemma 4.4 and boundedness of Tµ the right hand side here is dominated by the
right hand side in Theorem 4.1.
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We use the decomposition (4.6), and note that the V 2
q norm of the first two terms on

the right hand side of (4.6) are easily bounded by the first two terms on the right hand
side of (4.7), the latter since∑

j

∥∥∥∫ sj

0

F̃ (s,Θs,sj (x
′, ξ′)) ds−

∫ sj−1

0

F̃ (s,Θs,sj (x
′, ξ′)) ds

∥∥∥2

L2(R4)

≤
∑

j

(∫ sj

sj−1

‖F̃ (s,Θs,sj (x
′, ξ′))‖L2(R4) ds

)2

=
∑

j

(∫ sj

sj−1

‖F̃ (s, ·)‖L2(R4) ds

)2

. ‖F̃‖2
L1L2(S̃)

,

using the invariance of dx′dξ′ under Θ in the second equality.

We thus reduce to the case that F̃ = 0 and ũ(0, x′, ξ′) = 0, and hence by (4.6) that

ũ(x, ξ′) =
∫ x1

0

G̃(s,Θs,x1(x
′, ξ′)) ds .

Note that, by the group property of Θ, we have

(4.8) ‖ũ(sj , · )− ũ(sj−1,Θsj−1,sj
( · ))‖2

L2(R4) =
∥∥∥ ∫ sj

sj−1

G̃(s,Θs,sj
( · )) ds

∥∥∥2

L2(R4)
.

Given a partition {0 = s0 < s1 < . . . < sm = ε}, we first consider the sum of the quantity
(4.8) over those indices j for which |sj − sj−1| ≤ µ−

1
2 θ−1. By the Schwarz inequality we

may bound the sum by∑
j

θ−1µ−
1
2 ‖G̃(s,Θs,sj

(x′, ξ′))‖2
L2([sj−1,sj ]×R4) ≤ µ−

1
2 θ−1‖G̃‖2

L2(S̃)
.

Next, consider an index j for which |sj − sj−1| > µ−
1
2 θ−1 . We split the interval

[sj , sj−1] into a union of intervals Ik for which 1
2 |Ik| ≤ µ−

1
2 θ−1 ≤ |Ik| . We claim that we

may bound

(4.9)
∥∥∥ ∫ sj

sj−1

G̃(s,Θs,sj
( · )) ds

∥∥∥2

L2(R4)
.
∑

k

∥∥∥ 〈µ 1
2x2〉2

∫
Ik

G̃(s,Θs,sk
( · )) ds

∥∥∥2

L2(R4)
,

where sk denotes the right endpoint of Ik. Given (4.9), we may apply the Schwarz
inequality as before (together with the fact that the weight 〈µ 1

2x2〉2 is essentially preserved
by Θs,sk

, since dx2
dx1

≈ θ on the domain of integration and |s − sk| ≤ µ−
1
2 θ−1) to bound

the sum over k and then j by the right hand side of (4.7).

To prove (4.9), we write∫ sj

sj−1

G̃(s,Θs,sj (x
′, ξ′)) ds =

∑
k

ṽk(Θsk,sj (x
′, ξ′)) ,

with

ṽk(x′, ξ′) =
∫

Ik

G̃(s,Θs,sk
(x′, ξ′)) ds .
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Then (4.9) will follow by showing that∣∣∣ ∫ ṽk(Θsk,sj (x
′, ξ′)) ṽk′(Θsk′ ,sj (x′, ξ′)) dx

′ dξ′
∣∣∣

=
∣∣∣ ∫ ṽk(Θsk,sk′ (x

′, ξ′)) ṽk′(x′, ξ′) dx′ dξ′
∣∣∣

. |k − k′|−2 ‖〈µ 1
2x2〉2ṽk‖L2(R4)‖〈µ

1
2x2〉2ṽk′‖L2(R4) .

This, in turn, is a simple consequence of the fact that dx2
dx1

≈ θ on the domain of integra-
tion, and hence, letting x2 denote the x2-coordinate function,

|x2(Θsk,sk′ (x
′, ξ′))− x2| ≈ θ |sk − sk′ | ≈ µ−

1
2 |k − k′| .

Consequently,

〈µ 1
2x2(Θsk,sk′ (x

′, ξ′))〉−2〈µ 1
2x2〉−2 . |k − k′|−2 . �

5. Homogeneous Estimates

In this section we prove Theorem 4.5. For notational convenience, the variables z =
(z2, z3) and ζ = (ζ2, ζ3) will be used as dummy variables in the role of x′ and ξ′, as will
w and η. We also use real variables r, s, t as dummy variables in the role of x1 and y1.
For f ∈ L2(dx′ dξ′), define Wf by the rule

Wf(x) = T ∗µ
(
f ◦Θ0,x1

)
(x′) .

Let βθ(ξ′) be a cutoff to the region ξ3 ≈ µ, ξ2 ≈ θµ, (respectively |ξ2| ≤ µ
1
2 in case

θ = µ−
1
2 ). Then Theorem 4.5 is equivalent to establishing the bound

‖βθ(D′)Wf‖LqL2(S) . µδ(q)θ
1
2−

3
q ‖f‖L2(R4) ,

which is equivalent to the bound

(5.1) ‖βθ(D′)WW ∗βθ(D′)F‖LqL2(S) . µ2δ(q)θ1−
6
q ‖F‖Lq′L2(S) .

The operator WW ∗ takes the form(
WW ∗F

)
(x) =

∫ ε

0

T ∗µ
[(
TµF

)
(s, · ) ◦Θs,x1

]
(x′) ds .

If applied to functions truncated by βθ(D′), then WW ∗ may be replaced by the integral
kernel

K(r, x′; s, y′) = µ

∫
ei〈ζ,x′−z〉−i〈ζs,r,y′−zs,r〉g

(
µ

1
2 (x′ − z)

)
g
(
µ

1
2 (y′ − zs,r)

)
βθ(ζ) dz dζ ,

where we use the shorthand notation

(5.2) (zs,r, ζs,r) = Θs,r(z, ζ) .

The factors βθ(D′) in (5.1) can now be ignored (since they are bounded in the desired
norms), and we are reduced to establishing mapping properties for K. We observe that
(5.1), and hence Theorem 4.5, can be reduced to establishing the following pair of bounds:

(5.3) sup
r,s∈[0,ε]

∥∥∥∫ K(r, x′; s, y′) f(y′) dy′
∥∥∥

L2(R2)
≤ ‖f‖L2(R2) ,
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and

(5.4)
∥∥∥∫ K(r, x′; s, y′) f(y′) dy

∥∥∥
L∞x2

L2
x3

(R2)
. µθ

(
1 + µθ2 |r − s|

)− 1
2 ‖f‖L1

y2
L2

y3
(R2) .

To see this, note that interpolation yields the bound∥∥∥∫ K(r, x′; s, y′) f(y′) dy
∥∥∥

Lq
x2L2

x3
(R2)

.
(
µθ
)1− 2

q
(
1 + µθ2 |r − s|

) 1
q−

1
2 ‖f‖

Lq′
y2L2

y3
(R2)

.

By the convolution property L
q
2 ∗ Lq′ ⊂ Lq, and the bound(

µθ
)1− 2

q
∥∥( 1 + µθ2 |s|

) 1
q−

1
2
∥∥

L
q
2 (ds)

≈ µ1− 4
q θ1−

6
q = µ2δ(q)θ1−

6
q ,

we obtain the following bound equivalent to (5.1)∥∥∥∫ K(r, x′; s, y′)F (s, y′) ds dy′
∥∥∥

Lq
rLq

x2L2
x3

(S)
. µ2δ(q)θ1−

6
q ‖F‖

Lq′
s Lq′

y2L2
y3

(S)
.

The bound (5.3) follows immediately from the L2 boundedness of Tµ, and the fact that
Θs,r preserves the measure dz dζ , so it remains to establish (5.4). We start by estimating
the derivatives of the Hamiltonian flow with respect to the initial parameters z and ζ.
We only need bounds for curves lying entirely in the region

ζ3 ∈ [ 14µ, 2µ] and ζ2 ∈ [ 14θµ, 2θµ]

(respectively |ζ2| ≤ µ
1
2 in case θ = µ−

1
2 ). In order to avoid extraneous powers of µ it

is convenient to exploit homogeneity to reduce to the case |ζ| ≈ 1. For the purposes of
the rest of this section, we thus assume that the symbol q (and hence the flow Θs,r) is
homogeneous of degree one in ζ, and agrees with our previous definition of q on the above
region (which had smoothly set q = |ζ| outside the region |ζ3| ≈ µ , |ζ2| . 1

2µ.)

Theorem 5.1. Let zs,r and ζs,r be defined as functions of (z, ζ) by (5.2). Let dζ and dz

respectively denote the ζ-gradient and z-gradient operators. Then, for ζ3 = 1 and ζ2 ≈ θ
(respectively |ζ2| ≤ µ−

1
2 in case θ = µ−

1
2 ) the following bounds hold.∣∣dzzs,r − I

∣∣ . |s− r| ,
∣∣dζzs,r

∣∣ . |s− r| ,
(5.5) ∣∣dζζs,r − I

∣∣ . |s− r| ,
∣∣dzζs,r

∣∣ . 1 .

Also, ∣∣d2
zzs,r

∣∣ . 〈µ 1
2 |s− r| 〉 ,

∣∣d2
zζs,r

∣∣ . µ
1
2

(5.6) ∣∣dzdζzs,r

∣∣ . |s− r| 〈µ 1
2 |s− r| 〉 ,

∣∣dzdζζs,r

∣∣ . 〈µ 1
2 |s− r| 〉 .

Furthermore, for k ≥ 2,

(5.7)
∣∣dk

ζzs,r| +
∣∣dk

ζζs,r| . |s− r| 〈µ 1
2 |s− r| 〉k−1 .

Proof. We start with the relation

zs,r = z +
∫ s

r

(dζq)(t, zt,r, ζt,r) dt , ζs,r = ζ −
∫ s

r

(dzq)(t, zt,r, ζt,r) dt .
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Differentiating with respect to z and ζ yields

(5.8)

dzs,r

dζs,r

 =

dz
dζ

+
∫ s

r

M(t, zt,r, ζt,r) ·

dzt,r

dζt,r

 dt ,

where

M =

 (
dzdζq

) (
dζdζq

)
−
(
dzdzq

)
−
(
dζdzq

)


The key estimate is that, for i+ j = 2,∫ s

r

∣∣(di
zd

j
ζq)(t, zt,r, ζt,r)

∣∣ dt .

{
|s− r| , i ≤ 1 ,

1 , i = 2 .

This follows by (4.1) (recall that z2 equals x2), and the fact that |(dtzt,r)2| ≈ θ in case
θ > µ−

1
2 . In the case θ = µ−

1
2 , estimate (4.1) shows that the integrand is in fact uniformly

bounded.

An application of the Gronwall lemma yields

|dzt,r| . 1 , |dζt,r| . 1 ,

and plugging this into (5.8) yields (5.5).

To control higher order derivatives we proceed by induction. For k ≥ 2, we writedk
ζzs,r

dk
ζζs,r

 =
∫ s

r

M(t, zt,r, ζt,r) ·

dk
ζzt,r

dk
ζζt,r

 dt+
∫ s

r

E1(t)

E2(t)

 dt

where E1(t) is a sum of terms of the form(
d i

zd
j+1
ζ q

)
(t, zt,r, ζt,r) ·

(
dk1

ζ zt,r

)
· · ·
(
dki

ζ zt,r

)(
d

ki+1
ζ ζt,r

)
· · ·
(
d

ki+j

ζ ζt,r
)

and E2 is similarly a sum of such terms, but with d i+1
z d j

ζ q. In both cases, kn < k for
each n, and k1 + · · · + ki+j = k . By induction we may thus assume that the estimates
(5.5) and (5.7) hold for all terms arising in E1 and E2.

The bound (4.1) implies, as above, that for |ζ| = 1

(5.9)
∫ s

r

|(di+1
z dj

ζq)(t, zt,r, ζt,r)| dt .

{
|s− r| , i = 0
µ

1
2 (i−1) , i ≥ 1

The induction hypothesis yields that∣∣(dk1
ζ zt,r

)
· · ·
(
dki

ζ zt,r

)(
d

ki+1
ζ ζt,r

)
· · ·
(
d

ki+j

ζ ζt,r
)∣∣ . |t− r|i 〈µ 1

2 |t− r| 〉k−i−j .

Together these yield ∫ s

r

|E2(t)| dt . |s− r| 〈µ 1
2 |s− r| 〉k−1 ,

and the same holds for E1. The estimate (5.7) follows by the Gronwall lemma.
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To establish the first line of (5.6), we write

(5.10)

d2
zzs,r

d2
zζs,r

 =
∫ s

r

M(t, zt,r, ζt,r) ·

d2
zzt,r

d2
zζt,r

 dt+
∫ s

r

E1(t)

E2(t)

 dt ,

where now ∫ s

r

|E1(t)| dt . 1 ,
∫ s

r

|E2(t)| dt . µ
1
2 .

A first application of Gronwall yields |d2
zzs,r| + |d2

zζs,r| . µ
1
2 , and plugging this into

(5.10) and using (5.9) yields the first line of (5.6). The second line follows by similar
considerations. �

Corollary 5.2. The following bounds hold for ζ3 = 1 and ζ2 ≈ θ,∣∣∣∣ dζzs,r −
∫ s

r

d2
ζq(t,Θt,r(z, ζ)) dt

∣∣∣∣ ≤ c |s− r|2 ,

where c can be made small by taking the constant c0 in condition (2.3) small.

Proof. Given c, choosing the constant c0 small yields the bounds

|dζdz,ζq| ≤ c ,

∫ s

r

|d2
zq(t,Θt,r(z, ζ))| dt ≤ c .

Together with the bounds (5.5), plugging this into (5.8) yields successively the bounds

|dζζs,r − I| ≤ c |s− r| ,
∣∣∣∣ dζzs,r −

∫ s

r

d2
ζq(t,Θt,r(z, ζ)) dt

∣∣∣∣ ≤ c |s− r|2 . �

Lemma 5.3. Suppose that |ζ| ≈ µ , and θ̄ is a number with θ̄ ≥ µ−
1
2 and µθ̄2|s− r| ≤ 1 .

Then, for all α and j,

(5.11)
∣∣(ζ · dζ

)j(
µθ̄∂ζ

)α
µ

3
2 θ̄ dζzs,r

∣∣ . 1 ,

and for all α and j with j + |α| ≥ 1,

(5.12)
∣∣(ζ · dζ

)j(
µθ̄∂ζ

)α
µθ̄〈dζζs,r, y − zs,r〉

∣∣ . 〈µ 1
2 |y − zs,r| 〉 .

Proof. First consider (5.11). By homogeneity of zs,r and its derivatives, it suffices to
consider j = 0. We then have, by (5.5)–(5.7) and homogeneity,∣∣(µθ̄∂ζ

)α
µ

3
2 θ̄ dζzs,r

∣∣ . µ
1
2 θ̄|α|+1|s− r| 〈µ 1

2 |s− r| 〉|α| ≤ 〈µ 1
2 θ̄ |s− r| 〉|α|+1 . 1 .

Here we use that µθ̄2 ≥ 1, so that µ
1
2 θ̄|s − r| ≤ 1. For (5.12), note that if |α| = 0 and

j 6= 0 then the term vanishes by homogeneity, so we may assume |α| ≥ 1. By homogeneity
we may also restrict to the case j = 0. First consider the case where all derivatives fall
on ζs,r. The resulting term is bounded by

µθ̄|α|+1|s− r| 〈µ 1
2 |s− r| 〉|α| |y − zs,r| . 〈µ 1

2 θ̄ |s− r| 〉|α|〈µ 1
2 |y − zs,r| 〉 . 〈µ 1

2 |y − zs,r| 〉 .
If one or more derivatives falls on zs,r, the term is bounded by

µθ̄|α|+1|s− r| 〈µ 1
2 |s− r| 〉|α|−1 . µθ̄2|s− r| 〈µ 1

2 θ̄ |s− r| 〉|α|−1 . 1 .

�
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Recall that the kernel we are proving (5.4) for is

K(r, x′; s, y′) = µ

∫
ei〈ζ,x′−z〉−i〈ζs,r,y′−zs,r〉g

(
µ

1
2 (x′ − z)

)
g
(
µ

1
2 (y′ − zs,r)

)
βθ(ζ) dz dζ ,

where βθ(ζ) is a cutoff to ζ3 ≈ µ and ζ2 ≈ θµ, respectively |ζ2| . µ
1
2 in case θ = µ−

1
2 .

In what follows, for the case θ > µ−
1
2 we will need to consider finer angular decompo-

sitions in ζ, depending on |s− r|. We will assume, for the following theorem, that βθ̄(ζ)
is a smooth cutoff to a set of the form

ζ3 ≈ µ , ζ2 ≈ θµ ,
∣∣∣ ζ2
ζ3
− θ′

∣∣∣ . θ̄ ,

where θ′ ≈ θ, and where µ−
1
2 ≤ θ̄ ≤ θ. For θ = µ−

1
2 , we need consider only βθ̄ = βθ.

Theorem 5.4. Consider the kernel K with βθ(ζ) replaced by βθ̄(ζ), with βθ̄ as above.
Suppose that µθ̄2|s − r| ≤ 1. Fix a vector ξ′ in the support of βθ̄(ζ), and let (x′s,r, νs,r)
be the projection of Θs,r(x′, ξ′) onto the cosphere bundle. Thus, x′s,r = zs,r and νs,r =
|ζs,r|−1ζs,r if z = x′ and ζ = ξ′. Then

|K(r, x′; s, y′)| . µ2θ̄
(
1 + µθ̄ | y′ − x′s,r|+ µ | 〈νs,r, y

′ − x′s,r〉 |
)−N

.

Proof. We introduce the differential operators, where zs,r and ζs,r are as in (5.2),

L1 =
1− i

(
〈ζ, x′ − z〉 − 〈ζs,r, y

′ − zs,r〉
)
〈ζ, dζ〉

1 +
∣∣ 〈ζ, x′ − z〉 − 〈ζs,r, y′ − zs,r〉

∣∣2 ,

and

L2 =
1− iµθ̄

(
x′ − z − dζζs,r · (y′ − zs,r)

)
· dζ

1 + µ2θ̄2
∣∣x′ − z − dζζs,r · (y′ − zs,r)

∣∣2 .

Each of these preserves the phase function in K, and an integration by parts argument,
using the estimates (5.11) and (5.12), bounds |K(r, x′; s, y′)| by the following integral

µ

∫ (
1 + µθ̄

∣∣x′ − z − dζζs,r · (y′ − zs,r)
∣∣ )−N( 1 +

∣∣ 〈ζ, x′ − z〉 − 〈ζs,r, y
′ − zs,r〉

∣∣ )−N

×
(
1 + µ

1
2 |x′ − z|

)−N( 1 + µ
1
2 |y′ − zs,r|

)−N
dz dζ ,

where the integral is over the support of βθ̄(ζ), which has volume µ2θ̄ . We will show
below that

(5.13) µθ̄ | dζζs,r · (x′s,r − zs,r)− (x′ − z)|+ |〈ζs,r, x
′
s,r − zs,r〉 − 〈ζ, x′ − z〉|

. 1 + µ |x′ − z|2 .
This implies that the integrand is dominated by(

1 + µθ̄ |dζζs,r · (y′ − x′s,r)|+ |〈ζs,r, y
′ − x′s,r〉|

)−N( 1 + µ
1
2 |x′ − z|

)−N
.

By (5.5), the matrix dζζs,r is invertible. Also by (5.5), the angle of ζs,r to µνs,r is less
than θ̄ + |x′ − z|. Since µθ̄ ≥ µ

1
2 , and |ζs,r| ≈ µ, together these dominate the integrand

by (
1 + µθ̄ | y′ − x′s,r|+ µ |〈νs,r, y

′ − x′s,r〉|
)−N( 1 + µ

1
2 |x′ − z|

)−N
,

from which the theorem follows easily.
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We now establish (5.13). Consider the first term on the left. By homogeneity, we may
assume that 1 = |ζ| = |ξ′|, so that |ζ − ξ′| ≤ θ̄ . By (5.6) and Taylor’s theorem, we then
have

|x′s,r − zs,r − (dzzs,r)(x′ − z)− (dζzs,r)(ξ′ − ζ)|

. 〈µ 1
2 |s− r| 〉 |x′ − z|2 + |s− r| 〈µ 1

2 |s− r| 〉
(
θ̄2 + θ̄|x′ − z|

)
.

After multiplication by µθ̄, each term on the right is bounded by 1 + µ |x′ − z|2 . Also,

µθ̄ | (dζzs,r)(ζ − ξ′)| . µθ̄2 |s− r| ≤ 1 .

Since dζs,r ∧ dzs,r = dζ ∧ dz, we have

∂ζi
ζs,r · ∂zj

zs,r − ∂ζi
zs,r · ∂zj

ζs,r = δij ,

where · pairs the zs,r and ζs,r indices. By (5.5), we have

µθ̄
∣∣dζzs,r

∣∣ ∣∣dzζs,r

∣∣ |x′ − z| . µ
1
2 |x′ − z| .

Together, this yields

µθ̄ | dζζs,r · (x′s,r − zs,r)− (x′ − z)| . 1 + µ |x′ − z|2 ,

which concludes the bound for the first term.

To handle the second term, it suffices by homogeneity to show that, for |ζ| = |ξ′| = 1,

|〈ζs,r, x
′
s,r − zs,r〉 − 〈ζ, x′ − z〉| . |x′ − z|2 + θ̄2|s− r| .

We calculate

d

ds
〈ζs,r, x

′
s,r − zs,r〉 =

−
〈
(dzq)(s,Θs,r(z, ζ)), x′s,r − zs,r

〉
+
〈
ζs,r, (dζq)(s,Θs,r(x′, ξ′))− (dζq)(s,Θs,r(z, ζ))

〉
.

By homogeneity, the right hand side equals

(5.14) q(s,Θs,r(x′, ξ′))− q(s,Θs,r(z, ζ))−
(
Θs,r(x′, ζ)−Θs,r(z, ζ)

)
· (dz,ζq)(s,Θs,r(z, ζ))

plus an error which, since qζ is Lipschitz, is bounded by

(5.15) |Θs,r(x′, ξ′)−Θs,r(z, ζ)|2 . |x′ − z|2 + θ̄2 .

Let γσ(t) = σΘs,r(x′, ξ′) + (1− σ)Θs,r(z, ζ) . Then (5.14) equals∫ 1

0

∫ s

r

(1− σ)
(
Θs,r(x′, ξ′)−Θs,r(z, ζ)

)2(d2
z,ζq)(t, γσ(t)) dt dσ .

By (5.15), the integral of terms involving dzdζq and d2
ζq are bounded by

|s− r| |x′ − z|2 + |s− r| θ̄2 ≤ |x′ − z|2 + θ̄2|s− r| .

The integral of terms involving d2
zq are bounded by(

sup
r≤t≤s

|x′t,r − zt,r|2
)

sup
σ

∫ s

r

|(d2
zq)(t, γσ(t))| dt . |x′ − z|2 + θ̄2|s− r|2 ,

where we use (5.5), (4.1), and the fact that (γ̇σ)2 ≈ θ in the case θ > µ−
1
2 . �
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Proof of estimate (5.4). We establish (5.4) by showing that

(5.16) sup
x2,x3,y2

∫
|K(r, x′; s, y′)| dy3 . µθ

(
1 + µθ2|s− r|

)− 1
2 .

Transposing (s, y′) and (r, x′) in the formula for K leads to the same kernel if βθ(ζ) is
replaced by βθ(ζr,s(y′, ζ)), and the same proof will show that

sup
x2,y2,y3

∫
|K(r, x′; s, y′)| dx3 . µθ

(
1 + µθ2|s− r|

)− 1
2 ,

yielding (5.4) by Schur’s lemma.

Suppose first that µθ2|s− r| ≤ 1. Then (5.16) follows immediately from Theorem 5.4
with θ̄ = θ, since νs,r = |ζs,r|−1ζs,r is within a small angle of the ξ1 axis.

If µθ2|s− r| > 1, we let θ̄ = µ−
1
2 |s− r|− 1

2 , and decompose K into a sum of terms by
writing βθ(ζ) =

∑
j βj(ζ), with each βj(ζ) a cutoff to a sector of angle θ̄.

We fix ηj in the support of βj(ζ), with

(ηj)3 = µ , and |(ηi)2 − (ηj)2| ≈ µ θ̄ |i− j| .

We then have decomposed K =
∑

j Kj , where by Theorem (5.4)

|Kj(r, x′; s, y′)| . µ2θ̄
(
1 + µθ̄ | y′ − wj

s,r|+ µ |〈νj
s,r, y

′ − wj
s,r〉|

)−N
,

where (wj
s,r, ν

j
s,r) is the projection onto the cosphere bundle of Θs,r(x′, ηj). Since (νj

s,r)3 ≈
1, we have ∫

|Kj(r, x′; s, y′)| dy3 . µθ̄
(
1 + µθ̄ | y2 − (wj

s,r)2|
)−N

.

Since µθ̄ ≈ µθ (1 + µθ2|s− r| )− 1
2 , it suffices to show that

sup
x2,x3,y2

∑
j

(
1 + µθ̄ | y2 − (wj

s,r)2|
)−N

. 1 ,

which we do by recalling that µθ̄2|s− r| = 1, and showing that

|(wi
s,r)2 − (wj

s,r)2| ≈ θ̄ |s− r| |i− j| .

We finally show this by noting that, for ζ3 = 1 and |ζ2| ≤ 1
2 , we have d2

ζ2
q ≈ 1 . Corollary

5.2 thus yields dζ2(zs,r)2 ≈ s− r for such ζ. Consequently,

|zs,r(x′, ηi)− zs,r(x′, ηj)| ≈ µ−1 |s− r| | (ηi)2 − (ηj)2| ≈ θ̄ |s− r| |i− j| . �

6. Energy Flux Estimates

In this section we complete the proof of Theorem 2.2 by establishing the endpoint esti-
mates where q = 8. We do this by establishing the nested square-summability condition
(3.1). Recall that we are assuming

D1uλ − Pλuλ = Fλ ,

where 2Pλ = pλ(x,D′) + pλ(x,D′)∗, and we write

D1uj − Pjuj = Fj +Gj ,
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where uj = βj(D′)uλ, the operator Pj = pj(x,D′) has symbol truncated to x′- frequencies

less than λ
1
2 θ
− 1

2
j , and

Fj = βj(D′)Fλ + [βj(D′), Pj ]uλ + βj(D′)
(
Pλ − pλ(x,D′)

)
uλ ,(6.1)

Gj = βj(D′)
(
pλ(x,D′)− pj(x,D′)

)
uλ .(6.2)

Let

(6.3) cj,k = ‖uj‖L∞L2(Sj,k) + λ
1
4 θ

1
4
j ‖〈λ

1
2 θ
− 1

2
j x2〉−1uj‖L2(Sj,k)

+ ‖Fj‖L1L2(Sj,k) + λ−
1
4 θ
− 1

4
j ‖〈λ 1

2 θ
− 1

2
j x2〉2Gj‖L2(Sj,k) .

We need to show that

(6.4)
Nλ∑
j=1

c2j,k(j) . ‖uλ‖2
L∞L2(S) + ‖Fλ‖2

L2(S) ,

where k(j) denotes any sequence of values for k such that the slabs Sj,k(j) are nested, in
that for j ≥ 1 we have Sj+1,k(j+1) ⊂ Sj,k(j). The analogous bound for j < 0 will follow
by an identical proof.

6.1. Estimates on uj. We begin by establishing the square-summability estimates for
the first two terms on the right hand side of (6.3). By translation invariance we may
assume each Sj,k(j) contains x1 = 0. We then take Sj to be the slab [0, ε 2−j ]× R2, and
will show that∑

i

(
‖ui‖2

L∞L2(Si)
+ λ

1
2 θ

1
2
i ‖〈λ

1
2 θ
− 1

2
i x2〉−1ui‖2

L2(Si)

)
. ‖uλ‖2

L∞L2 + ‖Fλ‖2
L2 .

The same bounds will hold for x1 ∈ [−ε 2−j , 0].

Since Fλ ∈ L1
x1
L2

x′ , by Duhamel we can reduce matters to the homogeneous case
Fλ = 0. Assume this, and let f(x′) = uλ(0, x′). Let W denote the solution operator for
the Cauchy problem associated to Pλ, so that uλ = Wf , It then suffices to show that

(6.5) ‖βi(D′)Wβj(D′)f‖L∞L2(Si) + λ
1
4 θ

1
4
i ‖〈λ

1
2 θ
− 1

2
i x2〉−1βi(D′)Wβj(D′)f‖L2(Si)

. 2−
3
4 |i−j| ‖f‖L2 .

To prove (6.5), we will construct for each given j a function v which satisfies the following
conditions.

(6.6) v(0, x′) = βj(D′)f(x′) , βi(D)v = 0 if |i− j| ≥ 5 ,

‖v‖L∞L2(Sj) . ‖f‖L2(6.7)

λ
1
4 θ

1
4
j ‖〈λ

1
2 θ
− 1

2
j x2〉−1v‖L2(Sj) . ‖f‖L2 ,(6.8)

and such that

‖D1v − Pλv‖L1L2(Sj) . (λ
1
2 θ

3
2
j )−

1
2 ‖f‖L2 ,(6.9)

‖D1v − Pλv‖L1L2(Sj) . (λ
1
2 θ

3
2
j )−1 ‖〈λ 1

2 θ
− 1

2
j x2〉f‖L2 .(6.10)
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Let us show that these imply the estimate (6.5). Consider the first term on the left
hand side of (6.5). We will prove the stronger statement

(6.11) ‖βi(D′)W (r)βj(D′)f‖L2
x′

. 2−
3
4 |i−j| ‖f‖L2 , |r| ≤ ε max(2−i, 2−j) .

By self adjointness (the adjoint of W (r) is the wave map going the other way), we can
then assume that θj = 2−j ≥ θi = 2−i. This assumption now means we need to control
data at angle 2−j for time ε 2−j .

We write Wβj(D′)f = v−w. The desired estimate holds for the v term by (6.7), since
we may assume |i− j| ≤ 4 by (6.6) (and we may shrink ε by a factor of 16.)

To control w, we note that

w(0, x′) = 0 , D1w − Pλw = D1v − Pλv .

Energy estimates and (6.9) thus yield

(6.12) ‖w‖L∞L2(Sj) ≤ (λ
1
2 θ

3
2
j )−

1
2 ‖f‖L2 .

Since λ
1
2 ≥ 2

3
2 i, this yields the desired bound on u.

To estimate the second term in (6.5), we first consider the case θi ≤ θj . We again
write Wβj(D′)f = v − w, and note that the desired estimate on v follows by (6.8) and

(6.6). (The operator βi(D′) preserves the L2-weight 〈λ 1
2 θ
− 1

2
i x2〉−1 since λ

1
2 θ
− 1

2
i ≤ 2−iλ.)

The estimate on w for θi ≤ θj follows by (6.12),

λ
1
4 θ

1
4
i ‖w‖L2(Si) ≤ λ

1
4 θ

3
4
i ‖w‖L∞L2(Sj) . θ

− 3
4

j θ
3
4
i ‖f‖L2 .

Now consider the case θj ≤ θi. The above steps handle the case |i − j| ≤ 4, so we
assume i ≥ j + 5. We take adjoints to reduce matters to showing that, for j ≥ i+ 5,∥∥∥ ∫

|s|≤εθi

βj(D′)W (s)∗βi(D′)F (s, · ) ds
∥∥∥

L2
. λ−

1
4 θ
− 1

4
i 2−

3
4 |i−j|‖〈λ 1

2 θ
− 1

2
i x2〉F‖L2(Si) .

This bound, in turn, follows from showing that, for |r| ≤ ε 2−i and j ≥ i+ 5,

‖βj(D′)W ∗(r)βi(D′)f‖L2 . (λ
1
2 θ

3
2
i )−1‖〈λ 1

2 θ
− 1

2
i x2〉f‖L2 .

We may replace W ∗(r) by W (r), since W ∗ is the Cauchy map for data at x1 = r to
x1 = 0, and after exchanging i and j this bound is a consequence of (6.10).

6.2. The construction of v. We assume that θj is now fixed, and rescale spatial vari-
ables by θj . We thus need to construct v on the slab S = [0, ε] × R2. As before, let
µ = λθj , and let βj(D′) denote the rescaled localization operators, which will localize to
ξ2 ≈ θjµ , ξ3 ≈ µ. Let f denote the rescaled initial data βj(D′)f(θj · ).

In these rescaled variables it suffices to produce v satisfying

(6.13) v(0, x′) = f(x′) , βi(D)v = 0 if |i− j| ≥ 5 ,

‖v‖L∞L2(S) . ‖f‖L2(6.14)

µ
1
4 θ

1
2
j ‖〈µ

1
2x2〉−1v‖L2(S) . ‖f‖L2 ,(6.15)
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and such that

‖D1v −Qµv‖L2(S) . (µ
1
2 θj)−

1
2 ‖f‖L2 ,(6.16)

‖D1v −Qµv‖L1L2(S) . (µ
1
2 θj)−1 ‖〈µ 1

2x2〉f‖L2 .(6.17)

Here Qµ is the rescaled operator Pλ, which has symbol truncated to x′-frequencies less
than cµ.

We will construct v using the modified FBI/Cordoba-Fefferman transform Tµ intro-
duced in §4. The key idea is that this transform conjugates the operator Qµ to the
Hamiltonian flow field, plus a bounded error which is roughly local. Precisely, we will
show that

TµQµT
∗
µ = Dq +K,

where Dq is the Hamiltonian vector field of the symbol q (which we recall is frequency
localized to µ

1
2 ), and where K is an operator on L2

x′,ξ′ , depending on parameter x1, for
which we establish weighted L2 estimates.

The transform ũ = Tµu of the exact solution u to D1u−Qµu = 0, with initial data f ,
satisfies

D1ũ−Dqũ = Kũ , ũ(0, x′, ξ′) = f̃(x′, ξ′) .
The operator K will introduce terms which are well-behaved after integration along the
flow of D1 −Dq at angle θj . We will construct the approximate solution v by truncating
the operator K to such angles. For this purpose we introduce cutoffs φj(ξ′) and ψj(ξ′),
with slightly larger supports than βj(ξ′), such that

dist
(
supp(1− φj), supp(βj)

)
≥ 2−j−10µ ,

dist
(
supp(1− ψj), supp(φj)

)
≥ 2−j−10µ ,

and also that

dist
(
supp(ψj), supp(βi)

)
≥ 2−j−10µ if |i− j| ≥ 5 .

The ξ′-support of f̃ lies in the cµ−
1
2 neighborhood of the support of βj(ξ′). Since

c � 1, θj ≥ µ−
1
2 , and |dxq(x, ξ′)| ≤ c θj |ξ′| , we can assume that every integral curve of

D1 − Dq passing through this neighborhood remains ξ′-distance at least 2−10µθj away
from the support of (1− φj).

Furthermore, we can assume that any integral curve of D1 −Dq passing at any point
through the support of ψj does not meet the cµ−

1
2 neighborhood of the support of βi(ξ′),

provided |i− j| ≥ 5.

We will take v = T ∗µ ṽ where ṽ solves

(6.18) D1ṽ −Dq ṽ = ψj Kṽ , ṽ(0, x′, ξ′) = f̃(x′, ξ′) .

The cutoff ψj restricts the right hand side to ξ2 ≈ θjµ, where the integral of K along
D1 −Dq is under control. Furthermore, since the support of ṽ will be contained in the
union of the integral curves of D1 −Dq passing through the support of ψj at some point
x1, then v will satisfy βi(D′)v = 0 for |i− j| ≥ 5.

Next, since QµT
∗
µ = T ∗µDq + T ∗µK, it holds that

D1v −Qµv = −T ∗µ
(
(1− ψj)Kṽ

)
,
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so estimates (6.16) and (6.17) will follow from

(6.19) ‖(1− ψj)Kṽ‖L2(S̃) . (µ
1
2 θj)−

1
2 ‖f̃‖L2 ,

and

(6.20) ‖(1− ψj)Kṽ‖L1L2(S̃) . (µ
1
2 θj)−1‖〈µ 1

2x2〉f̃‖L2 .

where S̃ = [0, ε]× R4
x′,ξ′ .

We thus need to show that Kṽ is small away from the set ξ2 ≈ θjµ, which we do
by establishing weighted norm estimates on ṽ, and decay estimates on the kernel K.
The weights involve the natural distance function on R4

x′,ξ′ associated to the Cordoba-
Fefferman transform,

distµ(x′, ξ′; y′, η′) = µ
1
2 |x′ − y′|+ µ−

1
2 |ξ′ − η′| .

Let K(x′, ξ′; y′, η′) denote the integral kernel of K (we supress the parameter x1). Then
we will show that

(6.21) |K(x′, ξ′; y′, η′)| .
(
1 + distµ(x′, ξ′; y′, η′)

)−N

+ c0 µ
1
2 θj〈µ

1
2x2〉−N 〈µ− 1

2 |ξ2 − η2| 〉−2
(
1 + µ

1
2 |x′ − y′|+ µ−

1
2 |ξ3 − η3|

)−N
,

where c0 is the small constant of (2.3).

Let E0 be the subset of R4
x′,ξ′

E0 = R2
x′ × supp(βj(ξ′)) ,

and let Ex1 be the image of E0 under the flow along D1 −Dq for time x1. We consider
the weight function

M(x, ξ′) = Mx1(x
′, ξ′) = 1 + distµ(x′, ξ′;Ex1) .

The weighted norm estimates we establish for solutions of (6.18) are

(6.22) ‖Mṽ‖L∞L2(S̃) . ‖Mf̃‖L2 ,

(6.23) ‖〈µ 1
2x2〉−1Mṽ‖L2(S̃) . (µ

1
2 θj)−

1
2 ‖Mf̃‖L2 ,

and

(6.24) ‖〈µ 1
2x2〉−2Mṽ‖L1L2(S̃) . (µ

1
2 θj)−1‖〈µ 1

2x2〉Mf̃‖L2 .

Let us show how (6.14)–(6.17) follow from (6.21) and (6.22)–(6.24). The bounds (6.14)
and (6.15) are direct consequences of (6.22) and (6.23), since M = 1 on the support of
f̃ . Also, (6.16)–(6.17) follow from (6.19)–(6.20), so we focus on (6.19)–(6.20).

We write K = K1 +K2, where the kernels K1 and K2 are respectively dominated by
the first and second terms on the right hand side of (6.21).
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First note that, since distξ′(supp(1 − φj), Ex1) ≥ 2−10µθj for all x1, it follows from
(6.22)–(6.24) that

‖(1− φj)ṽ‖L∞L2(S̃) . (µ
1
2 θj)−1‖f̃‖L2 ,

‖〈µ 1
2x2〉−1(1− φj)ṽ‖L2(S̃) . (µ

1
2 θj)−

3
2 ‖f̃‖L2 ,

‖〈µ 1
2x2〉−2(1− φj)ṽ‖L1L2(S̃) . (µ

1
2 θj)−2‖〈µ 1

2x2〉f̃‖L2 .

By the bounds on K1 and K2 and Schur’s Lemma we thus have

‖K1(1− φj)ṽ‖L∞L2(S̃) . (µ
1
2 θj)−1‖f̃‖L2

‖K2(1− φj)ṽ‖L2(S̃) . (µ
1
2 θj)−

1
2 ‖f̃‖L2 ,

‖K2(1− φj)ṽ‖L1L2(S̃) . (µ
1
2 θj)−1‖〈µ 1

2x2〉f̃‖L2 .

Next, we note that the integral of K1, as well as the integral of (µ
1
2 θj)−1〈µ 1

2 y2〉K2, over
the set |ξ′ − η′| ≥ 2−10µθj is bounded by (µ

1
2 θj)−1, which yields by (6.22)–(6.24) that

‖(1− ψj)K1φj ṽ‖L∞L2(S̃) . (µ
1
2 θj)−1‖f̃‖L2

‖(1− ψj)K2φj ṽ‖L2(S̃) . (µ
1
2 θj)−

1
2 ‖f̃‖L2 ,

‖(1− ψj)K2φj ṽ‖L1L2(S̃) . (µ
1
2 θj)−1‖〈µ 1

2x2〉f̃‖L2 .

Together these yield the estimates (6.19) and (6.20).

We turn to the proof of estimates (6.22)–(6.24).

Lemma 6.1. Take E ⊂ R4 and let M(x′, ξ′) = 1 + distµ(x′, ξ′;E). Also, let r− =
1
2 (|r| − r). Then, for postive integers k and n, and real number r,

‖M〈µ 1
2x2〉k〈µ

1
2 (x2 − r)−〉nK1g‖L2(R4) . ‖M〈µ 1

2x2〉k〈µ
1
2 (x2 − r)−〉ng‖L2(R4) ,

and

‖M〈µ 1
2x2〉k〈µ

1
2 (x2 − r)−〉nK2g‖L2(R4)

. c µ
1
2 θj‖M〈µ 1

2x2〉k−N 〈µ 1
2 (x2 − r)−〉ng‖L2(R4) .

The bounds are uniform over all subsets E ⊂ R4 and real numbers r.

Proof. Let K0 denote the integral kernel

K0(x′, ξ′; y′, η′) =
(
1 + µ−

1
2 |η2 − ξ2|

)−2( 1 + µ
1
2 |y′ − x′|+ µ−

1
2 |η3 − ξ3|

)−N
.

By the rapid decrease of K in x′ and ξ3, both estimates are a simple of the following
bound

‖MK0g‖L2 . ‖Mg‖L2 .

By making the measure preserving change of variables (x′, ξ′) → (µ
1
2x′, µ−

1
2 ξ′), we may

assume µ = 1. By the rapid decrease of K0 in the x′ and ξ3 variables, we may bound

‖M(x′, ξ′)
∫
K0(x′, ξ′; y′, η′) g(y′, η′) dy′ dη′ ‖L2(dx′ dξ′)

. ‖
∫
M(y′, ξ2, η3)〈ξ2 − η2〉−2 g(y′, η′) dη2 ‖L2(dξ2 dy′ dη3) .
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We are thus reduced to the following consequence of the Calderon commutator theorem
[1].

Lemma 6.2. Let M(r) denote a weight function on the real line, satisfying

M(r) ≥ 1 , |M(r)−M(s)| ≤ |r − s| .

Then the convolution kernel 〈r〉−2 is bounded on L2(M(r)dr) by a uniform constant.

Proof. We need to show that the integral kernel

M(r)M(s)−1

〈r − s〉2
=
M(r)−M(s)
〈r − s〉2

M(s)−1 +
1

〈r − s〉2

is bounded on L2(dr). Since M(s)−1 ≤ 1 and the latter kernel is integrable, it suffices to
show that the map

f →
∫ ∞

−∞

M(r)−M(s)
〈 r − s 〉2

f(s) ds

is bounded on L2(dr). Clearly

f →
∫
|r−s|≤1

M(r)−M(s)
〈 r − s 〉2

f(s) ds

is bounded on L2(dr), and so it suffices to show that

(6.25)

∥∥∥∥∥
∫
|r−s|>1

M(r)−M(s)
〈 r − s 〉2

f(s) ds

∥∥∥∥∥
L2(dr)

≤ C‖f‖L2(dr).

But ∣∣∣∣M(r)−M(s)
〈 r − s 〉2

− M(r)−M(s)
(r − s)2

∣∣∣∣ ≤ |M(r)−M(s)|
〈 r − s 〉2(r − s)2

≤ 1
|r − s|3

,

which means that (6.25) holds if and only if the map

f →
∫
|r−s|>1

M(r)−M(s)
(r − s)2

f(s) ds

is bounded on L2(dr). But since M is Lipschitz, this follows from the classical commu-
tator estimate of Calderón (Theorem 2 in [1]). �

In the following steps, we will use r and s as real variables that take the place of x1.

Let Jr,s : R4 → R4 denote the flow along D1 − Dq, starting at the slice x1 = s and
ending at x1 = r. We will also use Jr,s to denote the unitary map on L2(R4)(

Jr,sf
)
(x′, ξ′) = f

(
Js,r(x′, ξ′)

)
.

This map is unitary since the Hamiltonian flow is symplectic, hence preserves dx′ dξ′.
We also use the fact that, if |ξ2| , |η2| ≈ µθj and |ξ3| , |η3| ≈ µ, then the map Jr,s

approximately preserves distµ, in that

distµ

(
Jr,s(x′, ξ′); Jr,s(y′, η′)

)
≈ distµ(x′, ξ′; y′, η′) .

By homogeneity of the Hamiltonian flow, this follows from the fact that the flow is
Lipschitz on the set |ξ′| = 1, which is a consequence of Theorem 5.1.
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The function ṽ satisfies

D1ṽ −Dq ṽ = ψjKṽ , ṽ(0, x′, ξ′) = f̃(x′, ξ′) .

Let U denote the map, taking the space of functions on S̃ to itself, defined by

UF (r, · ) =
∫ r

0

Jr,sψjKF (s, · ) ds .

Thus, (D1 −Dq)UF = ψjKF . If we let F (r, · ) = Jr,0f̃ , so that D1F −DqF = 0, then
we can formally write the solution ṽ as

ṽ =
∞∑

n=0

UnF .

We need to show this sum converges in the appropriate norm, which we do by showing
that U is a contraction. We split U = U1+U2, corresponding to the splittingK = K1+K2.

The estimates we require for U1 are:

(6.26) ‖MU1F‖L∞L2(S̃) . ε ‖MF‖L∞L2(S̃)

(6.27) (µ
1
2 θj)

1
2 ‖M〈µ 1

2x2〉−1U1F‖L2(S̃) . ε ‖MF‖L∞L2(S̃) .

For the U2 term we require the bounds:

(6.28) ‖MU2F‖L∞L2(S̃) . c (µ
1
2 θj)

1
2 ‖M〈µ 1

2x2〉−1F‖L2(S̃)

(6.29) ‖M〈µ 1
2x2〉−1U2F‖L2(S̃) . c ‖M〈µ 1

2x2〉−1F‖L2(S̃)

The inequality (6.26) is a consequence of Lemma 6.1 with k = n = N = 0, and the
fact that Jr,s preserves the distance function distµ, hence the weight M .

For (6.27), we apply Cauchy-Schwarz to yield

|MU1F |2(r, x′, ξ′) . ε

∫ ε

0

∣∣(MψjK1F )(s, Js,r(x′, ξ′))
∣∣2 ds .

We multiply by 〈µ 1
2x2〉−2 and integrate dx′ dξ′, changing variables by Js,r on the right,

to obtain

‖M〈µ 1
2x2〉−1U1F‖2

L2(S̃)

. ε

∫ ε

0

∫ ε

0

∫
R4
〈µ 1

2x2 ◦ Jr,s〉−2
∣∣MψjK1F

∣∣2(s, x′, ξ′) dx′ dξ′ ds dr .
We next observe that, for ξ′ in the support of ψj ,

(6.30)
∫
〈µ 1

2x2 ◦ Jr,s〉−2 dr . (µ
1
2 θj)−1 ,

which holds since dx2
dr ≈ θj . Lemma 6.1 with k = n = N = 0 now yields (6.27).



Lp NORM OF SPECTRAL CLUSTERS 31

To show (6.28), we write

|(MU2F )(r, x′, ξ′)|2 .

∣∣∣∣∫ r

0

(
MψjK2F

)
(s, Js,r(x′, ξ′)) ds

∣∣∣∣2
. (µ

1
2 θj)−1

∫ ε

0

∣∣M〈µ 1
2x2〉ψjK2F

∣∣2(s, Js,r(x′, ξ′)) ds

where we use (6.30). To conclude (6.27) we take the integral dx′ dξ′ of both sides, using
the fact that Js,r preserves the measure, and apply Lemma 6.1 with k = 1, n = 0, and
N = 2.

For (6.29), we write as above

|(MU2F )(r, x′, ξ′)|2 . (µ
1
2 θj)−1

∫ ε

0

∣∣M〈µ 1
2x2〉ψjK2F

∣∣2(s, Js,r(x′, ξ′)) ds .

For ξ′ in the support of ψj we have

〈µ 1
2x2〉−2 〈µ 1

2x2 ◦ Js,r〉−2 . 〈µ 1
2 θj |r − s| 〉−2 ,

and consequently

〈µ 1
2x2〉−2 |(MU2F )(r, x′, ξ′)|2

. (µ
1
2 θj)−1

∫ ε

0

〈µ 1
2 θj |r − s| 〉−2

∣∣M〈µ 1
2x2〉2ψjK2F

∣∣2(s, Js,r(x′, ξ′)) ds .

We take the integral dx′ dξ′, changing variables by Js,r on the right, and apply Lemma
6.1 with k = 2, n = 0 and N = 3, to yield (6.29).

We now turn to the proof of (6.22)–(6.24). First, note that by (6.26)–(6.27) and
(6.28)–(6.29), for small c and ε the map U is a contraction in the norm

|||F ||| = ‖MF‖L∞L2(S̃) + µ
1
4 θ

1
2
j ‖M〈µ 1

2x2〉−1F‖L2(S̃) .

Recall that ṽ =
∑∞

n=0 UnF , where F (r, · ) = Tr,0f̃ . Furthermore,the bound (6.30) yields

|||F ||| . ‖Mf̃‖L2 .

Consequently

|||ṽ||| . ‖Mf̃‖L2 ,

which implies (6.22) and (6.23).

To derive (6.24), we use the fact that each of the estimates (6.26)–(6.29) holds if M is
in each instance replaced by the weight

M〈µ 1
2 (x2 − c2θjx1)−〉 ,

where c2 > 0 is a constant such that dx2
dr > c2θj on curves of D1 −Dq passing through

the support of ψj . This holds since 〈µ 1
2 ( · )−〉 is positive and decreasing, and hence, if

ψj(ξ′) 6= 0 and r ≥ s, then

〈µ 1
2 (x2 ◦ Jr,s − c2θjr)−〉 ≤ 〈µ 1

2 (x2 − c2θjs)−〉 .
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Consequently,

‖M〈µ 1
2 (x2 − c2θjx1)−〉〈µ

1
2x2〉−1ṽ‖L2(S̃) . (µ

1
2 θj)−

1
2 ‖M〈µ 1

2 (x2)−〉f̃‖L2

. (µ
1
2 θj)−

1
2 ‖M〈µ 1

2x2〉f̃‖L2 .

On the other hand, for x1 > 0,

〈µ 1
2 (x2 − c2θjx1)−〉 〈µ

1
2x2〉 & 〈µ 1

2 θjx1〉 ,
hence

‖M〈µ 1
2x2〉−2ṽ‖L1L2(S̃) . (µ

1
2 θj)−

1
2 ‖M〈µ 1

2 (x2 − c2θjx1)−〉〈µ
1
2x2〉−1ṽ‖L2(S̃) ,

yielding (6.24).

6.3. The estimate on K. We establish here the estimate (6.21) for the integral kernel
K defined by

TµQµT
∗
µ = Dq +K .

Here, Qµ = 1
2

(
qµ(x,D′)+qµ(x,D′)∗

)
, where qµ is the symbol pλ rescaled by θj , and hence

truncated to x′-frequencies less than cµ. The symbol q, on the other hand, is obtained
by truncating qµ to x′-frequencies less than cµ

1
2 .

It is a simple consequence of Lemma 4.3 and Lemma 4.2 that the kernel of the operator

Tµ q(x,D′)∗ T ∗µ −Dq

satisfies the estimate (6.21). By taking adjoints the same applies with q(x,D′)∗ replaced
by q(x,D′), and we are reduced to establishing the estimates (6.21) for the kernel of the
operator

Tµ (qµ(x,D′)− q(x,D′) )T ∗µ .

The kernel K(x′, ξ′; y′, η′) of this operator takes the form (we suppress the irrelevant
parameter x1)∫

ei〈ζ′,z′−y′〉 e−i〈ξ′,z′−x′〉
[
qµ(z′, ζ ′)− q(z′, ζ ′)

]
ĝ
(
µ−

1
2 (ζ ′ − η′)

)
g
(
µ

1
2 (z′ − x′)

)
dz′ dζ ′ .

Suppose that p(x′) is a smooth function on x2 ≥ 0, which is constant for x2 ≥ 1. We
extend p in an even manner to x2 ≤ 0. Let qµ = Sµ[p(θj · )], and q = S√µ[p(θj · )] , where
Sλ denotes smooth truncation of the Fourier transform to frequencies less than cλ. It
then follows that∣∣Dβ

x′

(
qµ(x′)− q(x′)

)∣∣ . θjµ
1
2 (|β|−1)〈µ 1

2x2〉−N ‖Dx′p‖CN (x2≥0) , |β| ≤ 1 ,(6.31) ∣∣D2
x′
(
qµ(x′)− q(x′)

)∣∣ . θj

(
µ

1
2 〈µ 1

2x2〉−N + µ〈µx2〉−N
)
‖Dx′p‖CN+2(x2≥0) .

Indeed, it suffices to verify these bounds for x2 > 0, and by splitting up p to separately
consider the case that p is smooth across x2 = 0 and constant for |x2| ≥ 1, and the case
that p is smooth on x2 ≤ 0 and vanishes for x2 ≥ 0. The latter case is handle by simple
size bounds on the convolution kernels Sµ and S√µ. For the smooth part, we have bounds

|pλ − S
θ−1

j µ
1
2
pλ|(θjx

′) . (θ−1
j µ

1
2 )−1−N 〈θjx2〉−N ‖DN+1

x′ p‖C0

. θj µ
− 1

2 〈µ 1
2x2〉−N ‖DN+1

x′ p‖C0 ,
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and the same bounds apply to derivatives.

By the condition (2.3), we easily obtain the following bounds for |ζ ′| ≈ µ and β2 ≤ 2,∣∣∂β
z′∂

α
ζ′
(
qµ(z′, ζ ′)− q(z′, ζ ′)

)∣∣ . c0 θj

(
µ

1
2 〈µ 1

2 z2〉−N + µ〈µz2〉−N
)
µ

1
2 |β2|−|α| .

In the formula for K we can integrate by parts at will with respect to µ
1
2Dζ′ and µ−

1
2Dz3 ,

and twice with respect to µ−
1
2Dz2 , to dominate K by

c0 θj

∫ (
µ

1
2 〈µ 1

2 z2〉−N + µ〈µz2〉−N
)
〈µ 1

2 (z′ − x′)〉−N 〈µ 1
2 (z′ − y′)〉−N

× 〈µ− 1
2 (ζ ′ − η′)〉−N 〈µ− 1

2 (ζ3 − ξ3)〉−N 〈µ− 1
2 (ζ2 − ξ2)〉−2 dz′ dζ ′

which is dominated by

c0 θj µ
1
2 〈µ 1

2x2〉−N 〈µ 1
2 (x′ − y′)〉−N 〈µ− 1

2 (ξ3 − η3)〉−N 〈µ− 1
2 (ξ2 − η2)〉−2

yielding the desired bounds on K. �

We note here that similar considerations to the above yield the bounds, for |ξ′| ≈ µ,

(6.32)
∣∣∂β

x∂
α
ξ′q(x, ξ

′)
∣∣ . {µ1−|α| , |β| = 0 ,

c0
(
1 + µ

1
2 (|β|−1)θj 〈µ

1
2x2〉−N

)
µ1−|α| , |β| ≥ 1 .

6.4. Estimates on Fj and Gj. We conclude by establishing the square summability of
the inhomogeneities Fj and Gj . Recall that

Fj = βj(D′)Fλ + [βj(D′), Pj ]uλ + βj(D′)
(
Pλ − pλ(x,D′)

)
uλ ,

Gj = βj(D′)
(
pλ(x,D′)− pj(x,D′)

)
uλ .

We need to show that∑
j

‖Fj‖2
L1L2(Sj)

+ λ−
1
4 θ
− 1

4
j ‖〈λ 1

2 θ
− 1

2
j x2〉2Gj‖2

L2(Sj)
. ‖uλ‖2

L∞L2(S) + ‖Fλ‖2
L2(S) .

The first term in Fj is handled by noting that∑
j

‖βj(D′)Fλ‖2
L1L2(Sj)

≤
∑

j

‖βj(D′)Fλ‖2
L2(S) ≤ ‖Fλ‖2

L2(S) .

Consider next the term [Pj , βj(D′)]uλ. Since the symbol of Pj is truncated to x′-
frequencies less than cµ

1
2 ≤ c θjµ, it holds that

[Pj , βj(D′)]uλ = [Pj , βj(D′)]φj(D′)uλ .

We claim that, uniformly over x1,

(6.33)
∥∥[Pj , βj(D′)]f

∥∥
L2

x′
. 2j ‖f‖L2

x′
.

Given this, we can bound∥∥[Pj , βj(D′)]φj(D′)uλ

∥∥
L1L2(Sj)

. 2j ‖φj(D′)uλ‖L1L2(Sj) ≤ ‖φj(D′)uλ‖L∞L2(Sj) ,

since Sj is of length 2−j in x1. Since φj(D′)uλ involves βj(D′)uλ only for |i − j| ≤ 4,
this term is square summable over j.
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To prove (6.33), it suffices to replace Pj by pj(x,D′). The symbol pj equals |ξ′| outside
of the region |ξ′| ≈ λ, and pj(x′, ξ′) satisfies S1

1,0 estimates for x′ derivatives of order at
most 1. Consquently, after subtracting off the term |D′|, we may take pj(x,D′) to have
kernel K1(x′, x′ − y′) where

|K1(x′, z′)|+ |D′
xK1(x′, z′)| . λ · λ2

(
1 + λ|z′|

)−N
.

On the other hand, βj(D′) is a convolution kernel K2(x′ − y′) where

‖z′K2(z′)‖L1
z′

. 2jλ−1 .

The estimate (6.33) follows by applying Taylor’s theorem to[
K1,K2

]
(x′, y′) =

∫
K2(x′ − z′)

(
K1(x′, z′ − y′)−K1(z′, z′ − y′)

)
dz′ .

To control the last term in Fj we note that, since the estimates on K1 above also apply
to pλ(x,D′), we have uniform bounds∥∥(Pλ − pλ(x,D′)

)
f
∥∥

L2
x′

= 1
2

∥∥(pλ(x,D′)∗ − pλ(x,D′)
)
f
∥∥

L2
x′

. ‖f‖L2
x′
.

The last term in Fj is orthogonal over j, and thus has square sum bounded by ‖u‖L2(S).

We now estimate the term Gj . We split this up

Gj = βj(D′)
(
pλ(x,D′)− pj(x,D′)

)
φj(D′)uλ + βj(D′)pλ(x,D′)

(
1− φj(D′)

)
uλ .

Consider the second term in Gj . We write

βj(D′)pλ(x,D′)
(
1− φj(D′)

)
uλ = βj(D′)

(
pλ(x,D′)− pλθj

(x,D′)
)(

1− φj(D′)
)
uλ

where pλθj is the symbol p truncated to x′-frequencies of size less than cλθj . The symbol
pλ − pλθj

is supported in the region |ξ′| ≈ λ, and by arguments similar to those deriving
(6.31) (without the rescaling step), we have the estimates

|∂α
ξ′(pλ − pλθj

)(x, ξ′)| . θ−1
j 〈λθjx2〉−N λ−|α| .

Its integral kernel is thus bounded by

θ−1
j 〈λθjx2〉−N λ2

(
1 + λ |x′ − y′|

)−N
.

Since λθj ≥ λ
1
2 θ
− 1

2
j , it follows that, uniformly in x1,

λ−
1
4 θ
− 1

4
j ‖〈λ 1

2 θ
− 1

2
j x2〉2

(
pλ(x,D′)− pλθj

(x,D′)
)
f‖L2

x′
≤ λ−

1
4 θ
− 5

4
j ‖f‖L2

x′
,

and the same holds for pλ(x,D′)−pλθj (x,D
′) replaced by βj(D′)

(
pλ(x,D′)−pλθj (x,D

′)
)

since βj(D′) averages on scale smaller than λ−
1
2 θ

1
2
j . Thus

λ−
1
4 θ
− 1

4
j ‖〈λ 1

2 θ
− 1

2
j x2〉2βj(D′)pλ(x,D′)

(
1− φj(D′)

)
uλ‖L2(Sj) ≤ λ−

1
4 2

3
4 j‖uλ‖L∞L2(S) .

Since 2j runs from 1 to λ
1
3 , the right hand side is square summable over j.

Recalling that the symbol pj(x, ξ′) is truncated to x′-frequencies less than λ
1
2 θ
− 1

2
j ,

similar arguments show that

λ−
1
4 θ
− 1

4
j ‖〈λ 1

2 θ
− 1

2
j x2〉2βj(D′)

(
pλ(x,D′)− pj(x,D′)

)
φj(D′)uλ‖L2(Sj)

. λ
1
4 θ

1
4
j ‖〈λ

1
2 θ
− 1

2
j x2〉−1φj(D′)uλ‖L2(Sj) .
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The right hand side involves ui for |i − j| ≤ 4, hence, by the earlier estimate for ui, is
square summable over j.

7. Results for higher dimensions

We show here that the steps of the preceeding sections yield sharp Lq estimates for
spectral clusters on compact Riemannian manifolds M with boundary, of dimension n ≥
3, provided q is sufficiently large. Precisely, we have the following

Theorem 7.1. Suppose that u solves the Cauchy problem on R×M

∂2
t u(t, x) = Pu(t, x) , u(0, x) = f(x) , ∂tu(0, x) = 0 ,

and satisfies either Dirichlet conditions

u(t, x) = 0 if x ∈ ∂M ,

or Neumann conditions, where Nx is a unit normal field with respect to g,

Nx · ∇xu(t, x) = 0 if x ∈ ∂M .

Then the following bounds hold for 4 ≤ q ≤ ∞, if n ≥ 4, and 5 ≤ q ≤ ∞ if n = 3.

‖u‖Lq
xL2

t (M×[−1,1]) ≤ C ‖f‖Hδ(q)(M) , δ(q) = n
(

1
2 −

1
q

)
− 1

2 .

These bounds of course imply that the estimates in (1.9) hold for the spectral projector
operators, χλ, when q ≥ 5 for n = 3 and q ≥ 4 if n ≥ 4.

As noted in the introduction, these estimates are expected to hold in the larger range
q ≥ 6n+4

3n−4 , in which case they (and their interpolation with the trivial L2 estimate) would
be best possible. Establishing this larger range would require exploiting dispersion in di-
rections tangent to ∂M for time 1, rather than times on the order of the microlocalization
angle θ.

Following the earlier sections, we work in a neighborhood of ∂M in geodesic normal co-
ordinates, and extend the operator P evenly, and solution u oddly or evenly, in the case of
Dirichlet or Neumann conditions respectively. We set xn+1 = t, and x′ = (x2, . . . , xn+1).

We then fix a frequency scale λ and microlocalization angle θj ∈ [λ−
1
3 , c] . After fac-

torizing DAλD, we set
q(x, ξ′) = θj pj(θjx, θ

−1
j ξ′) ,

which is x′-frequency localized at scale µ
1
2 , where µ = θλ is the frequency scale of

the rescaled solution u(θx) (we suppress the index j.) We work with the wave packet
transform ũ of u with respect to the x′ variables, and let Θ denote the Hamiltonian flow
along ξ1 − q(x, ξ′). The reduction steps of sections 2 through 4 can then be adapted to
reduce matters to establishing the following.

Theorem 7.2. Suppose that f ∈ L2(R2n) is supported in a set of the form ξn+1 ≈ µ ,

|ξ2, . . . , ξn−1| ≤ cµ , ξn ≈ θµ or |ξn| . µ
1
2 in case θ = µ−

1
2 .

Then, if u = T ∗µ
[
f
(
Θ0,x1(x

′, ξ′)
)]
, we have for q ≥ 2n

n−2

‖u‖LqL2(S) . µδ(q)θ
1
2−

1
q ‖f‖L2(R2n) ,
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and for 2(n+1)
n−1 ≤ q ≤ 2n

n−2

‖u‖LqL2(S) . µδ(q)θ(n−1)( 1
2−

1
q )− 2

q ‖f‖L2(R2n) .

This implies Theorem 7.1 for q such that the exponent of θ is at least 1
q . For n ≥ 4,

this happens for q ≥ 4 ≥ 2n
n−2 . For n = 3 this holds for q ≥ 5.

In applying the reductions of section 2, care must be taken since δ(q) ≥ 1 for large n,
whereas the commutator [A,Γ(D)] maps Hδ−1 → Hδ only for 0 ≤ δ ≤ 1. Here, Γ(D)
is a conic cutoff to the set |ξn+1| ≈ |ξ1, . . . , ξn| . To get around this problem, in case
δ(q) ≥ 1 we write δ(q) = m+δ, with 0 ≤ δ ≤ 1. Let dT = (d1, . . . , dn−1, dn+1) denote the
tangential derivatives, and dm

T the collection of tangential derivatives of order at most m.
Then the extended and φ-localized solution u satisfies

‖dm
T u‖Hδ + ‖dm

T F‖Hδ . ‖f‖Hδ(q)(M) .

Since dm
T A is Lipschitz, it is easy to see that

‖dm
T [A,Γ(D)]Du‖Hδ . ‖dm

T u‖Hδ .

We also gain powers of dm
T in the elliptic regularity arguments, and deduce that

‖dm
T (1− Γ(D))u‖Hδ+1 . ‖dm

T u‖Hδ + ‖dm
T F‖Hδ .

The norm on the left is sufficient to control ‖(1 − Γ(D))u‖Lq
xL2

t
, and we are reduced to

considering Γ(D)u. This term, however, has Fourier transform supported outside of a
conic neighborhood of the ξn axis, hence

‖Γ(D)u‖Hδ(q) ≈ ‖dm
T Γ(D)u‖Hδ .

The remaining reductions of section 2 then follow.

To prove Theorem 7.2, we establish mapping properties for the kernel K of WW ∗,
localized in ζ = (ζ2, . . . , ζn+1) by a cutoff βθ(ζ) to the set

ζn+1 ≈ µ , |(ζ2, . . . , ζn−1)| ≤ c µ , ζn ≈ θµ ,

(respectively |ζn| ≤ µ−
1
2 in case θ = µ−

1
2 .) The bounds we establish, analogous to (5.3)

and (5.4), are

(7.1) sup
r,s∈[0,ε]

∥∥∥∫ K(r, x′; s, y′) f(y′) dy′
∥∥∥

L2
x′

≤ ‖f‖L2
y′
,

and

(7.2)
∥∥∥∫ K(r, x′; s, y′) f(y′) dy

∥∥∥
L∞x2,...,xn

L2
xn+1

. µn−1θ
(
1 + µ |r − s|

)−n−2
2
(
1 + µθ2 |r − s|

)− 1
2 ‖f‖L1

y2,...,yn
L2

yn+1
.

To see that this implies Theorem 7.2, note that interpolation yields the bound∥∥∥∫ K(r, x′; s, y′) f(y′) dy
∥∥∥

Lq
x2,...,xn L2

xn+1

.
(
µn−1θ

)1− 2
q
(
1 + µ|r − s| )−(n−2)( 1

2−
1
q )
(
1 + µθ2|r − s|

)−( 1
2−

1
q ) ‖f‖

Lq′
y2,...,yn L2

yn+1

.
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If q ≥ 2n
n−2 , then (n − 2)( 1

2 −
1
q ) ≥ 2

q , and by the Hardy-Littlewood-Sobolev lemma we
obtain∥∥∥∫ K(r, x′; s, y′)F (s, y′) dy

∥∥∥
Lq

r,x2,...,xn L2
xn+1

. µ2δ(q)θ1−
2
q ‖F‖

Lq′
s,y2,...,yn L2

yn+1

.

If 2n
n−2 ≥ q ≥ 2(n+1)

n−1 , then(
1 + µ|r − s| )−(n−2)( 1

2−
1
q )
(
1 + µθ2|r − s|

)−( 1
2−

1
q ) ≤ µ−

2
q θ−

4
q +(n−2)(1− 2

q ) |r − s|−
2
q ,

and Hardy-Littlewood-Sobolev yields Theorem 7.2 for this case.

We now turn to the proof of (7.1) and (7.2). The estimate (7.1) follows as does the
estimate (5.3) from the boundedness of Tµ and the fact that Θr,s preserves the measure
dx′ dξ′. To establish (7.2), we consider as before separate cases, depending on |r − s|.

Consider the case µθ2|r − s| ≥ 1. We fix θ̄ ≤ θ so that µθ̄2|r − s| = 1, and decompose
βθ(ζ) into a sum of cutoffs βj(ζ), each of which is localized to a cone of angle θ̄ about
some direction. As in the proof of (5.16), we have that∫

|Kj(r, x′; s, y′)| dyn+1 . µn−1θ̄n−1
(
1 + µθ̄|(y′ − wj

s,r)2,...,n|
)−N

,

where the wj
s,r give a (µθ̄)−1 separated set after projection onto the (2, . . . , n) variables.

Adding over j yields the desired bounds, since

µn−1θ̄n−1 = µ
n−1

2 |r − s|−
n−1

2 .

In case µθ2|r − s| ≤ 1, let θ̄ ≥ θ be given by

θ̄ = min
(
µ−

1
2 |r − s|− 1

2 , 1
)
.

We set ζ ′′ = (ζ2, . . . , ζn−1, ζn+1), and let βj be a partition of unity in cones of angle θ̄ on
Rn−1. We then decompose

βθ(ζ) =
∑

j

βθ(ζ)βj(ζ ′′) .

Let K =
∑

j Kj denote the corresponding kernel decomposition. As in the proof of
Theorem 5.4, we can bound Kj by

µ
n
2

∫ (
1 + µθ̄ |dζ′′ζs,r · (y′ − x′s,r)|+ µθ |dζn

ζs,r · (y′ − x′s,r)|+ |〈ζs,r, y
′ − x′s,r〉|

)−N

×
(
1 + µ

1
2 |x′ − z|

)−N
dz dζ .

Here, (x′s,r, ξ
′
s,r) = Θs,r(x′, ξ′j), with ξ′j a fixed vector in the support of βθ(ζ)βj(ζ ′′). Also,

(zs,r, ζs,r) = Θs,r(z, ζ). Since dζζs,r is invertible, and µθ̄ ≥ µθ ≥ µ
1
2 , the first two terms

in the integrand dominate µ
1
2 |y′ − x′s,r|.

We first show that we may replace ζs,r by ξ′s,r = ζs,r(x′, ξ′j) in the third term in
parentheses above. By homogeneity, we may consider |ζ| = |ξ′j |. We take a first order
Taylor expansion, and use bounds (5.7) on d2

ζζs,r, to write

ζs,r − ζs,r(z, ξ′j) = (ζ − ξ′j) · dζζs,r +O( |ζ − ξ′j |2µ−
1
2 |s− r| ) .

Since
|(ζ − ξ′j)

′′| . µθ̄ , |(ζ − ξ′j)n| . µθ , µθ̄2|s− r| ≤ 1 ,
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this shows we may replace ζs,r by ζs,r(z, ξ′j), as the errors are absorbed by the first two
terms in parentheses. On the other hand, by (5.5)

| 〈ζs,r(x′, ξ′j)− ζ(z, ξ′j) , y
′ − x′s,r〉 | . µ |x′ − z| |y′ − x′s,r| ,

which is also absorbed by the other terms.

We next use (5.5) to see that we may replace dζζs,r by the identity matrix, since the
error induced is dominated by

µθ̄|s− r| |y′ − x′s,r| ≤ µ
1
2 |y′ − x′s,r| .

Consequently, since ξ′s,r has n+ 1 component comparable to µ, we obtain∫
|Kj(r, x′; s, y′)| dyn+1 . µn−1θ̄n−2 θ

(
1 + µθ̄ |(y′ − x′s,r)2,...,n−1|

)−N
.

The points x′s,r are µθ̄ separated in the (2, . . . , n− 1) variables as j varies, which follows
by Corollary 5.2 and the fact that q(z, ζ) is close to |ζ|, hence we can add over j to obtain∫

|K(r, x′; s, y′)| dyn+1 . µn−1θ̄n−2 θ . µn−1θ
(
1 + µ|r − s|

)−n−2
2 . �

References

[1] A.P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965),
1092–1099.

[2] R. Coifman and Y. Meyer, Commutateurs d’integrales singulieres et operateurs multilineaires, Ann.
Inst. Fourier Grenoble 28 (1978), 177–202.

[3] A. Cordoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differ-
ential Equations 3 (1978), 979–1005.

[4] K. DeLeeuw, unpublished.

[5] D. Grieser, Lp bounds for eigenfunctions and spectral projections of the Laplacian near concave
boundaries, Thesis, UCLA, 1992.

[6] D. Grieser, Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary, Comm.

Partial Differential Equations, 27 (2002), 1283–1299.
[7] H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators,

Comm. Pure Appl. Math. 58 (2005), 217–284.

[8] G. Mockenhaupt, A. Seeger and C. D. Sogge, Local smoothing of Fourier integrals and Carleson-
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