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1. Introduction

Let (M, g) be a Riemannian manifold of dimension n ≥ 2. Strichartz estimates
are a family of space time integrability estimates on solutions u(t, x) : (−T, T ) ×
M → C to the wave equation

∂2
t u(t, x)−∆gu(t, x) = 0 , u(0, x) = f(x) , ∂tu(0, x) = g(x)(1.1)

where ∆g denotes the Laplace-Beltrami operator on (M, g). Local homogeneous
Strichartz estimates state that

(1.2) ‖u‖Lp((−T,T );Lq(M)) ≤ C
(
‖f‖Hγ(M) + ‖g‖Hγ−1(M)

)
where Hγ denotes the L2 Sobolev space over M of order γ, and 2 ≤ p ≤ ∞,
2 ≤ q < ∞ satisfy

(1.3)
1
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q
≤ n− 1
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Estimates involving q = ∞ hold when (n, p, q) 6= (3, 2,∞), but typically require the
use of Besov spaces.

Strichartz estimates are well established on flat Euclidean space, where M = Rn

and gij = δij . In that case, one can obtain a global estimate with T = ∞; see for
example Strichartz [27], Ginibre and Velo [9], Lindblad and Sogge [16], Keel and
Tao [14], and references therein. However, for general manifolds phenomena such as
trapped geodesics and finiteness of volume can preclude the development of global
estimates, leading us to consider local in time estimates.

If M is a compact manifold without boundary, finite speed of propagation shows
that it suffices to work in coordinate charts, and to establish local Strichartz esti-
mates for variable coefficient wave operators on Rn. Such inequalities were devel-
oped for operators with smooth coefficients by Kapitanski [13] and Mockenhaupt-
Seeger-Sogge [18]. In this context one has the Lax parametrix construction, which
yields the appropriate dispersive estimates. Strichartz estimates for operators with
C1,1 coefficients were shown by the second author in [21] and by Tataru in [29],
the latter work establishing the full range of local estimates. Here the issue is more
intricate as the lack of smoothness prevents the use of the Fourier integral operator
machinery. Instead, wave packets or coherent state methods are used to construct
parametrices for the wave operator.

The authors were supported by the National Science Foundation, Grants DMS-0654415 and
DMS-0099642.
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In this work, we consider the establishment of Strichartz estimates on a manifold
with boundary, assuming that the solution satisfies either Dirichlet or Neumann
homogeneous boundary conditions. Strichartz estimates for certain values of p, q
were established by Burq-Lebeau-Planchon [5] using results from [25]; our work
expands the range of indices p and q, and includes new estimates of particular
interest for the critical nonlinear wave equation in dimensions 3 and 4. Our main
result concerning Strichartz estimates is the following.

Theorem 1.1. Let M be a compact Riemannian manifold with boundary. Suppose
2 < p ≤ ∞, 2 ≤ q < ∞ and (p, q, γ) is a triple satisfying

1
p

+
n

q
=

n

2
− γ

{
3
p + n−1

q ≤ n−1
2 , n ≤ 4

1
p + 1

q ≤
1
2 , n ≥ 4

(1.4)

Then we have the following estimates for solutions u to (1.1) satisfying either
Dirichlet or Neumann homogeneous boundary conditions

(1.5) ‖u‖Lp([−T,T ];Lq(M)) ≤ C
(
‖f‖Hγ(M) + ‖g‖Hγ−1(M)

)
with C some constant depending on M and T .

A lemma of Christ-Kiselev [7] allows one to deduce inhomogeneous Strichartz
estimates from the homogeneous estimates. In the following corollary, (r′, s′) are
the Hölder dual exponents to (r, s), and the assumptions imply that a homogeneous
(H1−γ ,H−γ) → LrLs holds.

Corollary 1.2. Let M be a compact Riemannian manifold with boundary. Suppose
that the triples (p, q, γ) and (r′, s′, 1−γ) satisfy the conditions of Theorem 1.1. Then
we have the following estimates for solutions u to (1.1) satisfying either Dirichlet
or Neumann homogeneous boundary conditions

‖u‖Lp([−T,T ];Lq(M)) ≤ C
(
‖f‖Hγ(M) + ‖g‖Hγ−1(M) + ‖F‖Lr([−T,T ];Ls(M))

)
with C some constant depending on M and T .

For details on the proof of Corollary 1.2 using Theorem 1.1 and the Christ-Kiselev
lemma we refer to Theorem 3.2 of [24], which applies equally well to Neumann
conditions.

By finite speed of propagation, our results also apply to noncompact manifolds,
provided that there is uniform control over the size of the metric and its derivatives
in appropriate coordinate charts. In particular, we obtain local in time Strichartz
estimates for the exterior in Rn of a compact set with smooth boundary, for metrics
g which agree with the Euclidean metric outside a compact set. In this case one
can obtain global in time Strichartz estimates under a nontrapping assumption.
We refer to [24] for the case of odd dimensions, and Burq [4] and Metcalfe [17] for
the case of even dimensions. See also [11].

For a manifold with strictly geodesically-concave boundary, the Melrose-Taylor
parametrix yields the Strichartz estimates, for the larger range of exponents in
(1.3) (not including endpoints) as was shown in [23]. If the concavity assumption
is removed, however, the presence of multiply reflecting geodesics and their limits,
gliding rays, prevent the construction of a similar parametrix.
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Recently, Ivanovici [12] has shown that, when n = 2, (1.5) cannot hold for the
full range of exponents in (1.3). Specifically, she showed that if M ⊂ R2 is a
compact convex domain with smooth boundary then (1.5) cannot hold when q > 4
if 2/p + 1/q = 1/2. It would be very interesting to determine the sharp range of
exponents for (1.5) in any dimension n ≥ 2.

The Strichartz estimates of Tataru [29] for Lipschitz metrics yield estimates in
the boundary case, but with a strictly larger value of γ. The approach of [29]
involves the construction of parametrices which apply over short time intervals
whose size depends on frequency. Taking the sum over such sets generates a loss of
derivatives in the inequality.

These ideas influenced the development of the spectral cluster estimates for man-
ifolds with boundary appearing in [25]. Such estimates were established through
squarefunction inequalities for the wave equation, which control the norm of u(t, x)
in the space Lq(M ;L2(−T, T )). These spectral cluster estimates were used in the
work of Burq-Lebeau-Planchon [5] to establish Strichartz estimates for a certain
range of triples (p, q, γ). The range of triples that can be obtained in this manner,
however, is restricted by the allowed range of q for the squarefunction estimate.
In dimension 3, for example, this restricts the indices to p, q ≥ 5. In [5] simi-
lar estimates involving W s,q spaces were also established, and used in conjunction
with the Strichartz estimates and boundary trace arguments to establish global
well-posedness for the critical semilinear wave equation for n = 3. In the last two
sections of this paper we shall present some new results concerning critical semi-
linear wave equations. Specifically, we shall obtain local well-posedness and global
existence for small data when n = 4, as well as a natural scattering result for n = 3.

The approach of this paper instead adapts the proof of the squarefunction in-
equalities in [25]. We utilize the parametrix construction of that paper, and estab-
lish the appropriate time-dispersion bounds on the associated kernel. This allows
us to obtain the Strichartz estimates for a wider range of triples, including, for
example, the important L4((−T, T );L12(M)) estimate in dimension 3, and the
L3((−T, T );L6(M)) estimate in dimension 4.

The key observation in [25] is that u satisfies better estimates if it is microlocal-
ized away from directions tangent to ∂M than if it is microlocalized to directions
nearly tangent to ∂M . This is due to the fact that one can construct parametrices
over larger time intervals as one moves to directions further away from tangent to
∂M . More precisely, the parametrix for directions at angle ≈ θ away from tan-
gent to ∂M applies for a time interval of size θ, which would normally yield a
θ-dependent loss in the estimate. However, this loss can be countered by the fact
that such directions live in a small volume cone in frequency space. For sub-critical
estimates, i.e. where strict inequality holds in the second condition in (1.3), this
frequency localization leads to a gain for small θ. The restriction on p and q in
Theorem 1.1 arises from requiring this gain to counteract the loss from adding over
the θ−1 disjoint time intervals on which one has estimates. Hence, while the range
of p and q in our theorem is not known to be optimal, the restrictions are naturally
imposed by the local nature of the parametrix construction in [25].
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Notation. The expression X . Y means that X ≤ CY for some C depending
only on the manifold, metric, and possibly the triple (p, q, γ) under consideration.
Also, we abbreviate Lp(I;Lq(U)) by LpLq(I × U).

2. Homogeneous Strichartz Estimates

The proof of Strichartz estimates is a direct adaptation of the proof of square-
function estimates in [25]. The difference is that Strichartz estimates result from
time decay of the wave kernel, whereas squarefunction estimates result from de-
cay with respect to spatial separation. Consequently, in [25] the wave equation
was conically localized in frequency so as to become hyperbolic with respect to a
space variable labelled x1, and the equation factored so as to make x1 the evolution
parameter.

In order to maintain the convention that x1 is the evolution parameter, in this
section we set x1 = t, and will use x′ = (x2, . . . , xn+1) to denote spatial varibles in
Rn. Thus x = (x1, x

′) is a variable on R1+n.

We work in a geodesic-normal coordinate patch near ∂M in which xn ≥ 0 equals
distance to the boundary (the estimates away from ∂M follow from [13] and [18]).
The coefficients of the metric gij(x′) are extended to xn < 0 in an even manner, and
the solution u(x) is extended evenly in the case of Neumann boundary conditions,
and oddly in xn in case of Dirichlet conditions. The extended solution then solves
the extended wave equation on the open set obtained by reflecting the coordinate
patch in xn.

Setting a11(x) =
√

g(x′), we now work with an equation

n+1∑
i,j=1

Dia
ij(x′)Dju(x) = 0

on an open set symmetric in xn. A linear change of coordinates, and shrinking the
patch if necessary, reduces to considering coefficients aij(x) which are pointwise
close to the Minkowski metric on the unit ball in R1+n, and defined globally so as
to equal that metric outside the unit ball.

Following [25, §2], the solution u is then localized in frequency to a conic set
where |ξ′| ≈ |ξ1|. On the complement of this set the operator is elliptic, and the
Strichartz estimates follow from elliptic regularity and Sobolev embedding. As in
section 7 of [25], one uses the fact that the coefficients are smooth in all variables
but xn, and Sobolev embedding can be accomplished using at most one derivative
in the xn direction.

The next step is to take a Littlewood-Paley dyadic decomposition u =
∑∞

k=1 uk

with ûk localized in frequency to shells |ξ′| ≈ 2k. One lets aij
k (x) denote the

coefficients frequency localized in the x′ variables to |ξ′| ≤ 2k, and factorizes

n+1∑
i,j=1

aij
k (x)ξiξj = a11

k (x)
(
ξ1 + pk(x, ξ′)

)(
ξ1 − pk(x, ξ′)

)
,
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where pk(x, ξ′) ≈ |ξ′|. Just as in [25, §2], Theorem 1.1 is reduced to establishing,
uniformly over λ = 2k, bounds of the form

(2.1) ‖uλ‖Lp
x1Lq

x′ (|x|≤1) . λγ
(
‖uλ‖L∞L2 + ‖Fλ‖L2

)
, D1uλ − Pλ(x,D′)u = Fλ .

Here, Pλ(x,D′) = 1
2pλ(x,D′) + 1

2pλ(x,D′)∗, and the symbol pλ(x, ξ′) can be taken
frequency localized in x′ frequencies to |ξ′| ≤ λ, and pλ(x, ξ′) = |ξ′| if |ξ′| 6≈ λ.

The setup is now the same as in [25], and the reductions of §3-§6 of that paper,
specifically their n-dimensional analogues of §7, apply directly. This starts with a
decomposition uλ =

∑
j uj corresponding to a dyadic decomposition of ûλ(ξ) in

the ξn variable to regions ξn ∈ [2−j−2λ, 2−j+1λ] where λ−1/3 ≤ 2−j ≤ 1.

If 2−j ≥ 1
8 , corresponding to non-tangential reflection, then the estimates will

follow as the case for 2−j = 1
8 , so we restrict attention to the case 2−j ≤ 1

8 . Since
|ξ′| ≈ λ, this implies that some remaining variable is ≈ λ, and after rotation we
assume that ûj(x1, ξ

′) is supported in a set

{ξ : ξn+1 ≈ λ, |ξj | ≤ cλ, j = 2, . . . , n− 1, and ξn ≈ θjλ}

where λ−1/3 ≤ θj ≤ 1
8 .

The proof establishes good bounds on the term uj over time intervals of length
θj . Precisely, let Sj,k, |k| ≤ θ−1

j , denote the time slice x1 ∈ [kεθj , (k + 1)εθj ]. In
analogy with [25, Theorem 3.1], we establish the bound

(2.2) ‖uj‖Lp
x1Lq

x′ (Sj,k) . λγθ
σ(p,q)
j cj,k

where cj,k satisfies the nested summability condition [25, (3.1)], and where

σ(p, q) =

{
(n− 1)( 1

2 −
1
q )− 2

p , (n− 2)( 1
2 −

1
q ) ≤ 2

p
1
2 −

1
q , (n− 2)( 1

2 −
1
q ) ≥ 2

p

Adding over the θ−1
j disjoint slabs intersecting |x1| ≤ 1, the simple uniform bounds

on cj,k yield

‖uj‖Lp
x1Lq

x′ (|x1|≤1) . λγθ
σ(p,q)−1/p
j

(
‖uλ‖L∞L2 + ‖Fλ‖L2

)
.

The θj take on dyadic values less than 1, and provided σ(p, q) > 1/p, one can sum
over j to obtain (2.1). In case σ(p, q) = 1/p one can also sum the series, using the
nested summability condition [25, (3.1)], together with the branching argument on
[25, page 118], to yield (2.1). Note that the restrictions on (p, q) in Theorem 1.1
are precisely that σ(p, q) ≥ 1/p.

Estimate (2.2) is established through the parametrix construction from [22],
together with the use of the V p

2 spaces of Koch-Tataru [15]. Precisely, one rescales
R1+n by θj , and considers the symbol

q(x, ξ′) = θjpj(θjx, θ−1
j ξ′) ,

where pj is such that q̂(x1, ζ, ξ′) is supported in |ζ| ≤ cµ1/2, where µ = θjλ is the
frequency scale at which uj(θjx) is localized. Fix u(x) = uj(θjx) and θj = θ, where
now 1 ≥ θ ≥ µ−1/2. One writes

D1u− q(x,D′)u = F + G
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where G arises from the error term (p − pj)uj . The bound (2.2) is a consequence
of the following bound (for a global ε > 0)

(2.3) ‖u‖Lp
x1Lq

x′ (|x1|≤ε) . µγθσ(p,q)
(
‖u‖L∞L2(S) + ‖F‖L1L2(S)

+ µ
1
4 θ

1
2 ‖〈µ 1

2 x2〉−1u‖L2(S) + µ−
1
4 θ
− 1

2
j ‖〈µ 1

2 x2〉2G‖L2(S)

)
,

and for θ = µ−
1
2

(2.4) ‖u‖Lp
x1Lq

x′ (|x1|≤ε) . µγθσ(p,q)
(
‖u‖L∞L2(S) + ‖F + G‖L1L2(S)

)
.

The solution u is written as a superposition of terms, each of which is product of
χI(x1), for an interval I ⊂ [−ε, ε], with a functions whose wave-packet transform
is invariant under the Hamiltonian flow of q(x, ξ′). The wave-packet transform,
which acts in the x′ variables, is a simple modification of the Gaussian transform
used by Tataru [29] to establish Strichartz estimates for rough metrics; see also [30].
Precisely, set(

Tµf
)
(x′, ξ′) = µn/4

∫
e−i〈ξ′,y′−x′〉 g

(
µ

1
2 (y′ − x′)

)
f(y′) dy′ .

The base function g is taken to be of Schwartz class with ĝ supported in a ball of
small radius. Thus, ũ(x, ξ′) = [Tµu(x1, ·)](x′, ξ′) has the same localization in ξ′ as
does û(x1, ξ

′).

By Lemma 4.4 of [25] one can write(
d1 − dξ′q(x, ξ′) · dx′ + dx′q(x, ξ′) · dξ′

)
ũ(x, ξ′) = F̃ (x, ξ′) + G̃(x, ξ′) .

By variation of parameters and the use of V p
2 spaces, one reduces matters to estab-

lishing estimates for solutions invariant under the flow. The use of the V p
2 spaces

from [15] requires p > 2, which is implied by the conditions of Theorem 1.1.

Let Θt,s denote the Hamiltonian flow of q(x, ξ′), from x1 = s to x1 = t. Then
the bounds (2.3)-(2.4) are consequences of the following, which is the analogue of
Theorem 7.2 of [25].

Theorem 2.1. Suppose that f ∈ L2(R2n) is supported in a set of the form

{ξ : ξn+1 ≈ µ , |ξj | ≤ cµ , j = 2, . . . , n− 1, and ξn ≈ θµ}

or
{ξ : ξn+1 ≈ µ , |ξj | ≤ cµ , j = 2, . . . , n− 1, and |ξn| ≤ µ

1
2 }

in case θ = µ−1/2.

If Wf(x1, x
′) = T ∗µ

[
f ◦Θ0,x1

]
(x′) , then for admissible (p, q, γ)

‖Wf‖Lp
x1Lq

x′ (|t|≤ε) . µγθσ(p,q) ‖f‖L2(R2n) .

Proof. The function Wf is frequency localized to ξn ≈ θ and |ξ| ≈ µθ (respectively
|ξn| ≤ µ−

1
2 when θ ≈ µ−

1
2 ). By duality, it suffices to show the estimate

(2.5) ‖WW ∗F‖LpLq . µ2γθ2σ(p,q)‖F‖Lp′Lq′ .
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for ξ′-frequency localized F . We use t and s in place of x1 and y1 for ease of notation.
Then the operator WW ∗ applied to ξ′-localized F agrees with integration against
the kernel

K(t, x′; s, y′) = µ
n
2

∫
ei〈ζ,x′−z〉−i〈ζs,t,y

′−zs,t〉g(µ
1
2 (x′−z)) g(µ

1
2 (y′−zs,t))βθ(ζ) dz dζ

where (zs,t, ζs,t) = Θs,t(z, ζ). To align with the notation that x′ = (x2, . . . , xn+1)
denote the space parameters, we take ζ = (ζ2, . . . , ζn+1). Then βθ(ζ) is a smooth
cutoff to the set

{ζ : ζn+1 ≈ µ , |ζj | ≤ cµ , j = 2, . . . , n− 1, and ζn ≈ θµ}

(respectively |ζn| ≤ µ−
1
2 in case θ = µ−

1
2 .)

Analogous to [25, (7.1)-(7.2)], we establish the inequalities

(2.6)
∥∥∥∥∫ K(t, x′; s, y′)f(y′) dy′

∥∥∥∥
L2

x′

. ‖f‖L2
y′

.

and

(2.7)
∥∥∥∥∫ K(t, x′; s, y′)f(y′)dy

∥∥∥∥
L∞

x′

. µnθ (1+µ|t−s|)−
n−2

2 (1+µθ2|t−s|)− 1
2 ‖f‖L1

y′

Interpolation then yields that∥∥∥∥∫ K(t, x′; s, y′)f(y′) dy′
∥∥∥∥

Lq

x′

. (µnθ)1−
2
q (1 + µ|t− s|)−

n−2
2 (1− 2

q )(1 + µθ2|t− s|)−
1
2 (1− 2

q )‖f‖
Lq′

y′

In the case n−2
2 (1− 2

q ) ≤ 2
p ≤

n−1
2 (1− 2

q ), the exponent in the third factor on the
right can be replaced by n−2

2 (1− 2
q )− 2

p ≤ 0, showing that∥∥∥∥∫ K(t, x′; s, y′)f(y′) dy′
∥∥∥∥

Lq

x′

. µ2γθ2((n−1)( 1
2−

1
q )− 2

p )|t− s|−
2
p ‖f‖

Lq′
y′

In the case n−2
2 (1− 2

q ) ≥ 2
p , we can ignore the last factor and obtain the bound∥∥∥∥∫ K(t, x′; s, y′)f(y′) dy

∥∥∥∥
Lq

x′

. µ2γθ2( 1
2−

1
q )|t− s|−

2
p ‖f‖

Lq′
y′

In both cases, the Hardy-Littlewood-Sobolev inequality then establishes (2.5).

The inequality (2.6) is estimate [25, (7.1)], which follows from the fact that Tµ

is an isometry and Θt,s is a measure-preserving diffeomorphism. Hence it suffices
to prove (2.7). As in [25], we consider two cases.

In the case µθ2|t − s| ≥ 1, we fix θ ≤ θ so that µθ
2|t − s| = 1, and decompose

βθ(ζ) into a sum of cutoffs βj(ζ), each of which is localized to a cone of angle θ
about some direction ζj . The proof of [25, Theorem 5.4] yields that

|Kj(t, x′; s, y′)| . µnθ
n−1(

1 + µθ |y′ − x′s,t,j |
)−N

,
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where x′s,t,j is the space component of Θs,t(x, ζj). For each fixed (s, t) the x′s,t,j are
a (µθ)−1 separated set, and adding over j yields the desired bounds, since in this
case

µnθ
n−1

= µ
n+1

2 |t− s|−
n−1

2 = µnθ (1 + µ|t− s|)−
n−2

2 (1 + µθ2|t− s|)− 1
2

In case µθ2|t− s| ≤ 1, we let θ ≥ θ be given by

θ = min
(
µ−

1
2 |t− s|− 1

2 , 1
)
.

Following the proof of [25, (7.2)], we set ζ ′′ = (ζ2, . . . , ζn−1, ζn+1), and let βj be a
partition of unity in cones of angle θ on Rn−1. We then decompose

βθ(ζ) =
∑

j

βθ(ζ) βj(ζ ′′) ,

and let K =
∑

j Kj denote the corresponding kernel decomposition.

The arguments on page 152 of [25] yield

|Kj(t, x′; s, y′)| . µnθ
n−2

θ
(
1 + µθ |(y′ − x′s,t,j)2,...,n−1|

)−N
.

The x′s,t,j are (µθ)−1 separated in the (2, . . . , n − 1) variables as j varies, and
summing over j yields

|K(t, x′; s, y′)| . µnθ θ
n−2 ≈ µnθ (1 + µ|t− s|)−

n−2
2 (1 + µθ2|t− s|)− 1

2 . �

3. Applications to semilinear wave equations

As an application, we consider the following family of semilinear wave equations
with defocusing nonlinearity

∂2
t u−∆u + |u|r−1u = 0 (u, ∂tu)|t=0 = (f, g) u|∂M = 0,(3.1)

or

∂2
t u−∆u + |u|r−1u = 0 (u, ∂tu)|t=0 = (f, g) ∂νu|∂M = 0,(3.2)

We will be mostly interested in the range of exponents r < 1 + 4
n−2 (energy sub-

critical) and r = 1 + 4
n−2 (energy critical).

In the boundaryless case where Ω = Rn, the first results for the critical wave
equation were obtained by Grillakis [10]. He showed that when n = 3 there are
global smooth solutions of the critical wave equation, r = 5, if the data is smooth.
Shatah and Struwe [20] extended his theorem by showing that there are global
solutions for data lying in the energy space H1 × L2. They also obtained results
for critical wave equations in higher dimensions.

For the case of obstacles, the first results are due to Smith and Sogge [23]. They
showed that Grillakis’ theorem extends to the case where Ω is the compliment of a
smooth compact obstacle and Dirichlet boundary conditions are imposed, i.e. (3.1)
for r = 5. Recently this result was extended to the case of arbitrary domains in
Ω ⊂ R3 and data in the energy space by Burq, Lebeau and Planchon [5]. The case of
nonlinear critical Neumann-wave equations in 3-dimensions, (3.2), was subsequently
handled by Burq and Planchon [6].
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The proofs of the results for arbitrary domains in 3-dimensions used two new
ingredients. First, the estimates of Smith and Sogge [25] for spectral clusters turned
out to be strong enough to prove certain Strichartz estimates for the linear wave
equations with either Dirichlet or Neumann boundary conditions. Specifially, Burq,
Lebeau and Planchon [5] showed that one can control the L5W

3
10 ,5
0 norm of the

solution of (1.1) over [0, 1]× Ω in terms of the energy norm of the data, assuming
that Ω is compact. The other novelty was new estimates for the restriction of u
to the boundary, specifically Proposition 3.2 in [5] and Proposition 3.1 in [6]. In
the earlier case of convex obstacles and Dirichlet boundary conditions treated in
[23] such estimates were not necessary since for the flux arguments that were used
to treat the nonlinear wave equation (3.1), the boundary terms had a favorable
sign. We remark that by using the results in Theorem 1.1, we can simplify the
arguments in [5] and [6] since we now have control of the L4

t L
12
x ([0, 1] × Ω) norms

of the solution of (1.1) in terms of the energy norm of the data. If this is combined
with the aforementioned boundary estimates in [5] and [6] one can prove the global
existence results in these papers by using the now-standard arguments that are
found in [23] for convex obstacles, and [20] and [26] for the case where Ω = R3. In
the next section we shall show how these L4

t L
12
x and the weaker L5

t L
10
x estimates

can be used to show that there is scattering for (3.1) when n = 3, r = 5 and Ω is
the compliment of a star-shaped obstacle.

Let us conclude this section by presenting another new result. We shall show that
the Strichartz estimates in Theorem 1.1 are strong enough to prove the following:

Theorem 3.1. Suppose that Ω ⊂ R4 is a domain with smooth compact boundary.
If 1 < r < 3 and (f, g) ∈ (Ḣ1(Ω) ∩ Lr+1(Ω)) × L2(Ω) then (3.1) and (3.2) have a
unique global solution satisfying

u ∈ C0
(
[0, T ]; Ḣ1(Ω) ∩ Lr+1(Ω)

)
∩ C1

(
[0, T ];L2(Ω)

)
∩ L3

t L
6
x

(
[0, T ]× Ω

)
for every T > 0. If r = 3 then the same result holds provided that the (Ḣ1∩L4)×L2

norm of (f, g) is sufficiently small.

The local existence results follow from the fact that Theorem 1.1 implies that if
(∂2

t − ∆)v = F and v has either Dirichlet or Neumann boundary conditions then
for 0 < T < 1 there is a constant C so that

(3.3) ‖v‖L3
t L6

x((0,T )×Ω) ≤ C
(
‖v(0, · )‖H1 + ‖∂tv(0, · )‖L2 +

∫ T

0

‖F (s, · )‖2 ds
)
.

If Ω is the complement of a bounded set, then estimate (3.3) holds with H1 replaced
by Ḣ1, as can be seen by combining the estimates for the case of compact Ω with
the global Strichartz estimates on R4, and using finite propagation velocity. Using
this estimate the theorem follows from a standard convergent iteration argument
with u in the space

X = C0((0, T ); Ḣ1(Ω) ∩ Lr+1(Ω)) ∩ C1((0, T );L2(Ω)) ∩ L3
t L

6
x((0, T )× Ω),

and T being sufficiently small depending on the (Ḣ1∩Lr+1)×L2 norm of the initial
data (f, g) of either (3.1) or (3.2) for 1 < r < 3, and T depending on the data in
the critical case r = 3. For data of sufficiently small norm, one can obtain existence
for T = 1 for the critical case r = 3. Together with energy conservation, the above
yields global existence for 1 < r < 3, and global existence for small data for r = 3.
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The analog of (3.3) when n = 3 involves L5
t L

10
x in the left. As we mentioned

before, a stronger inequality involving L4
t L

12
x is valid when n = 3 by Theorem 1.1.

Any such corresponding improvement of (3.3) when n = 4 would lead to a global
existence theorem for arbitrary data for the critical case where r = 3, but, at
present, we are unable to obtain such a result.

4. Scattering for star-shaped obstacles in 3-dimensions

We now consider solutions to the energy critical nonlinear wave equation in 3+1
dimensions in a domain Ω = R3 \ K exterior to a compact, non-trapping obstacle
K with smooth boundary

2u(t, x) = (∂2
t −∆)u(t, x) = −u5(t, x), (t, x) ∈ R× Ω

u
∣∣
R×∂Ω

= 0(4.1)

(∇u(t, ·), ∂tu(t, ·)) ∈ L2(Ω) t ∈ R

We restrict attention to real-valued solutions u(t, x).

When K is a nontrapping obstacle, the estimates above, combined with those of
Smith and Sogge [24] (see also Burq [4], Metcalfe [17]) imply the following estimate
on functions w(t, x) satisfying homogeneous Dirichlet boundary conditions

(4.2) ‖w‖L5(R;L10(Ω)) + ‖w‖L4(R;L12(Ω))

≤ C
(
‖ (∇xw(0, ·), ∂tw(0, ·)) ‖L2(Ω) + ‖2w‖L1(R;L2(Ω))

)
.

In this section, we show how these global estimates can be used to show that solu-
tions to the nonlinear equation (4.1) above scatter to a solution to the homogeneous
equation

2v(t, x) = 0, (t, x) ∈ R× Ω

v
∣∣
R×∂Ω

= 0(4.3)

(∇v(t, ·), ∂tv(t, ·)) ∈ L2(Ω) t ∈ R.

Let ν = ν(x) denote the outward pointing unit normal vector to the boundary at
x ∈ ∂K. We call the obstacle K star-shaped with respect to the origin if ν(x) ·x ≥ 0
for all x ∈ ∂K. Define the energy functional

E0(v; t) =
1
2

∫
Ω

|∇xv(t, x)|2 + |∂tv(t, x)|2 dx,

and recall that t 7→ E0(v; t) is conserved whenever v is a solution to the homoge-
neous equation (4.3). We show the following:

Proposition 4.1. Suppose u solves the nonlinear problem (4.1) and that K is star-
shaped with respect to the origin. Then there exists unique solutions v± to (4.3)
such that

(4.4) lim
t→±∞

E0(u− v±; t) = 0.

Moreover, u satisfies the space-time integrability bound

(4.5) ‖u‖L5(R;L10(Ω)) + ‖u‖L4(R;L12(Ω)) < ∞.
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When K = ∅, this follows from the observations of Bahouri and Gérard [1].
We also remark that when K is convex, similar results for compactly supported,
subcritical nonlinearities were obtained by Bchatnia and Daoulatli [3].

Attention will be restricted to the v+ function, as symmetric arguments will
yield the existence of a v− asymptotic to u at −∞. As observed in [1], we actually
have that (4.4) follows as a consequence of (4.5). We first establish the existence
of the wave operator, namely that for any solution v to (4.3), there exists a unique
solution u to (4.1) such that

lim
t→∞

E0(u− v; t) = 0.

Given (4.2), for any δ > 0 we may select T large so that ‖v‖L5([T,∞);L10(Ω)) ≤ δ.
Given any w(t, x) satisfying ‖w‖L5([T,∞);L10(Ω)) ≤ δ, we have a unique solution to
the linear problem

2w̃ = −(v + w)5

lim
t→∞

E0(w̃; t) = 0

as the right hand side is in L1([T,∞);L2(Ω)). The estimate (4.2) then also ensures
that

‖w̃‖L5([T,∞);L10(Ω)) ≤ C‖(v + w)5‖L5([T,∞);L10(Ω)) ≤ 32Cδ5.

Hence for δ sufficiently small, the map w 7→ w̃ is a contraction in the ball of radius
δ in L5([T,∞);L10(Ω)). The unique fixed point w can be uniquely extended over
all of R× Ω. Hence taking u = v + w shows existence of the wave operator.

To see that the wave operator is surjective, we need a decay estimate which
establishes that the nonlinear effects of the solution map for (4.1) diminish as time
evolves.

Lemma 4.2. Let K be star-shaped with respect to the origin. If u(t, x) solves (4.1),
then the following decay estimate holds

lim
t→∞

1
6

∫
Ω

|u(t, x)|6 dx = 0.

When K = ∅, this is due to Bahouri and Shatah [2]. The proof below is es-
sentially theirs, with slight modifications made to handle the boundary conditions.
However, for the sake of completeness, we replicate the full proof below. We re-
mark that the approach employs a nonlinear version of the vector field used by
Morawetz [19] to prove decay of local energy for solutions to the linear wave equa-
tion exterior to a star-shaped obstacle.

To see that this implies the proposition, observe that given any ε > 0, there
exists T sufficiently large such that

sup
t≥T

‖u(t, ·)‖L6 < ε.
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Hence for any S > T we obtain the following for any solution u to (4.1)

‖u‖L5([T,S];L10(Ω)) + ‖u‖L4([T,S];L12(Ω)) ≤ C
(
E + ‖u5‖L1([T,S];L2(Ω))

)
≤ CE + Cε‖u‖L4([T,S];L12(Ω))

where E denotes the conserved quantity

E = E(t) =
∫

Ω

1
2
|∇u(t, x)|2 +

1
2
|∂tu(t, x)|2 +

1
6
|u(t, x)|6 dx.

A continuity argument now yields ‖u‖L5([T,∞);L10(Ω)) + ‖u‖L4([T,∞);L12(Ω)) < 2CE
and by a time reflection argument, (4.5) follows. However, this implies that the
linear problem

2w = −u5 lim
t→∞

E0(w; t) = 0

admits a solution, showing that the wave operator is indeed surjective as v = u−w
is the desired solution to (4.3).

Proof of Lemma 4.2. By a limiting argument it suffices to consider smooth, classical
solutions u which decay at infinity. We must show that for for any ε0 > 0, there
exists T0 such that whenever t ≥ T0,

1
6

∫
Ω

|u(t, x)| dx ≤ ε0.

Consider the stress energy tensor associated with u (see Tao [28])

T 00 =
1
2
(∂tu)2 +

1
2
|∇u|2 +

1
6
u6

T 0j = −∂tu∂xj u 1 ≤ j ≤ 3

T jk = ∂xj u∂xk
u− δjk

2
(|∇u|2 − (∂tu)2 +

1
3
u6) 1 ≤ j, k ≤ 3.

It can be checked that the divergence free property holds

∂tT
00 + ∂xj T

0j = 0 ∂tT
0j + ∂xk

T jk = 0

with the summation convention in effect. Taking the first of these identities and
applying the divergence theorem to a region {0 ≤ t ≤ T, |x| ≥ R + t} (with R > 0
large enough so that K ⊂ BR(0)) we have

(4.6)
∫
|x|≥R+T

1
2
|∂tu(T, x)|2 +

1
2
|∇u(T, x)|2 +

1
6
|u(T, x)|6 dx +

1√
2

flux(0, T )

≤
∫
|x|≥R

1
2
|∂tu(0, x)|2 +

1
2
|∇u(0, x)|2 +

1
6
|u(0, x)|6 dx

where

flux(a, b) :=
∫

Ma
b

1
2

∣∣∣∣ x

|x|
∂tu +∇u

∣∣∣∣2 +
|u|6

6
dσ

Ma
b := {a < t < b, |x| = R + t}

Since the solution has finite energy, we may select R large so that the right hand
side of (4.6) is less than ε0

40 (and again K ⊂ BR(0)). By time translation, t 7→ t+R,
it will suffice to show the existence of T0 such that whenever t > T0 we have

1
6

∫
x∈Ω:|x|≤t

|u(t, x)| dx ≤ ε0

2
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(the additional smallness in the right hand side of (4.6) will be used later in the
proof).

We now define the following vector field X = (X0, X1, X2, X3) by contracting
the stress-energy tensor with the null vector field t∂t−x·∇x and adding a correction
term

X0 = tT 00 − xkT 0k + u∂tu

Xj = tT j0 − xkT jk − u∂xj u 1 ≤ j ≤ 3.

The space-time divergence of X satisfies

div(X) = −1
3
u6

We now apply the divergence theorem over the truncated cone KT2
T1

= {x ∈ Ω :
|x| ≤ t, T1 ≤ t ≤ T2}

0 =
∫

D(T2)

X0 dx−
∫

D(T1)

X0 dx−
∫

M
T2
T1

X0 −
3∑

j=1

xj

|x|
Xj

 dσ

+
∫

K
T2
T1

|u|6

3
dx dt−

∫
∂Ω

ν · 〈X1, X2, X3〉 dσ

= I + II + III + IV + V

where dσ denotes Lebesgue measure on the corresponding surface and D(Ti) =
{x ∈ Ω : |x| ≤ Ti}. The star-shaped assumption is crucial in controlling the last
term V . Indeed, consider the restriction of the integrand in V to the ∂Ω(= ∂K)
and observe that the Dirichlet boundary condition gives

ν · 〈X1, X2, X3〉 = −
∑

1≤j,k≤3

νjxk

(
∂xj u∂xk

u− δjk

2
|∇u|2

)
= − (ν · ∇u) (x · ∇u) +

1
2
(ν · x)|∇u|2.

We have that ∇u is normal to ∂Ω and hence |∇u|2 = (ν · ∇u)2. Treating x as a
vector, we can project it on to the subspace orthogonal to ν obtaining

0 = ∇u · (x− (ν · x)ν) = x · ∇u− (ν · x)(ν · ∇u).

This now gives

ν · 〈X1, X2, X3〉 = −1
2

(ν · x) (ν · ∇u)2 ≤ 0

and since IV ≥ 0 is clear,

0 ≥ I + II + III.

We now impose polar coordinates (r, ω) ∈ R× S2 on the third term, writing

III = − 1√
2

∫
M

T2
T1

(
r(∂tu + ∂ru)2 + u(∂tu + ∂ru)

)
dσ
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where ∂r = x
|x| ·∇ denotes the radial derivative. Next parameterize MT2

T1
by (r, ω) →

(r, rω) and set v(y) = u(|y|, y) (or v(rω) = u(r, rω) in polar coordinates) so that
we may write compactly

III = −
∫

S2

∫ T2

T1

r
(
∂rv +

v

r

)2

r2 dr dω +
∫

S2

∫ T2

T1

1
2
∂r

(
r2v2

)
dr dω

= −
∫

S2

∫ T2

T1

r
(
∂rv +

v

r

)2

r2 dr dω +
1
2

∫
S2

T 2
2 v2(T2ω) dω − 1

2

∫
S2

T 2
1 v2(T1ω) dω

To handle the first term I, first observe that in polar coordinates

|∇u|2 = (∂ru)2 +
1
r2
|∇ωu|2 = (∂ru +

1
r
u)2 +

1
r2
|∇ωu|2 − 1

r2
∂r(ru2).

Since K is star-shaped we may parameterize ∂Ω by (r, ω) = (Ψ(ω), ω) where Φ is a
real valued function on S2. This allows us to write

I =
∫

D(T2)

T2

2

(
(∂tu)2 +

(
∂ru +

1
r
u

)2

+
1
r2
|∇ωu|2 +

1
3
u6

)
+ r

(
∂r +

1
r
u

)
∂tu dx

− 1
2

∫
S2

∫ T2

Ψ(ω)

T2∂r(ru2) dr dω

(4.7)

Integrating by parts in the last term yields cancellation with one of the terms in III

as the boundary condition gives− 1
2

∫
S2

∫ T2

Ψ(ω)
T2∂r(ru2) dr dω = − 1

2

∫
S2 T 2

2 v2(T2ω) dω.
Similarly,

II = −
∫

D(T1)

T1

2

(
(∂tu)2 +

(
∂ru +

1
r
u

)2

+
1
r2
|∇ωu|2 +

1
3
u6

)
+ r

(
∂r +

1
r
u

)
∂tu dx

+
1
2

∫
S2

T 2
1 v2(T1ω) dω

In order to control remaining term in I we need to observe the following Hardy
inequality, which holds in the exterior domain

(4.8)
∫

Ω

|u|2

|x|2
dx ≤ 4

∫
Ω

|∇u|2 dx.

To see this, we assume u is real-valued and denote the integral on left hand side as
J and convert to polar coordinates

J =
∫

S2

∫ ∞

Ψ(ω)

(u(rω))2 dr dω =
∫

S2
ru(rω)2

∣∣∣∞
Ψ(ω)

dω −
∫

S2

∫ ∞

Ψ(ω)

2u(∂ru)r dr dω.

The first term on the right is nonpositive (provided u exhibits sufficient decay at
infinity) and Cauchy-Schwartz on the second term gives

J ≤ 2
√

J

(∫
S2

∫ ∞

Ψ(ω)

|∂ru|2r2 dr dω

) 1
2

.

The inequality (4.8) now follows.
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We now observe that the first integral in (4.7) is bounded below by T2

∫
D(T2)

|u|6
6 dx.

Setting T2 = T > 0 and T1 = εT (0 < ε < 1) and using the Hardy inequality (4.8)
to control the first integral in II now yields

T

∫
D(T )

|u|6

6
dx ≤ CεTE +

∫ T

εT

∫
S2

T
(
∂rv +

v

r

)2

r2 dω dr.

Here E is the conserved quantity E = E(t) =
∫
Ω

T 00(t, x) dx. We can now divide
both sides of this inequality by T and choose ε sufficiently small so that CεE ≤ ε0/4,
leaving us to control the integral involving v. However, by the proof of the Hardy
inequality above we have∫ T

εT

∫
S2

(
∂rv +

v

r

)2

r2 dω dr ≤ 10
∫ ∞

εT

∫
S2

(∂rv)2 r2 dω dr ≤ 10 flux(εT,∞) <
ε

4
,

provided T is large enough so that εT > R. �
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