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1. Introduction

1.1. Seismic Imaging with Arrays – Beyond Current Capabilities

Much research in modern, quantitative seismology is motivated – on the one hand – by the
need to understand subsurface structures and processes on a wide range of length scales,
and – on the other hand – by the availability of ever growing volumes of high fidelity
digital data from modern seismograph networks and access to increasingly powerful
computational facilities.

Passive-source seismic tomography, a class of imaging techniques (derived from the
geodesicX-ray transform and) adopted from medical applications in the late 1960’s, has
been used to map the smooth variations in the propagation speed of seismic P and S
waves below the earth’s surface (see, e.g., Romanowicz [1], for a review and pertinent
references). To image singularities in the earth’s medium properties one needs to resort to
scattered waves or phases. Exploration seismologists have developed and long used a range
of imaging and inverse scattering techniques with scattered waves, generated by active
sources, to delineate and characterize subsurface reservoirs of fossil fuels (e.g., Yilmaz
[2]). A large class of these imaging and inverse scattering techniques can be formulated
and analyzed in terms of a Generalized Radon Transform (GRT [3, 4, 5, 6, 7, 8, 9, 10, 11])
and its extension [11] using techniques from microlocal analysis.

Recently, while using tomographic models as a background, passive-source seismic
imaging and inverse scattering techniques have been developed for the exploration of
Earth’s deep interior. For the imaging of crustal structure and subduction processes, see
Bostocket al. [12] and Rondenayet al. [13] – here, the incident, teleseismic, waves are
assumed to be “plane” waves. Wanget al. [14] present an inverse scattering approach
based upon the GRT to image selected neighborhoods of Earth’s core-mantle boundary
(CMB) using broadband wavefields including the main “topside” reflections off the CMB
and its precursors and coda (generated by scattering off interfaces above the CMB).
Through joint interpretation with data from mineral physics this method enabled the
estimation of temperatures at and near the CMB [15]. In order to increase the extent of
the CMB region that can be imaged, Wanget al. [16] extended the method to enable
GRT-like transforms of “underside” reflections, sampling the CMB and structures above it
from below. In a modification of this use of underside reflections, Caoet al. [17] used SS
precursors (see figure 1) to produce high resolution images of the upper mantle transition
zone discontinuities. Mantle discontinuities near the CMB and in the transition zone are
associated with phase transformations.

The key challenge of applying the GRT to global earth configurations remains
the available data coverage; but the challenge of subsurface illumination also exists in
exploration seismology, for example, in regions with salt tectonics. Indeed, various
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structures in the earth’s interior have so far escaped resolution, or discovery, due to
restrictions in illumination by (passive) sources and (arrays of) receivers. In this paper,
we assume that the data coverage cannot be improved. Given the available data coverage
on the one hand and the complexity of the background model (expressed in terms of
spatial wavespeed variations) on the other hand, we address the challenge of subsurface
illumination in imaging reflectors from waveform surface reflection data. We develop a
method for partial reconstruction. Our approach makes use of the frame of curvelets and
curvelet transform [18, 19, 20, 21], the associated matrix representation of the generalized
Radon transform, which need be extended in the presence of caustics, and phase-
linearization. We pair an image target – focussing on specific structures (or geodynamical
processes) – with partial reflection data, and develop a way to solve the matrix normal
equations that connect their curvelet coefficients via diagonal approximation.

The analysis we develop here has its roots in (double) beamforming, double
beam migration [22, 23] and beam-stack imaging [24, 25], which pose less stringent
requirements on data coverage than the GRT. Seismic data can be sparsely represented
by curvelet-like functions [26]. Therefore, the results presented here shed new light
on the concept of parsimonious pre-stack Kirchhoff migration [27]. Our approach also
retains aspects of pre-stack plane-wave (Kirchhoff) migration [28, 29], offset plane-wave
migration [30, 31], and delayed-shot pre-stack migration [32]. For example, synthesizing
“incident” plane waves from point sources has its counterpart in the curvelet transform of
the data.

There exists a rich literature on the use of regional (dense) seismic arrays to detect and
locate the origin of scattered energy in the seismic wavefield. Recent reviews of such array
processing techniques are given by, for instance, Rost and Thomas [33] and Rondenayet
al. [34]. In general, these techniques involve some type of beamforming [35]; that is,
they assume (or aim to detect) the wave vector (or the horizontal slowness – related to the
angle of incidence and back azimuth) of the incoming waves, and use this information to
separate the coherent from the incoherent parts of the recorded signal. Implicitly, these
methods aim to detect the wavefront set of the scattered wavefield [36]; this detection can
then be used in migration. In beam-stack imaging [25] a region of the crust is subdivided
into sub-areas. For each sub-area to be scanned, the seismograms from an event suite
are incoherently stacked after beam-correcting each trace, computing new beams for each
crustal sub-area, and migrating the results by applying appropriate time offsets, in the spirit
of time migration or geophysical diffraction tomography. Deusset al. [37] use an imaging
approach through waveform stacking, in particular, of SS precursors: After selecting a
bin of scattering (or image) points, which implies a selection of source-receiver pairs, the
authors correct for the moveout (observed reference arrival times) of SS in the seismic
records, and then stack the records at different slownesses (dependent on the bin) for given
(array specific) times relative to the SS arrival time. (This stacking can be viewed as
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beamforming.) For this family of imaging techniques, see also Flanagan and Shearer [38].
Receiver functions and the process of imaging P-to-S converted waves assuming an

incident plane P wave [39] are also related to the subject of this paper. But such analysis is
essentially restricted to imaging beneath continental regionals and isolated islands.

Migration methods have been applied to regional data sets with a weighting factor
which depends on the incident angles of the rays. To this end, the migration operators
have been limited to the Fresnel volume of the reflected ray paths [40] to reduce artifacts
caused by truncated wavefield observations. In this context, the migration operator
has been further subjected to slowness-backazimuth weighting with the aid of Gaussian
window functions [41]. The desired artifact reduction is implied by the rigorous partial
reconstruction proposed and developed in this paper.

The main objective of the research presented here is to be able to extend imaging
and interface characterization with inverse scattering into (geographical) regions where
degraded data coverage no longer justifies the application of a “global” GRT. Moreover,
through the (direct) computation of image curvelet coefficients, our approach enables a
careful examination of the different scales in rapid variation – and, hence, regularity –
in medium properties and the processes that shape them. We develop an approximation,
reminiscent of Gaussian beams [42], for the computation and application of the generalized
Radon transform matrix (with respect to curvelets) only making use of multiplications
and convolutions, given the underlying ray geometry. Throughout, we exploit the
(wavenumber) multi-scale features of the dyadic parabolic decomposition underlying the
curvelet transform and establish approximations that are accurate for sufficiently fine
scales.

The outline of the paper is as follows. In Section 2 we summarize the extension
of the generalized Radon transform viewed as a Fourier integral operator and bring
its kernel in a particular oscillatory integral form. In Section 3 we review the (co-
)frame of curvelets and the underlying dyadic parabolic decomposition, and introduce the
relevant matrix classes. We then prove a result pertaining to the diagonal approximation
of pseudodifferential operators (Lemma 3.1) and the computation of their inverses on
the range of the curvelet transform restricted to sufficiently fine scales. To this end,
we introduce the symbol classS0

1
2
,rad

and the notion of a “curvelet-like function”. In

Section 4 we prove results (Theorems 4.1-4.3) pertaining to matrix approximations to the
generalized Radon transform. The approximations are characterized by multiplications
and convolutions, the consequence of an underlying separation of variables in phase space
of the relevant symbols. These lead to fast algorithms, and we speak of imaging “in the
curvelet domain”. The results of this section also apply, for example, to the Fourier integral
operator representing the parametrix of the wave equation with smooth coefficients. In
Section 5 we introduce a method of partial reconstruction incorporating “illumination
correction” and prove the necessary estimates (Lemma 5.1). The results of this section can
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Figure 1. Scattered rays (broken geodesics) for imaging discontinuities (here the “660”
corresponding with a phase transition at 660 km depth) in Earth’s mantle. (CMB stands
for core-mantle boundary.)

be directly extended to other imaging schemes as long as the canonical relation describing
the propagation of singularities by the scheme is locally the graph of an invertible canonical
transformation.

1.2. Modelling, Scattering Operator

The propagation and scattering of seismic waves is governed by the elastic wave equation,
which is written in the form

Pilul = fi, (1)

where

ul =
√
ρ(x)(displacement)l, fi =

1√
ρ(x)

(volume force density)i, (2)

and

Pil = δil
∂2

∂t2
+ Ail + l.o.t. , Ail = − ∂

∂xj

cijkl(x)

ρ(x)

∂

∂xk

, (3)

where l.o.t. stands for “lower-order terms”,x ∈ Rn and the subscriptsi, j, k, l ∈
{1, . . . , n}; ρ is the density of mass whilecijkl denotes the stiffnesss tensor. The system
of partial differential equations (1) is assumed to be of principal type. It supports different
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wave types (also called modes), one “compressional” andn − 1 “shear”. We label the
modes byM,N, . . .

For waves in modeM , singularities are propagated along bicharacteristics, which are
determined by Hamilton’s equations with HamiltonianBM ; that is

dx

dλ
=

∂

∂ξ
BM(x, ξ) ,

dt

dλ
= 1,

dξ

dλ
= − ∂

∂x
BM(x, ξ) ,

dτ

dλ
= 0.

(4)

TheBM(x, ξ) follow from the diagonalization of the principal symbol matrix ofAil(x, ξ),
namely as the (distinct) square roots of its eigenvalues. Clearly, the solution of (4) may be
parameterized byt (that is,λ = t). We denote the solution of (4) with initial values(x0, ξ0)

at t = 0 by (xM(x0, ξ0, t), ξM(x0, ξ0, t)).
To introduce the scattering of waves, the total value of the medium parametersρ, cijkl

is written as the sum of a smooth background component,ρ(x), cijkl(x), and a singular
perturbation,δρ(x), δcijkl(x), namelyρ(x)+δρ(x), cijkl(x)+δcijkl(x). This decomposition
induces a perturbation ofPil (cf. (3)),

δPil = δil
δρ(x)

ρ(x)

∂2

∂t2
− ∂

∂xj

δcijkl(x)

ρ(x)

∂

∂xk

.

The scattered field,δul, in the single scattering approximation, satisfies

Pilδul = −δPilul.

Data are measurements of the scattered wave field,δu. When no confusion is possible,
we denote data byu, however. We assume point sources (consistent with the far field
approximation) and point receivers. Then the scattered wave field is expressible in terms
of the Green’s function perturbations,δGMN(x̂, x̃, t), with incident modes of propagation
N generated at̃x and scattered modes of propagationM observed at̂x as a function of
time. Here,(x̂, x̃, t) are contained in some acquisition manifold. This is made explicit by
introducing the coordinate transformation,y 7→ (x̂(y), x̃(y), t(y)), such thaty = (y′, y′′)

and the acquisition manifold,Y say, is given byy′′ = 0. We assume that the dimension of
y′′ is 2 + c, wherec is the codimension of the acquisition geometry. In this framework, the
data are modeled by(

δρ(x)

ρ(x)
,
δcijkl(x)

ρ(x)

)
7→ δGMN(x̂(y′, 0), x̃(y′, 0), t(y′, 0)). (5)

When no confusion is possible, we use the notationδGMN(y′).
We denote scattering points byx0; x0 ∈ X ⊂ Rn, reflecting thatsupp δρ ⊂ X and

supp δc ⊂ X. The bicharacteristics connecting the scattering point to a receiver (in mode
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M ) or a source (in modeN ) can be written as solutions of (4),

x̂ = xM(x0, ξ̂0, t̂ ) , x̃ = xN(x0, ξ̃0, t̃ ) ,

ξ̂ = ξM(x0, ξ̂0, t̂ ) , ξ̃ = ξN(x0, ξ̃0, t̃ ) ,

with appropriately chosen “initial”̂ξ0 and ξ̃0, respectively. Thent = t̂ + t̃ represents
the “two-way” reflection time. The frequencyτ satisfiesτ = −BM(x0, ξ̂0). We
obtain (y(x0, ξ̂0, ξ̃0, t̂, t̃ ), η(x0, ξ̂0, ξ̃0, t̂, t̃ )) by transforming(x̂, x̃, t̂ + t̃, ξ̂, ξ̃, τ) to (y, η)

coordinates. We then invoke the following assumptions that concern scattering overπ

and rays grazing the acquisition manifold:

Assumption 1. There are no elements(y′, 0, η′, η′′) with (y′, η′) ∈ T ∗Y \0 such that there
is a direct bicharacteristic from(x̂(y′, 0), ξ̂(y′, 0, η′, η′′)) to (x̃(y′, 0),−ξ̃(y′, 0, η′, η′′)) with
arrival time t(y′, 0).

Assumption 2. The matrix

∂y′′

∂(x0, ξ̂0, ξ̃0, t̂, t̃ )
has maximal rank. (6)

With Assumptions 1 and 2, equation (5) defines a Fourier integral operator of order
n−1+c

4
and canonical relation, that governs the propagation of singularities, given by

ΛMN = {(y′(x0, ξ̂0, ξ̃0, t̂, t̃ ), η
′(x0, ξ̂0, ξ̃0, t̂, t̃ );x0, ξ̂0 + ξ̃0) | (7)

BM(x0, ξ̂0) = BN(x0, ξ̃0) = −τ, y′′(x0, ξ̂0, ξ̃0, t̂, t̃ ) = 0}
⊂ T ∗Y \0× T ∗X\0.

The conditiony′′(x0, ξ̂0, ξ̃0, t̂, t̃ ) = 0 determines the traveltimeŝt for given (x0, ξ̂0) and t̃
for given (x0, ξ̃0). The canonical relation admits coordinates,(y′I , x0, η

′
J), whereI ∪ J

is a partition of{1, . . . , 2n − 1 − c}, and has an associated phase function,ΦMN =

ΦMN(y′, x0, η
′
J). While establishing a connection with double beamforming, we will also

use the notationxs = x̃(y′, 0), xr = x̂(y′, 0); when no confusion is possible, we use the
simplified notationy′ = (xs, xr, t).

We refer to the operator above as the scattering operator. Its principal symbol can
be explicitly computed in terms of solutions of the transport equation [11]. In the further
analysis we suppress the subscriptsMN , and drop the prime and writey for y′ andη for η′.

2. Generalized Radon Transform

Through an extension, the scattering operator becomes, microlocally, an invertible Fourier
integral operator, the canonical relation of which is a graph. The inverse operator acts on
seismic reflection data and describes inverse scattering by the generalized Radon transform.
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2.1. Extension

Subject to the restriction to the acquisition manifoldY , the data are a function of2n−1−c
variables, while the singular part of the medium parameters is a function ofn variables.
Here, we discuss the extension of the scattering operator to act on distributions of2n−1−c
variables, equal to the number of degrees of freedom in the data acquisition. We recall the
commonly invoked

Assumption 3. (Guillemin [43]) The projectionπY of Λ onT ∗Y \0 is an embedding.

This assumption is known as the Bolker condition. It admits the presence of caustics.
BecauseΛ is a canonical relation that projects submersively on the subsurface variables
(x, ξ) (using that the matrix operatorPil is of principal type), the projection of (7) on
T ∗Y \0 is immersive [44, Lemma 25.3.6 and (25.3.4)]. Indeed, only the injectivity part
of the Bolker condition needs to be verified. The imageL of πY is locally a coisotropic
submanifold ofT ∗Y \0.

Since the projectionπX of Λ on T ∗X\0 is submersive, we can choose(x, ξ) as the
first 2n local coordinates onΛ; the remaining dimY − n = n − 1 − c coordinates are
denoted bye ∈ E, E being a manifold itself. Moreover,ν = ‖ξ‖−1ξ is identified as the
seismicmigration dip. The setsX 3 (x, ξ) = const. are the isotropic fibers of the fibration
of Hörmander [45], Theorem 21.2.6; see also Theorem 21.2.4. The wavefront set of the
data is contained inL and is a union of such fibers. The mapπXπ

−1
Y : L → X is a

canonical isotropic fibration, which can be associated with seismicmap migration[46].
With Assumption 3 being satisfied, we defineΩ as the map (onΛ),

Ω : (x, ξ, e) 7→ (y(x, ξ, e), η(x, ξ, e)) : T ∗X\0× E → T ∗Y \0 ;

this map conserves the symplectic form ofT ∗X\0. The (x, ξ, e) are “symplectic”
coordinates on the projectionL of Λ onT ∗Y \0. In the following lemma, these coordinates
are extended to symplectic coordinates on an open neighborhood ofL, which is a
manifestation of Darboux’s theorem stating thatT ∗Y can be covered with symplectic local
charts.

Lemma 2.1. Let L be an embedded coisotropic submanifold ofT ∗Y \0, with symplectic
coordinates(x, ξ, e). DenoteL 3 (y, η) = Ω(x, ξ, e). We can find a homogeneous
canonical mapG from an open part ofT ∗(X × E)\0 to an open neighborhood ofL in
T ∗Y \0, such thatG(x, e, ξ, ε = 0) = Ω(x, ξ, e).

LetM be the canonical relation defined as the graph of mapG in this lemma, i.e.

M = {(G(x, e, ξ, ε);x, e, ξ, ε)} ⊂ T ∗Y \0× T ∗(X × E)\0 .

One can then construct a Maslov-type phase function forM that is directly related to a
phase function forΛ. Suppose(yI , x, ηJ) are suitable coordinates forΛ. For |ε| small, the
constant-ε subset ofM allows the same set of coordinates, thus we can use coordinates
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Figure 2. Wavefront set of an extended image,r = r(x, e). The gray surface (singular
support) corresponds withε = 0 and maps into the range of the scattering operator before
extension. The transparent surface exemplifies the extension toε values away from zero.

(yI , ηJ , x, ε) on M . Now there is (see Theorem 4.21 in Maslov and Fedoriuk [47]) a
functionS(yI , x, ηJ , ε), called the generating function, such thatM is given by

yJ =
∂S

∂ηJ

, ηI = − ∂S

∂yI

,

ξ =
∂S

∂x
, e = −∂S

∂ε
.

(8)

A phase function forM is hence given by

Ψ(y, x, e, ηJ , ε) = S(yI , x, ηJ , ε)− 〈ηJ , yJ〉+ 〈ε, e〉. (9)

A phase function forΛ is then recovered by

Ψ(y, x, ∂S
∂ε
|ε=0, ηJ , 0) = Φ(y, x0, ηJ) .

We then obtain a mapping from a reflectivity function (illustrated in figure 2) to
reflection data that extends the mapping from contrast to data (cf. (5)). We recall

Theorem 2.2. [11] Suppose microlocally that Assumptions 1 (no scattering overπ), 2
(transversality), and 3 (Bolker condition) are satisfied. LetF be the Fourier integral
operator,

F : E ′(X × E) → D′(Y ) ,

with canonical relation given by the graph of the extended mapG : (x, ξ, e, ε) 7→ (y, η)

constructed in Lemma 2.1. Then the data can be modeled byF acting on a distribution
r(x, e) of the form

r(x, e) = R(x,Dx, e) c(x), (10)
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whereR stands for a smoothe-family of pseudodifferential operators andc ∈ E ′(X) with

c =
(

δcijkl

ρ
, δρ

ρ

)
.

The operatorF is microlocally invertible. By composing with an elliptic
pseudodifferential operator we can assume without loss of generality thatF is a zeroth
order Fourier integral operator associated to a (local) canonical graph. We recall that
for Fourier integral operators the canonical relations of which are locally the graphs of
canonical transformations, we have the property that their orders equal their Sobolev orders
[45, Cor. 24.3.2]

Remark. The operatorF extends the procedure applied in [14, 15] to image, with the
adjoint F ∗, D′′ in Earth’s lowermost mantle using core reflected ScS “phases”, their
precursors and their coda, to the generic case admitting the formation of caustics. The
e dependence inr(x, e) can be exploited in a formulation of inference of singularities in
the presence of (coherent) “noise” [48].

2.2. Oscillatory Integral Representation

If we have a canonical transformation from a neighborhood of(x0, e0, ξ0, ε0) ∈ T ∗(X ×
E)\0 to a neighborhood of(y0, η0) ∈ T ∗Y \0, then one can choose local coordinates
(y, ξ, ε) on a neighborhood of(y0, η0, x0, e0, ξ0, ε0) on M [44, Prop. 25.3.3], that is,
M : (y, η, x, e, ξ, ε) → (y, ξ, ε) is a local diffeomorphism. We denote the associated
generating function bỹS = S̃(y, ξ, ε) and obtain the phase function

φ(x, e, y, η) = S̃(y, ξ, ε)− 〈ξ, x〉 − 〈ε, e〉 (11)

(cf. (9)). In fact, onM locally we can regardη and(x, e) as functions of(y, ξ, ε); then we
can takeS̃(y, ξ, ε) = 〈η(y, ξ, ε), (x(y, ξ, ε), e(y, ξ, ε))〉 [45, Thm. 21.2.18].

We introduce the shorthand notation,x := (x, e), ξ := (ξ, ε), resettingn := 2n − 1,
andS(y, ξ) := S̃(y, ξ, ε) andΣ : (x, ξ) → (y, η) = (Σ1(x, ξ),Σ2(x, ξ)) corresponding
with G(x, e, ξ, ε), cf. Lemma 2.1. We identifyv(x) with r(x, e), and we get, sinceF is a
Fourier integral operator,

(Fv)(y) =

∫
A(y, x)v(x) dx. (12)

The kernel admits an oscillatory integral representation

A(y, x) =

∫
a(y, ξ) exp[iφ(y, x, ξ)] dξ, (13)

with non-degenerate phase function

φ(y, x, ξ) = S(y, ξ)− 〈ξ, x〉 (14)
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and amplitudea = a(y, ξ), a standard symbol of order zero, with principal part
homogeneous inξ of order 0. With the above form of the phase function, it follows
immediately that operatorF propagates singularities according to the map,(

∂S

∂ξ
, ξ

)
→
(
y,
∂S

∂y

)
, (15)

which can be identified asΣ. Substituting (14) into (12)-(13) yields the representation

(Fv)(y) =

∫
a(y, ξ) exp[iS(y, ξ)] v̂(ξ) dξ, (16)

in whichS satisfies the homogeneity propertyS(y, cξ) = cS(y, ξ) for c > 0; v̂ denotes the
Fourier transform ofv, anddξ denotes(2π)−n times Lebesgue measure.

We remark that the above representation is valid microlocally. In Section 4 we study
the action of operators of the form (16) to curvelets. The results for the global Fourier
integral operatorF are obtained by taking a superposition of the above representations
using an appropriate microlocal partition of the unity in phase space.

3. Dyadic Parabolic Decomposition and “Curvelets”

We introduce boxes (along theξ1-axis, that is,ξ′ = ξ1)

Bk =

[
ξ′k −

L′k
2
, ξ′k +

L′k
2

]
×
[
−L

′′
k

2
,
L′′k
2

]n−1

,

where the centersξ′k, as well as the side lengthsL′k andL′′k, satisfy the parabolic scaling
condition

ξ′k ∼ 2k, L′k ∼ 2k, L′′k ∼ 2k/2, ask →∞.

Next, for eachk ≥ 1, let ν vary over a set of approximately2k(n−1)/2 uniformly distributed
unit vectors. (We can indexν by ` = 0, . . . , Nk − 1,Nk ≈ b2k(n−1)/2c: ν = ν(`) while we
adhere to the convention thatν(0) = e1 aligns with theξ1-axis.) LetΘν,k denote a choice
of rotation matrix which mapsν to e1, and

Bν,k = Θ−1
ν,kBk.

In the (co-)frame construction, we have two sequences of smooth functions,χ̂ν,k andβ̂ν,k,
onRn, each supported inBν,k, so that they form a co-partition of unity

χ̂0(ξ)β̂0(ξ) +
∑
k≥1

∑
ν

χ̂ν,k(ξ)β̂ν,k(ξ) = 1, (17)

and satisfy the estimates

|〈ν, ∂ξ〉j ∂α
ξ χ̂ν,k(ξ)|+ |〈ν, ∂ξ〉j ∂α

ξ β̂ν,k(ξ)| ≤ Cj,α 2−k(j+|α|/2).
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We then form

ψ̂ν,k(ξ) = ρ
−1/2
k β̂ν,k(ξ) , ϕ̂ν,k(ξ) = ρ

−1/2
k χ̂ν,k(ξ), (18)

with ρk the volume ofBk. These functions satisfy the estimates

|ϕν,k(x)|
|ψν,k(x)|

}
≤ CN2k(n+1)/4 ( 2k|〈ν, x〉|+ 2k/2‖x‖ )−N

for all N . To obtain a (co-)frame, one introduces the integer lattice:Xj := (j1, . . . , jn),
the dilation matrix

Dk =
1

2π

(
L′k 01×n−1

0n−1×1 L′′kIn−1

)
, det Dk = (2π)−nρk,

and pointsxj = Θ−1
ν,kD

−1
k Xj. The frame elements (k ≥ 1) are then defined in the Fourier

domain as

ϕ̂γ(ξ) = ρ
−1/2
k χ̂ν,k(ξ) exp[−i〈xj, ξ〉], γ = (xj, ν, k), (19)

and similarly forψ̂γ(ξ). We obtain the transform pair

vγ =

∫
v(x)ψγ(x) dx, v(x) =

∑
γ

vγϕγ(x) (20)

with the property that
∑

γ′: k′=k, ν′=νvγ′ϕ̂γ′(ξ) = v̂(ξ)β̂ν,k(ξ)χ̂ν,k(ξ), for eachν, k.

Remark. If we write v̂ν,k(ξ) = ρ
1/2
k v̂(ξ)β̂ν,k(ξ), the curvelet transform pair attains the

form of a quadrature applied to the convolution,

v(x) =
∑
ν,k

vν,k ∗ ϕν,k(x) . (21)

This observation can be exploited to obtain sparse approximations, ofv, by sums of
wavepackets [26].

We introduce the notationC for the curvelet transform (analysis):vγ = (Cv)γ , and
also defineC−1{cγ} =

∑
γ cγϕγ for the inverse transform (synthesis). We observe that

C−1C = I on L2(Rn), and thatCC−1 ≡ Π is a (not necessarily orthogonal) projection
operator of̀ 2

γ onto the range of the analysis operatorC. It holds thatΠ2 = Π, but Π is
generally not self-adjoint unlessψγ = ϕγ. Observe that, as a matrix on`2γ,

Πγ′γ = 〈ψγ′ , ϕγ〉 .

If A : L2(Rn) → L2(Rn), then the matrix[A] = CAC−1 preserves the range ofC,
sinceC−1Π = C−1, andΠC = C. In particular,[A]Π = Π[A] = [A] . Here, and when
convenient, we identify operators on`2γ with matrices.
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3.1. Matrix Classes and Operators

Let d denote the pseudodistance onS∗(X) introduced in [49, Definition 2.1]

d(x, ν;x′, ν ′) = |〈ν, x− x′〉|+ |〈ν ′, x− x′〉|
+ min{‖x− x′‖, ‖x− x′‖2}+ ‖ν − ν ′‖2.

If γ = (x, ν, k) andγ′ = (x′, ν ′, k′), let

d(γ; γ′) = 2−min(k,k′) + d(x, ν;x′, ν ′). (22)

The weight functionµδ(γ, γ
′) introduced in [50] is given by

µδ(γ, γ
′) = (1 + |k′ − k|2)−12−( 1

2
n+δ)|k′−k|2−(n+δ)min(k′,k)d(γ, γ′)−(n+δ).

We summarize [50, Definitions 2.6-2.8]. Ifχ is a mapping onS∗(Rn), the matrixM
with elementsMγ′γ belongs to the classMr

δ(χ), if there is a constantC(δ) such that

|Mγ′γ| ≤ C(δ) 2krµδ(γ
′, χ(γ)) (2kr ≈ ‖ξ‖r); (23)

here,χ(γ) = (χ(xj, ν), k). Furthermore,Mr(χ) = ∩δ>0Mr
δ(χ). If χ is the projection of

a homogeneous canonical transformation, then by [49, Lemma 2.2] the mapχ preserves
the distanced up to a bounded constant; that isd(χ−1(γ), γ′) ≈ d(γ, χ(γ′)) . Hence, the
transpose operation takes matrices inMr(χ) toMr(χ−1). We note that the projection map
Π = CC−1 belongs toM0(I), see [50, Lemma 2.9].

It is also useful to introduce norms on the class of matrices determined by distance-
weighted̀ 2

γ norms on columns and rows. Precisely, forα ≥ 0 and a givenχ,

‖M‖2
2;α = sup

γ

∑
γ′

22|k−k′|α22min(k,k′)αd(γ′;χ(γ))2α |Mγ′γ|2

+ sup
γ′

∑
γ

22|k−k′|α22min(k,k′)αd(γ′;χ(γ))2α |Mγ′γ|2 . (24)

We remark that any matrix bounded on`2γ must have finite(2; 0) norm, since this
corresponds to rows and columns being square summable. Additionally, it follows
immediately that

‖M‖2;α+n <∞ ⇒ M ∈M0
α(χ) . (25)

Inclusion in the other direction follows from the proof of [50, Lemma 2.4]

M ∈M0
α(χ) ⇒ ‖M‖2;α <∞. (26)

The technique of(2;α) bounds has been designed for propagation and scattering problems
in rough background metrics (density normalized stiffness), but theMr

δ conditions lead
more directly to desired mapping properties.
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3.2. Pseudodifferential Operators and Diagonal Approximation

Pseudodifferential operators, of orderr, with appropriate symbols are the most important
example of operators with matrices of classMr(I).

Let

Av(x) ≡ a(x,D)v(x) =

∫
exp[i〈x, ξ〉] a(x, ξ)û(ξ) dξ,

where the symbol satisfies, for allj, α, β,

|〈ξ, ∂ξ〉j∂α
ξ ∂

β
xa(x, ξ)| ≤ Cj,α,β(1 + ‖ξ‖)−

1
2
|α|+ 1

2
|β| . (27)

We denote the class of symbols satisfying these estimates asS0
1
2
,rad

. Thus,a ∈ S0
1
2
,rad

precisely when〈ξ, ∂ξ〉ja ∈ S0
1
2
, 1
2

for all j. More generally,a ∈ Sr
1
2
,rad

precisely when

〈ξ, ∂ξ〉ja ∈ Sr
1
2
, 1
2

for all j. LetA be a pseudodifferential operator with symbol inSr
1
2
,rad

. A

stationary phase analysis then shows thatAϕγ = 2krfγ, where

f̂γ(ξ) = ρ
−1/2
k ĝν,k(ξ) exp[−i〈xj, ξ〉], (28)

in which ĝν,k satisfies the estimates

|〈ν, ∂ξ〉j∂α
ξ ĝν,k| ≤ Cj,α,N2−k(j+ 1

2
|α|)(1 + 2−k|〈ν, ξ〉|+ 2−k/2‖ξ −Bν,k‖)−N

for all N , where‖ξ−Bν,k‖ denotes the distance ofξ to the rectangleBν,k supportingχ̂ν,k.
Such anfγ will be called a “curvelet-like function” centered atγ, cf. (19). In particular,

|〈ψγ′ , fγ〉| ≤ C(δ)µδ(γ
′, γ)

for all δ > 0, so that〈ψγ′ , fγ〉 ∈ M0(I).
If the principal symbol ofA is homogeneous of order0, a0(x, ξ) = a0(x, ξ/‖ξ‖),

we have the following diagonalization result, which is a simple variation of the phase-
linearization of Seeger-Sogge-Stein [51]

Lemma 3.1. Suppose thatA is a pseudodifferential operator with homogeneous principle
symbola0(x, ξ) of order0. Then

Aϕγ = a0(xj, ν)ϕγ + 2−k/2fγ , (29)

wherefγ is a curvelet-like function centered atγ.

Proof. The precise assumption we need is that the symbol ofA equalsa0 plus a symbol of

classS
− 1

2
1
2
,rad

. The terms of order−1
2

can be absorbed intofγ, while

a0(x,D)ϕγ(x) = ρ
−1/2
k

∫
exp[i〈x− xj, ξ〉]a0(x, ξ)χ̂ν,k(ξ) dξ.
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For convenience we assume thatν = (1, 0, . . . , 0) lies on theξ1 axis. By homogeneity,
a0(x, ξ) = a0(x, 1, ξ

′′/ξ1), where ξ′′ = (ξ2, . . . , ξn). We take the first-order Taylor
expansion on a cone about theξ1 axis, that is,

a0(x, 1, ξ
′′/ξ1)− a0(xj, ν) = b1(x, ξ) · (x− xj) + b2(x, ξ) · ξ′′/ξ1 ,

whereb1 andb2 are smooth homogeneous symbols. The term withξ′′/ξ1 is bounded by
2−k/2 on the support of̂χν,k, and preserves the derivative bounds (28) onχ̂ν,k with a gain
of 2−k/2. The termb1 · (x− xj) leads to a contribution

ρ
−1/2
k

∫
exp[i〈x− xj, ξ〉]Dξ(b1(x, ξ)χ̂ν,k(ξ)) dξ,

which also yields a curvelet-like function of order−1
2
.

In (29) we writerγ = 2−k/2fγ. Taking inner products withψγ′ yields

[A]γ′γ = a0(xj, ν) Πγ′γ + 〈ψγ′ , rγ〉 . (30)

If A is elliptic, we have uniform upper and lower bounds on the symbola0(x, ξ), that is
C−1 ≤ |a0(x, ξ)| ≤ C for some positive constantC. By (30) we then have

a0(xj, ν)
−1[A]γ′γ − Πγ′γ ∈M− 1

2 (I) . (31)

Also, by (30),
| a0(xj, ν)− 〈ψγ, ϕγ〉−1[A]γγ | ≤ C 2−k/2 .

It follows that (31) holds witha0(xj, ν) replaced by the normalized diagonal

Dγ = Π−1
γγ [A]γγ ,

after modifying[A]γγ, if necessary, by terms of size2−k/2, to allow for the possibility that
the diagonal elements of[A] may vanish for smallk.

We remark that (31) also holds witha0(xj, ν) replaced bya0(x
′
j, ν

′). (The latter
appears from applying the procedure of diagonal approximation to theadjoint of A.) This
follows by (30) and the fact that

|a0(xj, ν)− a0(x
′
j, ν

′)| ≤ C ( |xj − x′j|+ |ν − ν ′| ) ≤ C d(xj, ν;x
′
j, ν

′)1/2 ,

hence the commutator(a0(x
′
j, ν

′)− a0(xj, ν))Πγ′γ belongs toM− 1
2 (I). As above, it then

follows that

D−1
γ′ [A]γ′γ = Πγ′γ +Rγ′γ , R ∈M− 1

2 (I) . (32)

WhileA need not be invertible, (32) implies that one can invert[A] on the range ofC
restricted tok sufficiently large. Precisely, letΓ0 be a collection of indicesγ. We denote
by 1Γ0 the multiplication operator (diagonal) on`2γ that truncates a sequence toΓ0. Then
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ΠΓ0 = Π 1Γ0 is an approximate projection into the range ofC, with rapidly decreasing
coefficients away fromΓ0. In practice, it is desirous to take1Γ0, at each fixed scalek, to
be a smooth truncation to a neighborhood ofΓ0, such that|1Γ0

γ − 1Γ0

γ′ | ≤ C d(γ, γ′)1/2 . In
this case,

(1Γ0
γ − 1Γ0

γ′ )Πγγ′ ∈M− 1
2 , (33)

so that1Γ0 preserves the range ofC at any fixed scalek up to an operator of norm2−k/2,
hence the difference betweenΠΓ0 and 1Γ0 is small on the range ofC for largek.

If we multiply (32) on the right by1Γ0
γ , and use thatR = RΠ, then

D−1[A]1Γ0 = Π1Γ0 +R 1Γ0 = (I +R0)Π
Γ0 ,

whereR0 is the matrixR restricted to the scalesk occuring inΓ0. Hence, ifΓ0 is supported
by k sufficiently large, thenI +R0 can be inverted, and

(I +R0)
−1D−1[A]1Γ0 = ΠΓ0 ,

using a Neumann expansion. To leading order the inverse isdiagonal. We will exploit this
result in Section 5, while solving the normal equations derived from the compositionF ∗F ,
yielding “illumination correction” and partial reconstruction of the reflectivity function.

4. Generalized Radon Transform Matrix Approximation

We consider the action of the generalized Radon transform operatorF on a single curvelet,
that isv = ϕγ in (16),

(Fϕγ)(y) = ρ
−1/2
k

∫
a(y, ξ)χ̂ν,k(ξ) exp[i (S(y, ξ)− 〈ξ, xj〉)] dξ. (34)

With the outcome, we can associate a “kernel”

Aν,k(y, xj) = (Fϕγ)(y) . (35)

The infinite generalized Radon transform matrix is given by

[F ]γ′γ :=

∫
ψγ′(y)(Fϕγ)(y) dy =

∫
ψγ′(y)Aν,k(y, xj) dy . (36)

We then haveF = C−1[F ]C.

We seek an approximation ofFϕγ via expansions of the generating functionS(y, ξ)

and the symbola(y, ξ) near the microlocal support ofϕγ. The first-order Taylor expansion
of S(y, ξ) along theν axis, following [51], yields

S(y, ξ)− 〈ξ, xj〉 =

〈
ξ,
∂S

∂ξ
(y, ν)− xj

〉
+ h2(y, ξ) , (37)
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where the error termh2(y, ξ) satisfies the estimates (27) on theξ-support of χ̂ν,k.
Consequently,exp[ih2(y, ξ)] is a symbol of classS0

1
2
,rad

if ξ is localized to the rectangle

Bν,k supportingχ̂ν,k.
We introduce the coordinate transformation (note thatν depends onk)

y → Tν,k(y) =
∂S

∂ξ
(y, ν) .

If bν,k(x, ξ) is the order0 symbol

bν,k(x, ξ) = (a(y, ξ) exp[ih2(y, ξ)] )|y=T−1
ν,k (x) ,

then
(Fϕγ)(y) = [bν,k(x,D)ϕγ]x=Tν,k(y).

This decomposition expresses the generalized Radon transform operator as a(ν, k)

dependent pseudodifferential operator followed by a change of coordinates, also depending
on the pair(ν, k). This decomposition can be used to show that the matrix[F ] belongs
to M0(χ), whereχ is the projection of the homogeneous canonical transformationΣ

(cf. (15)) to the co-sphere bundle; see [53] and [54]. (See also Theorem 4.3 below.)

We use an expansion of the symbol and phase of the oscillatory integral representation
to obtain an approximation for the generalized Radon transform matrix elements up to error
of size2−k/2; more precisely, the matrix errors will be of classM− 1

2 (χ). The principal
parta0(y, ξ) of symbola(y, ξ) is homogeneous of order0. Following Lemma 3.1, we may
replacea0(y, ξ) by eithera0(y, ν) or a0(yj, ν), where

xj =
∂S

∂ξ
(yj, ν) = Tν,k(yj) ,

with the effect of modifying the generalized Radon transform matrix by a matrix of class
M− 1

2 (χ).
The symbolh2(y, ξ) is homogeneous of order 1 and of classS0

1
2
,rad

on the support of

χ̂ν,k, whence we need account for the second-order terms in its Taylor expansion to obtain
an approximation within order−1

2
. The relevant approximation is to Taylor expand inξ

in directions perpendicular toν, preserving homogeneity of order 1 in the radial direction;
this is dictated by the non-isotropic geometry of the second-dyadic (or dyadic parabolic)
decomposition.

For convenience of notation, we consider the case thatν lies on theξ1 axis. Then
(compare (37))

S(y, ξ1, ξ
′′) = ξ1S(y, 1, ξ′′/ξ1) = ξ · ∂S

∂ξ
(y, ν) +

1

2

ξ′′2

ξ1
· ∂

2S

∂ξ′′2
(y, ν) + h3(y, ξ),
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whereh3(y, ξ) ∈ S
− 1

2
1
2
,rad

if ξ is restricted to the support of̂χν,k. Replacing the symbol

exp[ih3(y, ξ)] by 1 changes the matrix by terms of classM− 1
2 (χ), as in the proof

of Lemma 3.1. Consequently, up to errors of order−1
2
, one can replace the symbol

a(y, ξ) exp[ih2(y, ξ)] onBν,k by

a(y, ν) exp[i 1
2
ξ−1
1 ξ′′

2 · ∂2
ξ′′S(y, ν)] 1Bν,k

(ξ)

with 1Bν,k
a smooth cutoff to the rectangleBν,k supportingχ̂ν,k.

The exponent separates the variablesy and ξ, and is bounded by a constant,
independent of(ν, k). Approximating the complex exponential for bounded (byC)
arguments by a polynomial function leads to a tensor-product representation of the symbol:

a(y, ν) exp[i 1
2
ξ−1
1 ξ′′

2 · ∂2
ξ′′S(y, ν)] ≈

N∑
s=1

α1
s;ν,k(y) α̂

2
s;ν,k(ξ).

To obtain an error of size2−k/2 requiresCN/N ! ≤ 2−k/2, orN ∼ k/ log k:

Theorem 4.1.WithN ∼ k/ log k, one may express

(Fϕγ)(y) =
N∑

s=1

α1
s;ν,k(y) (α2

s;ν,k ∗ ϕγ) ◦ Tν,k(y) + 2−k/2fγ, (38)

wherefγ is a curvelet-like function centered atχ(γ).

An alternative approximation starts with replacinga(y, ξ) or a(y, ν) by a(yj, ν) with
yj = T−1

ν,k (xj) (andγ = (xj, ν, k)). Similarly, up to an error of order−1
2
, one may replace

ξ−1
1 ξ′′2 · ∂2

ξ′′S(y, ν) by ξ−1
1 ξ′′2 · ∂2

ξ′′S(yj, ν). Consequently, replacingbν,k(x, ξ) by thex-
independentsymbol

bγ(ξ) = a(yj, ν) exp[i 1
2
ξ−1
1 ξ′′

2 · ∂2
ξ′′S(yj, ν)]1Bν,k

(ξ) = α̂γ(ξ),

modifies the generalized Radon transform matrix by terms inM− 1
2 (χ). Precisely,

Theorem 4.2.One may express

(Fϕγ)(y) = (αγ ∗ ϕγ) ◦ Tν,k(y) + 2−k/2fγ (39)

wherefγ is a curvelet-like function centered atχ(γ).

This is a generalization of the geometrical, zeroth-order approximation of the
common-offset realization – valid in the absence of caustics – of the generalized Radon
transform considered in [55].

The change of variablesTν,k can also be suitably approximated by a local expansion
of the generating function about(yj, ν). This requires an approximation of the phase
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〈ξ, ∂S
∂ξ

(y, ν) − xj〉 up to an error of size2−k/2 (cf. (37)), which is accomplished by taking
the second-order expansion iny aboutyj. Precisely, we write

∂S

∂ξ
(y, ν)− xj =

∂2S

∂ξ∂y
(yj, ν) · (y − yj) +

1

2

∂3S

∂ξ∂y2
(yj, ν) · (y − yj)

2

+ h3(y, ν), (40)

whereh3(y, ν) vanishes to third order aty = yj, and henceξ · h3(y, ν) leads to terms of
order2−k/2 as in Lemma 3.1. The first two terms on the right hand side of (40) are exactly
the quadratic expansion ofTν,k abouty = yj.

In the expressionξ · ∂3S
∂ξ∂y2 (yj, ν) · (y−yj)

2 the terms inξ perpendicular toν are of size

2k/2 as opposed to2k for the component ofξ parallel toν, hence lead to terms of size2−k/2.
This allows one to replace the third-order derivative term by the quadratic expression

1

2

[
ν · ∂3S

∂ξ∂y2
(yj, ν) · (y − yj)

2

]
ν

=
1

2

[
∂2S

∂y2
(yj, ν) · (y − yj)

2

]
ν = Qγ · (y − yj)

2
(41)

with yj = T−1
ν,k (xj) (andγ = (xj, ν, k)) as before:

Theorem 4.3.One may express

(Fϕγ)(y) = (αγ ∗ ϕν,k) ◦ [DTγ · (y − yj) +Qγ · (y − yj)
2] + 2−k/2fγ,(42)

wherefγ is a curvelet-like function centered at(χ(γ), k).

Here, the affine mapDTγ =
∂Tν,k

∂y
(yj) = ∂2S

∂ξ∂y
(yj, ν) can be decomposed into a rigid

motion and a shear. The shear factor acts in a bounded manner on the curvelet, in that it
preserves position and direction; see also [55].

The contributionQγ · (y − yj)
2 captures the curvature of the underlying canonical

transformation applied to the infinitesimal plane wave attached toϕγ. As with the shear
term it acts in a bounded manner on a curvelet, and can be neglected in a zeroth-order
approximation. This is the case in [50], where rigid approximations toTν,k were taken.
Both shear and curvature terms must be accounted for to obtain an approximation up to
errors of size2−k/2.

The expansion in Theorem 4.3 is analogous to the Gaussian beam expansion for
isotropic wave packets evolving under the wave equation, that is, ifF were the forward
parametrix of the wave equation. A Gaussian beam is frequency localized to a ball of
diameter2k/2 in ξ, and in the Gaussian beam expansion one considers quadratic expansions
in ξ about the centerξ0 of the packet. For curvelets, the support is of dimension2k in radial
directions, and the approximations to the phase must preserve homogeneity in the radial
variable.

Remark. The matrix[F ∗], essentially, provides the means to perform generalized Radon
transform imaging entirely in the curvelet domain (that is, “after double beamforming”).
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In this context, “beam stack migration” can be understood as “scanning” the magnitude of
〈F δx0 , u〉 =

∑
γ〈δx0 , F

∗ϕγ〉uγ =
∑

γ F
∗ϕγ(x0)uγ as a function ofx0.

5. Partial Reconstruction

In applications, the image will admit a sparse decomposition into curvelets. Suppose
the goal is to reconstruct the image contribution composed of a small set of curvelets (a
“target”). The aim is to reconstruct this contribution by the available acquisition of data
with the least “artifacts” (hence curvelets).

Let v denote a model of reflectivity, as before, andw its image, interrelated through
w = F ∗Fv. We write

N = F ∗F,

so that [N ] = [F ∗] [F ]. The operatorN is a pseudodifferential operator with
polyhomogeneous symbol of order0; in particularN has homogeneous principal symbol
of order0, and the results of Section 3.2 apply toN .

We describe a target region by the set of indicesΓ0. Our resolution-illumination
analysis is thus focused on the product[N ] ΠΓ0. The acquisition of data is accounted for
by ΠS = Π1S , whereS stands for the (finite) set of curvelets that can be observed given
the acquisition geometry. The resolution is thus described by the operator, and matrix,

Ñ = F ∗C−1 1SCF , [Ñ ] = [F ∗] 1S [F ] = [F ∗] ΠS [F ] ,

and the normal equation to be solved, yielding the partial reconstruction, is given by
[Ñ ] Cv = [F ∗] ΠSCu whereΠSCu represents the observed data. The setS is assumed
to contain a suitable neighborhood ofχ(Γ0), in thatd(γ, χ(γ0)) � 2−k for γ ∈ Sc and
γ0 ∈ Γ0 at scalek. (Otherwise,Γ0, or S, need to be adjusted.) The matrix[Ñ ] then
approximates the matrix[N ] nearΓ0 in the following sense:

Lemma 5.1. Let

∆Γ0 = inf
γ∈Sc,γ0∈Γ0

2|k0−k|2min(k0,k)d(γ;χ(γ0)).

Then for allα, andm arbitrarily large, there exists a constantCα,m such that

‖([N ]− [Ñ ])ΠΓ0‖2;α ≤ Cα,m∆−m
Γ0

.

Proof. Since[F ∗]Π = [F ∗] and[F ]Π = [F ], the matrix[N ]ΠΓ0 − [Ñ ]ΠΓ0 takes the form∑
γ′′

[F ∗]γγ′′ 1
Sc

γ′′ [F ]γ′′γ′ 1
Γ0

γ′ .

The sum is dominated by

Cδ,m

∑
γ′′

µδ(χ(γ), γ′′) 1S
c

γ′′ µδ+m(γ′′, χ(γ′)) 1Γ0

γ′ .
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We use the boundµδ+m(γ′′, χ(γ′)) ≤ ∆−m
Γ0
µδ(γ

′′, χ(γ′)) and [50, Lemma 2.5], together
with invariance of the distance underχ, to bound the sum byCδ,m∆−m

Γ0
µδ(γ, γ

′). The result
follows, since‖µδ(., .)‖2,α . 1 if δ ≥ α.

Finally, we explore the invertibility of[Ñ ] on the range ofΠΓ0 . To this end, we
introduce an intermediate index setΓ1 with Γ0 ⊂ Γ1 ⊂ χ−1(S), for which ∆Γ1 ≈ ∆Γ0,
and with

‖ΠΓ1ΠΓ0 − ΠΓ0‖2;α . ∆−m
Γ0

(43)

for m arbitrarily large. Forγ in a set containingΓ1, then |[Ñ ]γγ − [N ]γγ| � 1. We
introduce the inverse diagonal,

D̃−1
γ = Πγγ[Ñ ]−1

γγ

for γ nearΓ1, and smoothly truncatẽD−1
γ to 0 away fromΓ1. Then

D̃−1[Ñ ] ΠΓ1 = ΠΓ1 +R ,

where‖R‖2,α � 1 if ∆Γ0 is sufficiently large, depending on the givenα.
If ΠΓ1 were a true projection then we would haveR = RΠΓ1, and applying(I+R)−1

would yield the desired inverse of[Ñ ] on the range ofΠΓ1. In the case of the approximate
projectionsΠΓ0 , ΠΓ1, one can obtain an approximate inverse againstΠΓ0. We write

(I +R)−1D̃−1[Ñ ] ΠΓ1ΠΓ0 = ΠΓ0 + (I +R)−1(ΠΓ1ΠΓ0 − ΠΓ0) .

By (43) this yields
(I +R)−1D̃−1[Ñ ] ΠΓ0 = ΠΓ0 + R̃ ,

where‖R̃‖2,α � 1, provided∆Γ0 is sufficiently large, depending on the givenα. Thus,
by applying(I + R)−1D̃−1 to [F ∗] ΠSCu, we obtain the desired, approximate, partial
reconstruction of the reflectivity function, whereC has replaced the notion of double
beamforming, and[F ] and[F ∗] can now be replaced by their approximations developed in
the previous section.

Remark. In practical applications,R and R̃ are neglected. In general, with limited
illumination, the diagonal elements[Ñ ]γγ have to be estimated numerically through
“demigration” followed by “remigration” againstΠΓ0 . In the case of full illumination, the
diagonal elements can be directly approximated using (30). For an optimization approach
to solving the normal equation, in this context, see Symes [56] and Herrmannet al. [57].

Remark. The image of a single data curvelet is naturally given byw = F ∗ϕγ =∑
γ′ [F

∗]γ′γϕγ′ whencewγ′ = [F ∗]γ′γ. From the fact that the matrix[F ∗] belongs to
M0(χ−1), it is immediate that forα arbitrarily large (cf. (24))∑

γ

22|k−k′|α22min(k,k′)αd(γ′;χ−1(γ))2α |[F ∗]γ′γ|2 ≤ C
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illustrating that the curvelet decomposition of the data eliminates the “isochrone smear”
associated with imaging individual data samples.

6. Conclusion

The results presented in this paper essentially provide a novel approach to imaging, based
on the generalized Radon transform, replacing the notions of “plane-wave migration” and
“beam-stack imaging” by matrix approximations using curvelets on the one hand, and
addressing the problem of partial reconstruction on the other hand. However, the results
presented in Section 3.2 apply to general, elliptic, pseudodifferential operators, while the
results presented in Section 4 pertain to all Fourier integral operators (of order zero) the
canonical relation of which is (locally) a canonical graph.
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