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Abstract. In these notes, we review recent results concerning the Lp norm bounds

for spectral clusters on compact manifolds. The type of estimates we consider were
first established by Sogge [15] in the case of smooth metrics. Recent results of ours

in [10] establish the same estimates under the assumption that the metric is C1,1. It
is known by examples of Smith-Sogge [12] that such estimates fail for C1,α metrics

if α < 1, and we discuss methods for obtaining slightly weaker results in this setting

also.

1. Introduction

The purpose of these notes is to give an overview of recent progress made towards
understanding the behavior of solutions to scalar wave equations in the setting of metrics
of limited differentiability. The calculus of Fourier integral operators and the associated
asymptotic construction of the wave kernel do not apply in this situation. In the past
decade, however, the introduction of wave-packet methods has permitted the construction
of approximate solution operators which are sufficient to establish Lp norm estimates on
solutions. These estimate and their proofs are the focus of this review.

The Strichartz estimates are perhaps the best known of the Lp estimates. In this
paper, however, we pay more attention to estimates which yield Lp norm bounds on
eigenfunctions and clusters of eigenfunctions. It is natural in this setting to stick to
metrics that are time-independent, and we do so here. Time-dependent metrics are, of
course, of great interest for Strichartz estimates and applications to quasilinear wave
equations, and the results we discuss here all have analogues in the time-dependent
setting.

We consider a compact manifold M without boundary, of dimension n ≥ 2. Suppose
given a second order operator P on M , which in local coordinates takes the form

(1.1)
(
Pf
)
(x) = ρ(x)−1

n∑
i,j=1

∂i

(
ρ(x) gij(x) ∂jf(x)

)
.

We assume that the function ρ(x) and matrix function gij are real and uniformly positive
on M . Then P is self-adjoint with respect to the measure ρ(x) dx, and has negative
spectrum, thus we can enumerate the eigenvalues in decreasing order {−λ2

j}, where λj →
∞. We will call λj the frequencies of the associated eigenfunctions, as this would be
exactly the frequency of the associated periodic solution to the wave equation.

The author was supported in part by NSF grant DMS-0140499.

1



2 HART F. SMITH

The question of interest here is to compare the Lq norm of a function fλ, which is
assumed to have only frequencies suitably close to the real number λ, to the L2 norm
of fλ. The best possible bound on the ratio will increase as λ does, and we seek the
sharp power of this growth. An eigenfunction fλ is of course the strongest notion of
being localized in frequency, but the best possible growth estimates for the Lq norm
of eigenfunctions depends on subtle questions of global geometry, and is still largely an
unsolved problem. We will therefore focus on the easier question of obtaining the sharp
growth in λ for spectral clusters, which have frequencies contained in the region [λ, λ+1].
It turns out to be much easier to get sharp estimates in this case, since the analysis
depends only on the local behavior of solutions for P .

The spectral cluster estimates can alternately be expressed in terms of L2 → Lq bounds
for the spectral projection operator Πλ, which projects a function in L2(M) onto the span
of eigenfunctions with frequencies in the range [λ, λ+ 1].

In the case that the coefficients of P are smooth, Sogge [15] established the following
bounds for the L2 → Lq operator norm of Πλ:

(1.2)
∥∥Πλf

∥∥
Lq(M)

≤ C λ
n−1

2 ( 1
2−

1
q ) ‖f‖L2(M) , 2 ≤ q ≤ qn = 2(n+1)

n−1 .

(1.3)
∥∥Πλf

∥∥
Lq(M)

≤ C λn( 1
2−

1
q )− 1

2 ‖f‖L2(M) , qn ≤ q ≤ ∞ ,

Thus, there are two regimes to the estimates. The bounds for 2 ≤ q ≤ qn can be
considered as placing a lower bound on the volume of a region in which a spectral cluster
can be concentrated. Precisely, if a function f is concentrated in a region of volume V ,
then by Holder’s inequality

‖f‖Lq(M)

‖f‖L2(M)
≥ V

1
p−

1
2 .

Consequently, the first estimate (1.2) above shows that a spectral cluster must occupy a
volume of at least λ−

n−1
2 .

The second estimate (1.3) is related to the Sobolev embedding theorem, and loosely
says that the eigenfunctions in the range [λ, 2λ] are evenly distributed over the λ subin-
tervals of length 1.

Recently, we have been able to extend Sogge’s estimates to the case of metrics which
are only twice differentiable, which is the lowest level of regularity (in the Holder classes,
at least) under which they can be proven, according to the counterexamples of Smith-
Sogge [12].

In section 2 of these notes, we will review the proof of the above estimates for the
simplest case of the flat Euclidean space. In section 3 and 4, we indicate how recent
parametrix constructions for the wave equation using wave packet methods allow this
proof to be extended to the setting of metrics that are only twice differentiable. We then
point out in section 5 the counterexamples of Grieser and of Smith-Sogge which show
that the estimates cannot be proven for C1,α metrics. Finally, in section 6 we outline the
proof that estimates (1.2) and (1.3) with a higher value for the exponent are valid for
C1,α metrics.
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2. The case of Rn

In this section we consider the simplest case where P is the standard Laplacian on the
manifold M = Rn. In this case the spectrum is continuous, and Πλf can be interpreted
as truncating the Fourier transform f̂(ξ) to the set λ ≤ |ξ| ≤ λ + 1. In the case of Rn,
these estimates are also known as restriction estimates, since after rescaling space by λ

they can be related to multiplying f̂ by an approximation to surface measure on the
sphere.

We start by considering examples which show that the above exponents are sharp. The
example which shows that (1.2) is sharp is the simplest. Consider a Schwartz function
φ(x) which has Fourier transform supported in the ball |ξ| ≤ 1

2 , intersected with the
region ξ1 ≥ 0. Let

fλ = ei λ x1φ(x1, λ
1
2x′) ,

where x′ = (x2, . . . , xn). Then the Fourier transform f̂λ(ξ) is contained in the set λ ≤
ξ1 ≤ λ + 1

2 and |ξ′| ≤ 1
2λ

1
2 . This region is in turn contained in the set λ ≤ |ξ| ≤ λ + 1.

On the other hand
‖fλ‖Lp = λ−

n−1
2p ‖φ‖Lp ,

and comparing p = q to p = 2 yields the sharpness of (1.2).

The example to consider for estimate (1.3) is a function fλ where f̂λ(ξ) = 1 on the set
λ ≤ |ξ| ≤ λ+ 1, and 0 elsewhere. Then

‖fλ‖L2 ≈ λ
n−1

2 .

On the other hand, it is easy to see that |f(x)| & λn−1 for |x| ≤ λ−1, hence

‖fλ‖Lq ≥ λn−1−nq .

Taking the ratio shows that (1.3) cannot be improved.

We now turn to the proof of estimates (1.2) and (1.3). We begin by noting that it
suffices to establish (1.3), since (1.2) follows by interpolation of the q = qn case of (1.3)
with the trivial q = 2 bound. The estimate (1.3) is in turn proved as a consequence of
certain squarefunction estimates for solutions u(t, x) to the wave equation. Let

‖u‖LqxL2
t ([−1,1]×Rn) =

( ∫ ( ∫ 1

−1

|u(t, x)|2 dt
) q

2
dx
) 1
q

.

Then the estimate that will yield (1.3) is

(2.1) ‖u‖LqxL2
t ([−1,1]×Rn) ≤ C ‖f‖Hδ(q)(Rn)

where

δ(q) = n
(1

2
− 1
q

)
− 1

2
,

Hδ is the Sobolev space of order δ, and

u(t, x) =
(

exp
(
it
√
−∆

)
f
)

(x) .
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If f is a spectral cluster, then ‖f‖Hδ ≈ λδ‖f‖L2 , and u is essentially periodic in t.
Multiplying u(t, x) by exp(−itλ) and integrating over [−1, 1] essentially recovers f , and
(1.3) follows easily from (2.1). For details, we refer to [10].

Let W denote the map

(Wf)(t, x) = exp(it
√
−∆)f(x) ,

and observe that

WW ∗F (t, x) =
∫ 1

−1

ei(t−s)
√
−∆F (s, x) ds .

The map WW ∗ is easier to handle than W , since the image and domain spaces for WW ∗

are of the same dimension. The estimate (2.1) is equivalent to the estimate

(2.2) ‖WW ∗F‖LqxL2
t ([−1,1]×Rn) . λn(1− 2

q )−1‖F‖
Lq
′
x L

2
t ([−1,1]×Rn)

.

We will now see how estimate (2.2) is established using the concentration of the
Schwartz kernel of exp(it

√
−∆) along the light cone. First, by taking a Littlewood-

Paley decomposition, and a decomposition in ξ into a finite number of cones, we may
assume that û(t, ξ) is supported in the region λ ≤ |ξ| ≤ 2λ , and ξ near the ξ1 axis.

We then consider the kernel of exp(it
√
−∆) localised to frequencies in the dyadic

region [λ, 2λ], and also to frequencies near the ξ1 axis,

Kλ(t, x) =
∫
ei〈x,ξ〉eit|ξ| βλ(ξ) Γ(ξ) dξ ,

where βλ is a Littlewood-Paley cutoff to the region λ ≤ |ξ| ≤ 2λ , and Γ(ξ) a conic cutoff
to ξ within angle 1 of the ξ1 axis. It is classical that, for all N ,

(2.3) |Kλ(t, x)| ≤ CN λn (1 + λ|t|)−
n−1

2 (1 + λ
∣∣|t| − |x|∣∣)−N

≤ CN λn (1 + λ|x1|)−
n−1

2 (1 + λ
∣∣|t| − |x|∣∣)−N .

Now consider, for fixed x1 and y1, the operator Tx1,y1 defined on functions f in the
variables t, x′, by the rule

Tx1,y1f(t, x′) =
∫
Kλ(t− s, x1 − y1, x

′ − y′) f(s, y′) ds dy′ .

The first bound we note is that

(2.4) ‖Tx1,y1f‖L2(Rn) . ‖f‖L2(Rn) .

This is best seen by introducing new variables η1 = |ξ| , η′ = ξ′, to write

Tx1,y1f(t, x′) =
∫
eitη1+i〈x′,η′〉

[
ei(x1−y1)ξ1(η)

∣∣∣dξ
dη

∣∣∣Γ(ξ(η))βλ(ξ(η))
]
f̂(η) dη ,

and noting that the Jacobian factor is bounded on the support of Γ(ξ), hence the term
in braces is a bounded multiplier.

The next step is to observe the bound

(2.5) ‖Tx1,y1f‖L∞
x′L

2
t (Rn) . λn−1 (1 + λ|x1 − y1|)−

n−1
2 ‖f‖L1

x′L
2
t (Rn) .

This is an easy consequence of (2.3).
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Interpolating (2.4) and (2.5) yields

(2.6) ‖Tx1,y1f‖Lq
x′L

2
t (Rn) . λ(n−1)(1− 2

q ) (1 + λ|x1 − y1|)−
n−1

2 (1− 2
q )‖f‖

Lq
′
x′L

2
t (Rn)

.

where q′ is the dual index to q.

To obtain (2.2) from this, one integrates over the y1 variable, and uses the convolution
bound

(2.7) L
q
2 ∗ Lq

′
⊂ Lq .

For q > 2(n+1)
n−1 , the L

q
2 norm of the coefficient is bounded by λn(1− 2

q )−1, and the result

(2.2) follows. For the critical index q = 2(n+1)
n−1 , one uses the result of Hardy-Littlewood

that one may replace L
q
2 by weak-L

q
2 in (2.7), and the result holds there too.

3. Estimates for C1,1 metrics

Spectral cluster estimates for variable coefficient operators P like (1.1) can be deduced
from squarefunction estimates for the wave equation ∂2

t −P . The original proof of Sogge
[15] proceeded differently, but the squarefunction path was followed by Mockenhaupt-
Seeger-Sogge in [8]. Both of these papers considered the case that the coefficient functions
of P are C∞, in which case the calculus of Fourier integral operators is available. The
Lax parametrix construction yields a representation within this calculus for the solution
operator cos(t

√
−P ). One uses the calculus of Fourier integral operators to show that the

composition WW ∗ is of similar type, and stationary phase shows that the kernel satisfies
estimates analogous to (2.3), from which (2.1) follows.

In the case of coefficients of C2 (or C1,1) regularity, the asymptotic construction of
Lax does not apply, and we must proceed differently. The central idea is to adapt the
techniques of the paradifferential theory of Bony, by making a smooth approximation to
the coefficients of P , where the approximation depends on the frequency scale at which
one is working, and showing that the errors induced by modifying P can be swept under
the rug for the purpose of proving the desired estimates.

To make this precise, let us suppose that u solves the Cauchy problem

∂2
t u− Pu = 0 , u(0, x) = f(x) , ∂tu(0, x) = 0 .

By finite propagation velocity and a partition of unity argument, we may reduce square-
function estimates of the type (1.3) on a manifold to proving the estimate in local coor-
dinates, and so we will assume that we are working with an operator of the form (1.1)
defined globally on Rn, with metric sufficiently close (pointwise) to the flat metric, and
with coefficients belonging to C1,1(Rn).

The first step is to use a Littlewood-Paley decomposition to reduce matters to con-
sidering the term uλ where ûλ(t, ξ) is supported in the region |ξ| ≈ λ . The estimates
under consideration are well behaved under the Littlewood-Paley decomposition, in that
it suffices to prove them separately for each term uλ. This step requires introducing an
inhomogeneity into the equation, but it will be of the same strength as other inhomo-
geneities that arise shortly.
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One next considers the smoothed out differential operator Pλ obtained by replacing
gij(x) by gijλ (x), where

ĝijλ (ξ) = φ(λ−
1
2 |ξ| ) ĝij(ξ) ,

where φ is a smooth cutoff to the unit ball in Rn. Thus, gijλ has frequencies supported
in the region |ξ| ≤ λ 1

2 . We also apply this procedure to replace ρ by ρλ. This introduces
an error term in the equation of the form[(

∂2
t − P

)
−
(
∂2
t − Pλ

)]
uλ = (P − Pλ)uλ .

The key estimate that controls the error is the following uniform bound:

sup
x

∣∣ gij(x)− gijλ (x)
∣∣ . λ−1 .

Since uλ is at frequency λ, differentiation is similar to multiplying by λ. Consequently,
the error term is seen to satisfy

‖(P − Pλ)uλ‖L∞t L2
x
≤ C λ ‖fλ‖L2 .

If we consider (P − Pλ)uλ as an inhomogeneity, then this shows that the inhomogeneity
is of the same strength as the initial data fλ, and thus we can focus on proving estimates
for solutions to the operator ∂2

t − Pλ.

It is more convenient to work with a first-order equation, which may be attained by
factoring

∂2
t − Pλ = −

(
Dt − pλ(x,Dx)

)(
Dt + pλ(x,Dx)

)
+ rλ(x,Dx) ,

where Dt = −i∂t, and pλ is a pseudodifferential operator with symbol

pλ(x, ξ) =
( n∑
i,j=1

gijλ (x) ξi ξj
) 1

2
.

The term rλ is a pseudodifferential operator of order 0, and rλuλ may be absorbed into
the driving term.

We can split uλ into two pieces, corresponding to positive and negative t frequencies,
each of which is contained in a region where one of the factors is elliptic. Restricting
attention to one term, we may thus reduce consideration to the equation

Dtuλ + pλ(x,Dx)uλ = Fλ , uλ(0, x) = fλ(x) ,

and we seek to prove

(3.1) ‖uλ‖LqxL2
t ([−1,1]×Rn) ≤ C λδ(q)

(
‖fλ‖L2

x(Rn) + ‖Fλ‖L1
tL

2
x([−1,1]×Rn)

)
.

We could replace L1
t by L∞t in the norm for Fλ, but L1

t is the norm which is natural
for the energy norm. It is also convenient to assume that the x-Fourier transform of the
symbol pλ is localized to frequencies at most λ

1
2 , which can be arranged since the error

can be absorbed into Fλ.

The original problem, that of proving estimates for an operator P with only twice
differentiable coefficients, has thus been reduced to proving the same estimates for the
smoothed out operator Pλ, for solutions at frequency scale λ. The parametrix construc-
tion of Lax is still not helpful, since the symbol of Pλ is essentially of class S 1

2 ,
1
2
, where the

construction does not yield an asymptotically convergent expansion. In the next section
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we review the method of using wave packet techniques to construct approximate (but
not asymptotic) parametrices for Dt + pλ, and to reduce proving estimates to a question
of stationary phase.

4. Wave packet methods

A very powerful tool for studying solutions to hyperbolic equations, and which we use to
establish (3.1), is the Cordoba-Fefferman wave packet transform [3]. This has since been
generalized in what has come to be known as the FBI transform, see [5]. The idea is to
decompose uλ(t, · ) into a continuous superposition of packets localized in phase space, on
each of which the action of pλ(x,Dx) is well approximated by the infinitesimal flow along
the Hamiltonian curves of pλ. The coefficient function of uλ in this continuous frame will
then be seen to satisfy a simple first order ODE, which can be exactly integrated.

In order to maintain the compact support of ûλ(t, ξ), we use as building block for our
transform a Schwartz function g whose Fourier transform is supported in the unit ball of
Rn, and for which

‖g‖L2 = (2π)−
n
2 .

We then define (
Tλf

)
(x, ξ) = λ

n
4

∫
e−i〈ξ,z−x〉 g

(
λ

1
2 (z − x)

)
f(z) dz .

The map Tλ is seen to be a continuous tight-frame transform, in the sense that

f(y) = λ
n
4

∫
ei〈ξ,y−x〉 g

(
λ

1
2 (y − x)

) (
Tλf

)
(x, ξ) dx dξ ,

so that T ∗λTλ = I . In particular,

‖Tλf‖L2(R2n
x,ξ)

= ‖f‖L2(Rnx ) .

The wave-packet transform Tλ thus decomposes a function into a continuous superpo-
sition of packets, with the packet associated to the phase-space point (x, ξ) localized in
Fourier transform to the ball of radius λ

1
2 centered at ξ, and concentrated (in the sense

of rapid decay) in the ball of radius λ−
1
2 about the point x. We can think of this wave

packet as localized to a product ball, which has symplectic volume 1.

The important property of this product ball in phase space is that it is the largest
set on which the symbol pλ is equal to its first order Taylor expansion within a bounded
error. Precisely, we may write

pλ(y, η) = dξpλ(x, ξ) · η + dxpλ(x, ξ) · (y − x) + rx,ξ(y, η) ,

where |rx,ξ(y, η)| . 1 on the product ball. In fact, the error rx,ξ(y, η) is seen to behave
as a symbol of type ( 1

2 ,
1
2 ) of order 0, with bounds that grow polynomially in y − x at

the correct scale. Consequently, we may write(
pλ(y,Dy)− idξpλ(x, ξ) · dx + idxpλ(x, ξ) · dξ

)[
ei〈ξ,y−x〉 g

(
λ

1
2 (y − x)

)]
= ei〈ξ,y−x〉 gx,ξ

(
λ

1
2 (y − x)

)
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where gx,ξ denotes a Schwartz function depending on the parameters (x, ξ), but which
belongs to a bounded family of Schwartz functions as (x, ξ) vary. If we define Rλ similar
to Tλ but using the (x, ξ) dependent family gx,ξ, then we have

Tλ
(
pλ(y,Dy)f

)
(x, ξ) = i

(
dξpλ(x, ξ) · dx − dxpλ(x, ξ) · dξ

)
Tλf(x, ξ) +Rλf(x, ξ) .

We now define
ũλ(t, x, ξ) =

(
Tλuλ(t, · )

)
(x, ξ) .

Then the error term Rλuλ is of the same strength as TλFλ, and we may combine them
to write(
∂t − dξpλ(x, ξ) · dx + dxpλ(x, ξ) · dξ

)
ũλ(t, x, ξ) = F̃λ(t, x, ξ) , ũλ(0, x, ξ) = f̃λ(x, ξ) .

This is now an ordinary differential equation which can be solved to express ũλ as an
integral over the hamiltonian flow of F̃λ. We emphasize, though, that the term F̃λ
contains various error terms expressed in terms of uλ, which we can control in the L2 norm
by energy conservation estimates on uλ. So while this does not give a method for solving
the wave equation, it is useful for proving estimates of Strichartz type or squarefunction
type, in which one seeks to control a mixed Lp norm of u in terms of a Sobolev norm
on the initial data of u. Indeed, the solution of the above equation expresses u as an
integrable superposition over s of solutions to the homogeneous equation restricted to
t > s. For Lp estimates the integral over s can be taken outside the integral, and we are
reduced to considering the case F̃λ ≡ 0 .

We define a one-parameter group action on L2
x,ξ(R2n) by setting(

S(t)f
)
(x, ξ) = f(χ−1

t (x, ξ)) ,

where χt is the diffeomorphism group generated by the hamiltonian flow along pλ(x, ξ).
Then the solution to the homogeneus ODE with data f̃λ is given by

ũλ(t, x, ξ) =
(
S(t)f̃λ

)
(x, ξ) .

Note that S(t) is a unitary group since the hamiltonian flow preserves the measure dx dξ .
Thus, the squarefunction estimate (3.1) is reduced to showing

‖Wλfλ‖LqxL2
t ([−1,1]×Rn) . ‖fλ‖L2(R2n

x,ξ)
,

where Wλfλ(t, x) = T ∗λS(t)fλ . This estimate in turn is implied by the estimate

‖WλW
∗
λF‖LqxL2

t ([−1,1]×Rn) . ‖F‖
Lq
′
x L

2
t ([−1,1]×Rn)

,

where the operator WλWλ∗ takes the form(
WλW

∗
λF
)
(t, x) =

∫ 1

−1

(
T ∗λS(t− s)TλF (s, · )

)
(x) ds ,

and we may assume that everything is localized to |ξ| ≈ λ .

The operator T ∗λS(t−s)Tλ is the idealized model for ei(t−s)
√
−P , localized to the dyadic

frequency scale λ, in which one makes the approximation that a Cordoba-Fefferman wave
packet simply gets translated for time t−s along the hamiltonian flow through its center.
It is clear that the integral kernel of this operator will be concentrated along the light
cone, and indeed a careful analysis (see [10] for details) shows that the associated kernel
satisfies

|Kλ(t− s, x, y)| . λn
(

1 + λ |t− s|
)−n−1

2
(
1 + λ | |t− s| − Φy(x)|

)−N
,
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where |t| = Φy(x) defines the light cone centered at the point (0, y). As in the flat
case, these estimates imply the squarefunction estimates. They also yield a proof of the
usual family of Strichartz estimates, which were established for n = 2, 3 in [9] and in all
dimensions by Tataru in [17]. We remark that the wave packet techniques mentioned
here are essentially those used by Tataru in [17]. The paper [9] used a discrete frame of
wave packets based upon the second dyadic decomposition (see [16]).

5. Manifolds with boundary and Lipschitz metrics

In this section, we observe how the spectral cluster estimates (1.2) can fail ifM is replaced
by a manifold with boundary, and the eigenfunctions are required to satisfy Dirichlet (or
Neumann) conditions on ∂M . This fact was first observed in the thesis of Grieser [7],
who produced the example we exhibit here. The geometry of the boundary ∂M plays
a crucial role. If the boundary is geodesically convex, in the sense that nearly-tangent
geodesics originating from ∂M intersect ∂M again in short time, then the estimates fail.
If the boundary is strictly geodesically concave, so that even tangent geodesics starting
in ∂M move away from ∂M , then it was shown in [13] that the estimates (1.2) and (1.3)
do hold. The question of whether the estimates hold in case of (not necessarily strict)
convexity remains open, but we anticipate that they do. It is also expected that estimate
(1.3) holds for q sufficiently large.

The counterexample for manifolds with boundary immediately yields an example of an
operator of type (1.1) on a boundary-free manifold, where the coefficients are of Lipschitz
regularity, for which the estimate (1.2) fails. The construction involves joining two copies
of M together along ∂M , and extending the metric across ∂M in an even manner with
respect to geodesic normal coordinates. The extended metric has a simple corner type
singularity across ∂M . If an eigenfunction f is extended in an odd manner across ∂M
(or an even manner in case of Neumann conditions) then the extended function is an
eigenfunction on the doubled manifold.

This procedure shows that any estimate for operators with Lipschitz coefficients di-
rectly yields an estimate for manifolds with boundary. Of course, the class of manifolds
with boundary leads to singularities of a very special nature, and one expects in general
better estimates to hold. However, for n = 2 and q below the critical power as in (1.2),
it turns out that the best possible estimates coincide for the two cases.

The example of Grieser is simple: take M ⊂ R2 to be the unit disc D = {x : |x| ≤
1 } with the usual Laplacian, and impose Dirichlet conditions at |x| = 1. Then the
eigenfunctions can be expressed in polar coordinates (r, θ) as

f(r, θ) = einθJ(cr) ,

where J is an appropriate Bessel function and c is a zero of J . If one takes c to be the
first zero of J , then f is an eigenfunction of frequency λ ≈ n, and the asymptotics of
Bessel functions shows that f is highly concentrated in the set 1 − n− 2

3 ≤ r ≤ 1 . This
set has volume λ−

2
3 which violates the inequality (1.2), since (1.2) would imply that f

can be concentrated in a set of volume no less than λ−
1
2 .

This concentration behavior can be exhibited without appealing to Bessel functions
by looking at a closely related model. If we introduce coordinates y = 1− r, x = θ, then
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the top order terms in the Laplace are

∂2

∂2
y

+
1

(1− y)2

∂2

∂2
x

.

A model which has similar geodesic behavior near y = 0, and which is reflected in an
even manner about y = 0, is

1
1− |y|

(∂2

∂2
y

+
∂2

∂2
x

)
.

If we look for eigenfunctions of the form exp(ixξ)fξ(y), with eigenvalue −λ2
ξ , then we can

rewrite the eigenvalue condition as

(5.1) −∂2
yfξ(y) + λ(ξ)2 |y|fξ(y) =

(
λ2
ξ − ξ2

)
fξ(y) .

This equation is just a rescaled version of the equation

−∂2
yA(y) + |y|A(y) = cA(y) ,

which admits an even solution A(y) = Ai(|y| − c), with Ai the unique bounded solution
to the Airy equation, and we require Ai′(−c) = 0. Precisely, the function

fξ(y) = A(λ
2
3
ξ y)

satisfies (5.1) provided λ2
ξ − ξ2 = c λ

4
3
ξ , which means that

λξ = ξ +
c

2
ξ

1
3 + r(ξ) ,

with r(ξ) bounded. Since the Airy function decreases exponentially for y > 0, it follows
that fξ(y) is localized exponentially in a λ−

2
3 neighborhood of y = 0.

This model was generalized in [12] to produce C1,α metrics in higher dimensions by
taking y ∈ Rn−1, and considering the metric

1
1− |y|1+α

(
∆y +

∂2

∂2
x

)
.

Similar steps lead to eigenfunctions

eixξAα(λδξy) ,

where
λ2
ξ − ξ2 = cα λ

2δ
ξ , δ =

2
3 + α

,

and Aα satisfies
−∆Aα(y) + |y|1+αAα(y) = cαAα(y) .

By taking Aα to be the ground state of this Schrodinger equation, we obtain a radial,
exponentially decreasing solution. The result is that C1,α metrics can have eigenfunctions
of frequency λ which are concentrated in a tube of radius λ−δ. For α < 1, then δ > 1

2 ,
and this contradicts the estimate (1.2).

It is interesting to ask whether these examples also violate the Strichartz estimates. It
turns out, as noted in [12], that they produce somewhat weaker than expected violations,
and only in dimension n ≥ 3, due to the longitudinal dispersion that comes from the
eigenvalue relation

λξ = ξ +
cα
2
ξ2δ−1 + r(ξ) .
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Modified examples of C1,α metrics were produced which eliminate this longitudinal dis-
persion, and yield counterexamples to the Strichartz estimates that do coincide with the
positive results established by Tataru [17]. For boundary value problems, however, the
longitudinal dispersion is present, and it remains an open question whether, for example,
the Strichartz estimates hold on the unit disc with Dirichlet condtions.

It also remains open whether (1.3), which is a consequence of the squarefunction
estimate (2.1), holds for Lipschitz or C1,α metrics for some range of q. The above
examples violate (1.3) only for q near qn, but not for large q. Very recent work of
Smith and Sogge shows that for n = 2 and manifolds with boundary, estimate (1.3) does
indeed hold for q > 8. This is the largest possible range on which (1.3) can hold by the
counterexample of Grieser.

In the next section, we illustrate how to establish a weaker version of (1.3) in the case
of Lipschitz metrics which, while not known to be sharp, does yield the best possible
version of (1.2) after interpolation with the trivial q = 2 endpoint.

6. Lipschitz metrics, positive results

The examples of the previous section constructed Lipschitz metrics and functions f
for which

(6.1) ‖Πλf‖Lq ≈ λ
2
3 (n−1)( 1

2−
1
q ) ‖f‖L2 .

The examples were only constructed on an open set, but one can simply cut them off to
|y| ≤ 1

2 with error exponentially small in λ, and (6.1) still holds.

For q = qn, we note that

2
3

(n− 1)
(1

2
− 1
qn

)
= n

(1
2
− 1
qn

)
− 1

2
+

1
3qn

.

Thus, at the critical index q = qn estimate (1.3) experiences an increase of 1
3q in the

exponent. This can alternately be expressed by saying that estimate (2.1) holds (at best)
with a loss of 1

3q derivatives at q = qn.

For Strichartz estimates, which take the form

(6.2) ‖u‖LqtLpx([−1,1]×Rn) . ‖u‖
L∞t H

s(q,p)
x ([−1,1]×Rn)

+ ‖F‖
L1
tH

s(q,p)−1
x ([−1,1]×Rn)

,

for solutions to
∂2
t u− Pu = F ,

the estimates were shown by Tataru [17] to hold for Lipschitz metrics with a loss of 1
3q

derivatives in the index s(q, p) (relative to smooth or C2 metrics). This result is sharp
(for critical values of q, p) by the examples of Smith-Tataru [14].

Similar ideas show that the squarefunction estimates (2.1) hold with loss of 1
3q deriva-

tives. Only the case q = qn is “critical”, in that the estimates for q > qn follow from the
case q = qn together with Sobolev embedding. Consequently the counterexamples only
yield sharpness of this result for q = qn.
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We illustrate here the key idea of the proof, which is surprisingly simple: after local-
ization of u in frequency to a given frequency scale λ, and suitable λ-dependent frequency
localization of the coefficients, one makes a λ-dependent dilation of space time to reduce
matters to the case of C2 metrics. The factor of 1

3q arises from balancing the demands
of minimizing the size of errors against the demand of making the frequency-truncated
coefficients as smooth as needed.

For simplicity, we consider the case of the Strichartz estimates (6.2), since the argu-
ments are simpler. We will then mention the necessary modifications needed to handle
the squarefunction estimates (2.1).

The starting point is the following:

The estimate (6.2) holds with constant depending only on the C2 norm
of the metric (and the dimension).

(We also implicitly assume here that P is sufficiently close to the flat metric, so as to
assure that it is uniformly elliptic.)

One begins by taking a Littlewood-Paley expansion to assume that u is localized to
frequency scale λ. Next, one smooths the metric coefficients gij and ρ by truncating their
frequencies. The appropriate localization for Lipschitz metrics is to let

ĝijλ (ξ) = φ(λ−
2
3 ξ) ĝij(ξ) ,

and similarly for ρ. Since gij(x) is Lipschitz, it holds that

sup
x

∣∣ gijλ (x)− gij(x)
∣∣ . λ−

2
3 ,

with the result that

‖(P − Pλ)uλ‖L∞t L2
x([−1,1]×Rn) . λ2− 2

3 ‖uλ‖L∞t L2
x([−1,1]×Rn) .

This is off by a factor of λ
1
3 from what would allow one to absorb this error into the

driving term F . On the other hand, if I is any interval of length λ−
1
3 contained in

[−1, 1], then
‖(P − Pλ)uλ‖L1

tL
2
x(I×Rn) . λ ‖uλ‖L∞t L2

x([−1,1]×Rn) .

The next step is to dilate space-time by a factor of λ
1
3 . Thus, we consider the scaled

operator P̃λ with coefficients gijλ (λ−
1
3x). These rescaled coefficients satisfy

sup
x

∣∣D2gijλ (λ−
1
3x)
∣∣ = (λ−

1
3 )2 sup

x

∣∣D2gijλ (x)
∣∣ . 1 ,

the second step by the frequency localization and the fact that gij is Lipschitz. Conse-
quently the rescaled metric is C2, with bounds independent of λ. By assumption, one can
prove the Strichartz estimates (with no loss) for the operator ∂2

t − P̃λ on time intervals
of length 1.

The Strichartz estimates are dilation invariant, however, in that the norms on both
sides of (6.2) scale by the same factor under dilation. (Strictly speaking this requires the
use of homogeneous Sobolev spaces, but since we are localized at frequency larger than
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1 this is not an issue.) Putting this together, we have, for any slice S = I ×Rn with I of
length λ−

1
3 ,

‖uλ‖LqtLpx(S) . ‖uλ‖L∞t Hs(q,p)x (S)
+ ‖(P − Pλ)uλ‖L1

tH
s(q,p)−1
x (S)

+ ‖Fλ‖L1
tH

s(q,p)−1
x (S)

. ‖uλ‖L∞t Hs(q,p)x ([−1,1]×Rn)
+ ‖Fλ‖L1

tH
s(q,p)−1
x ([−1,1]×Rn)

.

Adding up over the λ
1
3 sets S that make up [−1, 1]× Rn yields

‖uλ‖LqtLpx([−1,1]×Rn) . λ
1
3q

(
‖uλ‖L∞t Hs(q,p)x ([−1,1]×Rn)

+ ‖Fλ‖L1
tH

s(q,p)−1
x ([−1,1]×Rn)

)
,

which equates to a loss of 1
3q derivatives in the Sobolev index.

For the squarefunction estimates (2.1), the proof is similar, but the role of time and
spatial variables is reversed. In essence, after localizing û to a cone near the ξ1 axis, one
can consider P as hyperbolic in the x1 variable, and interchange the roles of x1 and t.
Similar steps show that the squarefunction estimates hold for uλ with no loss on slices of
thickness λ−

1
3 in the x1 direction, and adding up over such slices yields a loss of λ

1
3q .

There is also an appropriate truncation and dilation argument for C1,α metrics, which
gives best possible results for both Strichartz and squarefunction estimates. Precisely,
the result is that for such metrics, there is a loss of σq derivatives relative to the C2 index,
where

σ =
1− α
3 + α

.

The case of Strichartz was established by Tataru [17], who also considered time depen-
dendent metrics. The case of squarefunction estimates is established in [11]. The correct
amount of rescaling is dictated by the counterexamples of Smith and Sogge [12], as seen,
for example, in the cubic nature of the rescaling in the Lipschitz case we have considered
above. Results yielding nonsharp versions of Strichartz for metrics less regular than C2

had been obtained by Bahouri and Chemin [1], using a different scaling procedure.

7. Open questions

The question of spectral cluster estimates for metrics less regular than Lipschitz is still
largely open. An example of Davies [4] shows that for metrics which are merely bounded,
one cannot in general prove any estimate stronger than that given by Sobolev embedding.
This example is closely related to localization phenomena for highly oscillatory metrics,
and the failure of energy-flux bounds. Indeed, below Lipschitz a key step in the proof
of the spectral cluster bounds fails: the wave evolution operator restricted from a slice
x1 = const to another such slice need not be bounded in L2. For examples see Castro
and Zuazua [2]. Tataru [17] showed that for Strichartz estimates one can extend the
rescaling arguments to Cα metrics for 0 < α < 1 but one needs, in effect, to assume
conservation of energy. (For the time-independent metrics we consider in these notes this
is satisfied.) The absence of energy-flux (sidewise energy conservation) for Cα metrics
is the reason such arguments do not work for squarefunction estimates. The currently
known examples of localized eigenfunctions for Cα metrics however do not rule out the
possibility of some results in this setting which improve upon Sobolev embedding.
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A promising avenue of research is the analysis of boundary value problems by the
reflection method noted in section 5. This procedure has already yielded results in two
dimensions for spectral cluster estimates, in ongoing joint work with Sogge. It would be
interesting to apply this method to study the wave equation on a domain exterior to a
convex obstacle, where convexity implies that the counterexample noted by Grieser does
not occur. It remains to effectively combine the short-time, near-boundary treatment
of the obstacle problem as a Lipschitz metric with the long time treatment of the wave
equation through scattering methods.

There also remains the question of gathering sharper information on the actual fun-
damental solution of the wave equation for metrics of limited differentiability. In the
work cited in this review, all results proceed by approximating the wave operator by a
smoothed out version and showing that, for the purpose of proving space-time Lp es-
timates, the induced errors can be absorbed in the driving term. Recently Geba and
Tataru [6] have used a finer multi-scale resolution of the wave equation to establish the
fixed time dispersive estimates for the wave group. It still remains to quantify to what
degree the fundamental solution is concentrated along the light cone for C2 metrics, and
whether any significant statements can be made for metrics less regular than C2.
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