1. a. Given a Banach space B, and a finite dimensional subspace $V \subset B$, show there exists $x \in B$ such that $||x|| = 1$ and $\text{dist}(x, V) = 1$. (Hint: show there exists $y \in V$ minimizing $\text{dist}(x, y)$, and consider $(x - y)/||x - y||$.)

b. Prove the following: If T is a compact operator on B, and v_j a linearly independent sequence of eigenvectors for T with eigenvalues λ_j, then $\lim_{j \to \infty} \lambda_j = 0$.

2. Consider the operator $Tf(x) = \int_{0}^{1} (x + t) f(t) \, dt$. Find all eigenvalues and eigenvectors of T on $L^2([0, 1])$.

3. Consider the operator T on $C([0, 1])$ defined by $Tf(x) = \int_{0}^{x} f(s) \, ds$.
 a. Show that T is compact, but that $T(B_1)$ is not closed. [Hint: consider the function $\frac{1}{2} - |x - \frac{1}{2}|$.]
 b. Show that the spectral radius of T is 0 by considering $\|T^n\|$.
 c. Characterize 0 as a spectral point: eigenvalue, continuous, or residual.

4. Let S_R and $S_L = S_R^*$ denote the right and left shift operators on $\ell^2(\mathbb{N})$:

 $S_R(a_1, a_2, a_3, \ldots) = (0, a_1, a_2, \ldots)$
 $S_L(a_1, a_2, a_3, \ldots) = (a_2, a_3, a_4, \ldots)$

 a. For S_L, show that every z with $|z| < 1$ is an eigenvalue of S_L, that every z with $|z| = 1$ lies in the continuous spectrum of S_L, and that every z with $|z| > 1$ lies in the resolvent set of S_L.

 b. For S_R, show that every z with $|z| < 1$ lies in the residual spectrum of S_R, that every z with $|z| = 1$ lies in the continuous spectrum of S_R, and that every z with $|z| > 1$ lies in the resolvent set of S_R.

5. Let $m(x)$ be a bounded, continuous function on \mathbb{R}, and consider the map T_m on $L^2(\mathbb{R})$ where $(T_m f)(x) = m(x) f(x)$.

 a. Under what condition on m does T_m have point spectra?

 b. Show that the spectrum of T_m consists of the closure of the range of $m(x)$, and that there is no residual spectrum (i.e., the spectrum consists of point and continuous spectra only.)