Distributions of Compact Support

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 526/556, Spring 2015

Division in 1-d

Lemma

If $u \in \mathcal{D}^{\prime}(\mathbb{R})$ and $x^{m} u=0$, then $u=\sum_{j=0}^{m-1} c_{j} \partial^{j} \delta$.
Proof. Fix $h(x) \in C_{c}^{\infty}(\mathbb{R})$ s.t. $h=1$ on an interval containing 0. Then $\langle u, \phi\rangle=\langle u, h \phi\rangle$, since one can write $\phi-h \phi=x^{m} \tilde{\psi}$.
Next write $\quad h(x) \phi(x)=\sum_{j=0}^{m-1} \frac{1}{j!} \partial^{j} \phi(0) x^{j} h(x)+x^{m} h(x) \psi(x)$
Since $\left\langle u, x^{m} h \psi\right\rangle=0$, then

$$
\langle u, \phi\rangle=\sum_{j=0}^{m-1} \frac{1}{j!} \partial^{j} \phi(0)\left\langle u, x^{j} h\right\rangle=\sum_{j=0}^{m-1} c_{j}\left\langle\partial^{j} \delta, \phi\right\rangle
$$

where $c_{j}=(-1)^{j}\left\langle u, x^{j} h\right\rangle / j!$

Division in $1-\mathrm{d}$

Theorem

Define $u_{m}=\frac{(-1)^{m-1}}{(m-1)!} \partial^{m} \ln |x|$. Then $x^{m} u_{m}=1, \quad m \geq 1$.
Proof. Write $u_{m}=(1-m)^{-1} \partial u_{m-1}$. Result true for $u_{1}=$ p.v. $\frac{1}{x}$, so assume $x^{m-1} u_{m-1}=1$.

$$
\begin{aligned}
x^{m} \partial u_{m-1} & =\partial\left(x^{m} u_{m-1}\right)-m x^{m-1} u_{m-1} \\
& =\partial(x)-m \\
& =1-m
\end{aligned}
$$

Remark. By Lemma, the solution to $x^{m} u=1$ is determined up to derivatives of δ of order $\leq m-1$, so classified all solutions.

Division by polynomials on \mathbb{R}

Theorem

If $p(x)$ is a polynomial, $\exists u \in \mathcal{D}^{\prime}(\mathbb{R})$ such that $p(x) u=1$.
Proof. Use principal value decomposition of $1 / p(z), z \in \mathbb{C}$,

$$
\frac{1}{p(z)}=\sum_{p\left(z_{j}\right)=0} \frac{q_{j}(z)}{\left(z-z_{j}\right)^{m_{j}}}
$$

and take $u_{j} \in \mathcal{D}^{\prime}(\mathbb{R}):\left(z-z_{j}\right)^{m_{j}} u_{j}=1$ as distributions.
Then $p(z) u_{j}=p_{j}(z)$, where $p(z)=p_{j}(z)\left(z-z_{j}\right)^{m_{j}}$, so

$$
p(z) \sum_{p\left(z_{j}\right)=0} q_{j}(z) u_{j}=\sum_{p\left(z_{j}\right)=0} q_{j}(z) p_{j}(z)=1 .
$$

Compactly supported distributions

Definition

$\mathcal{E}^{\prime}(\Omega)$ is the subspace of $f \in \mathcal{D}^{\prime}(\Omega)$ such that $\operatorname{supp}(f) \Subset \Omega$.

Suppose that $\operatorname{supp}(f)$ is compact in Ω, and take $\chi \in C_{c}^{\infty}(\Omega)$ such that $\chi(x)=1$ on an open neighborhood of $\operatorname{supp}(f)$. Then for all $\phi \in C_{c}^{\infty}(\Omega)$,

$$
\langle f, \phi\rangle=\langle f, \chi \phi\rangle
$$

since $\operatorname{supp}((1-\chi) \phi) \cap \operatorname{supp}(f)=\emptyset$.
$\langle f, \chi \phi\rangle$ makes sense if $\phi \in C^{\infty}(\Omega)$, since then $\chi \phi \in C_{C}^{\infty}(\Omega)$.

Topology on $C^{\infty}(\Omega)$.

- If $K \Subset \Omega$, define: $\quad\|\phi\|_{K, m}=\sup _{x \in K} \sup _{|\alpha| \leq m}\left|\partial_{x}^{\alpha} \phi(x)\right|$.
- If $K_{1} \subset K_{2} \subset K_{3} \subset \cdots$, and $\bigcup_{j} \operatorname{int}\left(K_{j}\right)=\Omega$, then the countable family of seminorms $\|\cdot\|_{K_{j}, m}$ makes $C^{\infty}(\Omega)$ into a Frechét space, and $\phi_{n} \rightarrow \phi$ in this topology iff

$$
\lim _{n \rightarrow \infty} \sup _{x \in K}\left|\partial_{x}^{\alpha} \phi_{n}(x)-\partial_{x}^{\alpha} \phi(x)\right|=0
$$

for each α, K.

- Topology of uniform convergence on compact sets.

Pairing of $\mathcal{E}^{\prime}(\Omega)$ and $C^{\infty}(\Omega)$.

Theorem

The continuous linear maps from $C^{\infty}(\Omega) \rightarrow \mathbb{C}$ are 1-1 identified with $\mathcal{E}^{\prime}(\Omega)$, where $f \in \mathcal{E}^{\prime}(\Omega)$ acts on $\phi \in C^{\infty}(\Omega)$ by

$$
\langle f, \phi\rangle=\langle f, \chi \phi\rangle, \quad \chi \in C_{c}^{\infty}(\Omega) \text { equals } 1 \text { on nbhd of supp }(f) .
$$

Proof. $f \in \mathcal{E}^{\prime}(\Omega)$, map $\phi \rightarrow\langle f, \chi \phi\rangle$ same for each choice of χ, since all such $\chi \phi$ agree on nbhd of $\operatorname{supp}(f)$. If $K=\operatorname{supp}(\chi)$,

$$
\begin{aligned}
|\langle f, \chi \phi\rangle| & \leq C_{K} \sup _{|\alpha| \leq m_{K}} \sup _{x}\left|\partial_{x}^{\alpha}(\chi \phi)(x)\right| \\
& \leq C_{\chi} \sup _{|\alpha| \leq m_{K}} \sup _{x \in K}\left|\partial_{x}^{\alpha} \phi(x)\right|
\end{aligned}
$$

Map $\phi \rightarrow\langle f, \chi \phi\rangle$ continuous in seminorm topology on $C^{\infty}(\Omega)$.

Pairing of $\mathcal{E}^{\prime}(\Omega)$ and $C^{\infty}(\Omega)$.

Conversely, suppose $f: C^{\infty}(\Omega) \rightarrow \mathbb{C}$ is continuous, so $\exists K, m$:
(*)

$$
|\langle f, \phi\rangle| \leq C\|\phi\|_{K, m}
$$

If $\chi \in C_{C}^{\infty}(\Omega)$ equals 1 on nbhd of K, then $\|\phi-\chi \phi\|_{K, m}=0$, so

$$
\langle f, \phi\rangle=\langle f, \chi \phi\rangle
$$

By (*), the restriction of f to $C_{C}^{\infty}(\Omega)$ is in $\mathcal{D}^{\prime}(\Omega)$, and necessarily is supported in K.

