

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 555, Winter 2014

Hart Smith Math 555

メロメメ 御きメ ミカメ モド

重

 299

Simplest Case: $L^1(\mathbb{R}^n)$

The collection of integrable functions on \mathbb{R}^n is a vector space.

$$
\text{Define: } \qquad \qquad \|f\|_1 = \int |f|
$$

•
$$
||cf||_1 = |c| ||f||_1
$$
, $c \in \mathbb{C}$

$$
\bullet \ \|f+g\|_1 \leq \|f\|_1 + \|g\|_1
$$

 $\|\cdot\|_1$ is a *seminorm* but not a norm: $\|f\|_1 = 0$ iff $f(x) = 0$ a.e.

Definition

 $L^1(\mathbb{R}^n)$ is the vector space of equivalence classes of integrable functions on \mathbb{R}^n , where *f* is equivalent to *g* if $f = g$ a.e. Then $\|\cdot\|_1$ makes $L^1(\mathbb{R}^n)$ into a normed vector space.

K ロ ト K 個 ト K 君 ト K 君 ト 。

E

 $2Q$

Theorem (Riesz-Fischer)

 $L^1(\mathbb{R}^n)$ is complete under $\|\cdot\|_1$, i.e. $L^1(\mathbb{R}^n)$ is a Banach space.

Proof. Show Cauchy sequence has convergent subsequence:

WTS if
$$
\lim_{m,n\to\infty} \|f_n - f_m\|_1 = 0
$$
, $\exists f_{n_j}, f$ s.t. $\lim_{j\to\infty} \|f_{n_j} - f\|_1 = 0$

\nTake n_j s.t. $\|f_{n_j} - f_{n_{j-1}}\| \leq 2^{-j}$, so that $\sum_{j=2}^{\infty} \int |f_{n_j} - f_{n_{j-1}}| < \infty$.

\nLast time: f_{n_j} converges pointwise a.e. to $f = f_1 + \sum_{j=2}^{\infty} f_{n_j} - f_{n_{j-1}}$

$$
|f - f_{n_j}| \leq \sum_{j=2}^{\infty} |f_{n_j} - f_{n_{j-1}}|, \quad \text{LDCT} \quad \Rightarrow \quad \lim_{j \to \infty} \int |f - f_{n_j}| = 0
$$

 290

ă

イロメ イ押 メイヨメ イヨメ

Definition: $1 \leq p < \infty$

 $L^p(\mathbb{R}^n)$ is the vector space of equivalence classes of integrable functions on \mathbb{R}^n , where f is equivalent to g if $f=g$ a.e., such that $\int |f|^p < \infty$. We define $\|f\|_p = \left(\int |f|^p\right)^{1/p}$.

Remarks

 $L^p(\mathbb{R}^n)$ is a vector space, since

$$
|f+g|^p\leq 2^p\big(|f|^p+|g|^p\big)
$$

• $||cf||_p = |c| ||f||_p$, and $||f||_p = 0$ iff $f \equiv 0$.

Need triangle inequality $||f + g||_p \leq ||f||_p + ||g||_p$ to conclude it's a norm.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ ○ 로 ○ 9 Q Q

Young's Inequality

Assume
$$
0 < p, q < 1
$$
, and $a, b \ge 0$
If $\frac{1}{p} + \frac{1}{q} = 1$, then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$

Follows from convexity of exp:

$$
\exp\left(\frac{x}{p} + \frac{y}{q}\right) \le \frac{\exp(x)}{p} + \frac{\exp(y)}{q}
$$

with $x = \log(a^p)$, $y = \log(b^q)$

Immediate consequence:

$$
\int |fg| \leq \frac{1}{\rho} \int |f|^{\rho} + \frac{1}{q} \int |g|^q
$$

メロメメ 御きメ 老き メ 悪きこ

ă. 299

Hölder's Inequality

If $f \in L^p$ and $g \in L^q$, where $1 < p, q < \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$, then f g \in L^1 , and $\|fg\|_1 \leq \|f\|_p \|g\|_q.$

Proof. Suffices to consider $||f||_p = 1$, $||g||_q = 1$, in which case

$$
\|fg\|_1 = \int |fg| \ \leq \ \frac{1}{\rho} \int |f|^p + \frac{1}{q} \int |g|^q \ = \ 1 \, .
$$

Minkowski's Inequality

For $1 \le p < \infty$, $||f + g||_p \le ||f||_p + ||g||_p$.

 ${\sf Proof.} \qquad \int |f+g|^p \leq \int |f||f+g|^{p-1} + \int |g||f+g|^{p-1}$

$$
||f+g||_p^p \le (||f||_p + ||g||_p) |||f+g|^{p-1}||_{p/(p-1)}
$$

$$
\le (||f||_p + ||g||_p) ||f+g||_p^{p-1}
$$

 2990

Ξ

 $\langle \uparrow \uparrow \uparrow \rangle$ $\langle \downarrow \uparrow \rangle$ $\langle \downarrow \uparrow \rangle$ $\langle \downarrow \uparrow \rangle$

Theorem (Riesz-Fischer)

 $L^p(\mathbb{R}^n)$ is complete under $\|\cdot\|_p$, i.e. $L^p(\mathbb{R}^n)$ is a Banach space.

Proof. Similar to $p = 1$: suppose $\|f_{n_j} - f_{n_{j-1}}\|_p \leq 2^{-j}$. Then

$$
\bigg\|\sum_{j=2}^\infty|f_{n_j}-f_{n_{j-1}}|\,\bigg\|_p\,\le\,\sum_{j=2}^\infty 2^{-j}\,<\,\infty\,,
$$

$$
\sum_{j=2}^\infty |f_{n_j}(x)-f_{n_{j-1}}(x)| < \infty \quad \text{for a.a. } x \,, \text{ so } f_{n_j}(x) \to f(x) \text{ a.e.}
$$

Definition

For any measurable set $A \subset \mathbb{R}^n$, define $\|f\|_{L^p(A)} = \big(\int_A |f|^p\big)^{1/p}.$

 $L^p(A)$ = equivalency classes of measurable functions on *A*.

イロト イ部 トイモト イモトー

 \equiv

 QQ

Case $p = \infty$: analogue of sup norm

For a measurable function *f*, set $||f||_{∞} = inf\{c : |f(x)| ≤ c$ for a.a. *x*}

- \bullet Equivalent characterization: $||f||_{\infty} \leq c$ if $|f(x)| \leq c$ a.e.
- $\|\cdot\|_{\infty}$ is a norm on the space of equivalency classes; in particular $||f + g||_{\infty} < ||f||_{\infty} + ||g||_{\infty}$
- *p* = 1, *q* = ∞, holds for Hölder's: $||fg||_1 \leq ||f||_1 ||g||_{\infty}$

Theorem

L[∞](\mathbb{R}^n) is a Banach space, i.e. it is complete in the norm.

Proof. $|f_m(x) - f_n(x)| \leq ||f_m - f_n||_{\infty}$ except on null-set $E_{m,n}$. The[n](#page-0-0) f_m f_m is uniformly convergent on complement of $\bigcup_{m,n} E_{m,n}$.

 2990

Dense sets in $L^p,$ for $1 \leq p < \infty$

Theorem

Finite simple functions $g = \sum_{j=1}^N c_j \,\chi_{A_j}$ are dense in $L^p(\mathbb{R}^n)$.

Proof. Non-negative *f* are ε-close to such *g* by construction of $\frac{1}{2}$ integral. General $f = f_{+} - f_{-} + i(\text{Im}f)_{+} - i(\text{Im}f)_{-}$

Theorem

 $C_c(\mathbb{R}^n)$ functions are dense in $L^p(\mathbb{R}^n)$.

Proof. By above, need show $\exists h \in C_c(\mathbb{R}^n)$ with $||h - \chi_A||_p < \varepsilon$. Depends on approximation in measure property for Lebesgue:

 \exists compact $K \subseteq A \subseteq U$ open : $\lambda(U) < \lambda(K) + \epsilon$.

KOD KAP KED KED E LORO

Continuity of Translation. Define $f_y(x) = f(x - y)$.

Theorem

Suppose
$$
1 \le p < \infty
$$
, and $f \in L^p(\mathbb{R}^n)$. Given $\epsilon > 0$, $\exists \delta > 0$ s.t.
 $||f - f_y||_p < \varepsilon$ if $|y| < \delta$.

Proof. If $f \in C_c(\mathbb{R}^n)$, holds by uniform continuity, bounded $\mathsf{support}$. General *f*, take $h \in C_c(\mathbb{R}^n)$ s.t. $\|f - h\|_p < \varepsilon/3$,

$$
||f - f_y||_p \le ||f - h||_p + ||h - h_y||_p + ||h_y - f_y||_p
$$

\n
$$
\le \frac{\varepsilon}{3} + ||h - h_y||_p + \frac{\varepsilon}{3}
$$

Fails in $L^∞$: $||\chi_{[0,1]} - \chi_{[v,v+1]}||_{∞} = 1$ for all *y* \neq 0.

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

ミー QQ

Definition

G open, say $f \in L^p_{loc}(G)$ if $\int_K |f|^p < \infty$ for each compact $K \subset G$

$$
\bullet \ \ C(G)\subset L^p_{loc}(G)\, .
$$

- $L^p(G) \subsetneq L^p_{loc}(G)$, not equal since $C(G) \not\subset L^p(G)$.
- $L_{loc}^p(G)$ is a *semi-normed* vector space: semi-norms given by family $\|\cdot\|_{L^p(K)}$ for collection of compact $K\subset G.$ If exhaust *G* by countable collection of *K^j* :

$$
K_j\subset \text{int}(K_{j+1}),\qquad G=\bigcup_{j=1}^\infty K_j\,,
$$

イロメ 不優 メイ君 メイ君 メー

 QQ

suffices to use countable family of seminorms $\|\cdot\|_{L^p(K_j)}.$

Lemma

The seminorm topology on $L_{loc}^p(G)$ is equivalent to a metric space topology, with metric

$$
d(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{\|f-g\|_{L^{p}(K_j)}}{1 + \|f-g\|_{L^{p}(K_j)}}
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ ○ 로 ○ 9 Q Q