

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 555, Winter 2014

Hart Smith Math 555

E 990

イロト イポト イヨト イヨト

Simplest Case: $L^1(\mathbb{R}^n)$

The collection of integrable functions on \mathbb{R}^n is a vector space.

Define:
$$||f||_1 = \int |f|$$

•
$$\|cf\|_1 = |c| \|f\|_1$$
, $c \in \mathbb{C}$

•
$$\|f + g\|_1 \le \|f\|_1 + \|g\|_1$$

 $\|\cdot\|_1$ is a *seminorm* but not a norm: $\|f\|_1 = 0$ iff f(x) = 0 a.e.

Definition

 $L^1(\mathbb{R}^n)$ is the vector space of equivalence classes of integrable functions on \mathbb{R}^n , where *f* is equivalent to *g* if f = g a.e. Then $\|\cdot\|_1$ makes $L^1(\mathbb{R}^n)$ into a normed vector space.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Theorem (Riesz-Fischer)

 $L^{1}(\mathbb{R}^{n})$ is complete under $\|\cdot\|_{1}$, i.e. $L^{1}(\mathbb{R}^{n})$ is a Banach space.

Proof. Show Cauchy sequence has convergent subsequence:

WTS if
$$\lim_{m,n\to\infty} \|f_n - f_m\|_1 = 0$$
, $\exists f_{n_j}, f$ s.t. $\lim_{j\to\infty} \|f_{n_j} - f\|_1 = 0$

Take n_j s.t. $||f_{n_j} - f_{n_{j-1}}|| \le 2^{-j}$, so that $\sum_{j=2}^{\infty} \int |f_{n_j} - f_{n_{j-1}}| < \infty$. Last time: f_{n_j} converges pointwise a.e. to $f = f_1 + \sum_{j=2}^{\infty} f_{n_j} - f_{n_{j-1}}$

$$|f - f_{n_j}| \le \sum_{j=2}^{\infty} |f_{n_j} - f_{n_{j-1}}|, \quad \text{LDCT} \Rightarrow \lim_{j \to \infty} \int |f - f_{n_j}| = 0$$

イロト 不得 とくほ とくほ とう

Definition: $1 \le p < \infty$

 $L^{p}(\mathbb{R}^{n})$ is the vector space of equivalence classes of integrable functions on \mathbb{R}^{n} , where *f* is equivalent to *g* if f = g a.e., such that $\int |f|^{p} < \infty$. We define $||f||_{p} = (\int |f|^{p})^{1/p}$.

Remarks

• $L^{p}(\mathbb{R}^{n})$ is a vector space, since

$$|f+g|^p \leq 2^p \left(|f|^p + |g|^p\right)$$

• $\|cf\|_{p} = |c| \|f\|_{p}$, and $\|f\|_{p} = 0$ iff $f \equiv 0$.

Need triangle inequality $||f + g||_p \le ||f||_p + ||g||_p$ to conclude it's a norm.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Young's Inequality

Assume
$$0 < p, q < 1$$
, and $a, b \ge 0$
If $\frac{1}{p} + \frac{1}{q} = 1$, then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$

Follows from convexity of exp:

$$\exp\left(\frac{x}{p} + \frac{y}{q}\right) \le \frac{\exp(x)}{p} + \frac{\exp(y)}{q}$$

with $x = \log(a^p)$, $y = \log(b^q)$

Immediate consequence:

$$\int |fg| \leq \frac{1}{p} \int |f|^p + \frac{1}{q} \int |g|^q$$

æ

イロト イポト イヨト イヨト

Hölder's Inequality

If $f \in L^p$ and $g \in L^q$, where $1 < p, q < \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$, then $fg \in L^1$, and $||fg||_1 \le ||f||_p ||g||_q$.

Proof. Suffices to consider $\|f\|_{\rho} = 1$, $\|g\|_{q} = 1$, in which case

$$\|fg\|_1 = \int |fg| \leq \frac{1}{p} \int |f|^p + \frac{1}{q} \int |g|^q = 1.$$

Minkowski's Inequality

For $1 \le p < \infty$, $\|f + g\|_p \le \|f\|_p + \|g\|_p$.

Proof. $\int |f+g|^p \le \int |f| |f+g|^{p-1} + \int |g| |f+g|^{p-1}$

$$egin{aligned} \|f+g\|_{
ho}^{
ho} &\leq \ \left(\|f\|_{
ho}+\|g\|_{
ho}
ight)ig\||f+g|^{
ho-1}ig\|_{
ho/(
ho-1)} \ &\leq \ \left(\|f\|_{
ho}+\|g\|_{
ho}
ight)\|f+g\|_{
ho}^{
ho-1} \end{aligned}$$

Theorem (Riesz-Fischer)

 $L^{p}(\mathbb{R}^{n})$ is complete under $\|\cdot\|_{p}$, i.e. $L^{p}(\mathbb{R}^{n})$ is a Banach space.

Proof. Similar to p = 1 : suppose $||f_{n_j} - f_{n_{j-1}}||_p \le 2^{-j}$. Then

$$\left\|\sum_{j=2}^{\infty}|f_{n_{j}}-f_{n_{j-1}}|\right\|_{p} \leq \sum_{j=2}^{\infty}2^{-j} < \infty,$$

$$\sum_{j=2}^\infty |f_{n_j}(x)-f_{n_{j-1}}(x)| < \infty \quad ext{for a.a. } x\,, \ ext{so} \ f_{n_j}(x) o f(x) \ ext{a.e.}$$

Definition

For any measurable set $A \subset \mathbb{R}^n$, define $\|f\|_{L^p(A)} = \left(\int_A |f|^p\right)^{1/p}$.

 $L^{p}(A) =$ equivalency classes of measurable functions on A.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Case $p = \infty$: analogue of sup norm

For a measurable function f, set $\|f\|_{\infty} = \inf \{c : |f(x)| \le c \text{ for a.a. } x \}$

- Equivalent characterization: $||f||_{\infty} \leq c$ if $|f(x)| \leq c$ a.e.
- $\|\cdot\|_{\infty}$ is a norm on the space of equivalency classes; in particular $\|f+g\|_{\infty} \le \|f\|_{\infty} + \|g\|_{\infty}$
- p = 1 , $q = \infty$, holds for Hölder's: $\|fg\|_1 \le \|f\|_1 \|g\|_\infty$

Theorem

 $L^{\infty}(\mathbb{R}^n)$ is a Banach space, i.e. it is complete in the norm.

Proof. $|f_m(x) - f_n(x)| \le ||f_m - f_n||_{\infty}$ except on null-set $E_{m,n}$. Then f_m is uniformly convergent on complement of $\bigcup_{m,n} E_{m,n}$.

Dense sets in L^p , for $1 \le p < \infty$

Theorem

Finite simple functions $g = \sum_{j=1}^{N} c_j \chi_{A_j}$ are dense in $L^{p}(\mathbb{R}^n)$.

Proof. Non-negative *f* are ε -close to such *g* by construction of integral. General $f = f_+ - f_- + i(\operatorname{Im} f)_+ - i(\operatorname{Im} f)_-$

Theorem

 $C_c(\mathbb{R}^n)$ functions are dense in $L^p(\mathbb{R}^n)$.

Proof. By above, need show $\exists h \in C_c(\mathbb{R}^n)$ with $||h - \chi_A||_p < \varepsilon$. Depends on approximation in measure property for Lebesgue:

 $\exists \text{ compact } K \subseteq A \subseteq U \text{ open } : \lambda(U) < \lambda(K) + \epsilon.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Continuity of Translation. Define $f_y(x) = f(x - y)$.

Theorem

Suppose
$$1 \le p < \infty$$
, and $f \in L^p(\mathbb{R}^n)$. Given $\epsilon > 0$, $\exists \delta > 0$ s.t.
 $\|f - f_y\|_p < \varepsilon$ if $|y| < \delta$.

Proof. If $f \in C_c(\mathbb{R}^n)$, holds by uniform continuity, bounded support. General *f*, take $h \in C_c(\mathbb{R}^n)$ s.t. $||f - h||_p < \varepsilon/3$,

$$\begin{aligned} \|f - f_{\mathcal{Y}}\|_{\mathcal{P}} &\leq \|f - h\|_{\mathcal{P}} + \|h - h_{\mathcal{Y}}\|_{\mathcal{P}} + \|h_{\mathcal{Y}} - f_{\mathcal{Y}}\|_{\mathcal{P}} \\ &\leq \frac{\varepsilon}{3} + \|h - h_{\mathcal{Y}}\|_{\mathcal{P}} + \frac{\varepsilon}{3} \end{aligned}$$

Fails in L^{∞} : $\|\chi_{[0,1]} - \chi_{[y,y+1]}\|_{\infty} = 1$ for all $y \neq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Definition

G open, say $f \in L^p_{loc}(G)$ if $\int_K |f|^p < \infty$ for each compact $K \subset G$

•
$$C(G) \subset L^p_{loc}(G)$$
.

- $L^{p}(G) \subsetneq L^{p}_{loc}(G)$, not equal since $C(G) \not\subset L^{p}(G)$.
- L^p_{loc}(G) is a *semi-normed* vector space: semi-norms given by family || · ||_{L^p(K)} for collection of compact K ⊂ G. If exhaust G by countable collection of K_i:

$$K_j \subset \operatorname{int}(K_{j+1}), \qquad G = \bigcup_{j=1}^{\infty} K_j,$$

イロン 不良 とくほう 不良 とうほ

suffices to use countable family of seminorms $\|\cdot\|_{L^{p}(K_{i})}$.

Lemma

The seminorm topology on $L^{p}_{loc}(G)$ is equivalent to a metric space topology, with metric

$$d(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{\|f-g\|_{L^p(\mathcal{K}_j)}}{1+\|f-g\|_{L^p(\mathcal{K}_j)}}$$