Lecture 2: Convolution

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 526, Spring 2013

Convolution product

If f, g functions on \mathbb{R}^n , formally define

$$(f*g)(x) = \int f(x-y) g(y) dy.$$

Theorem

Suppose that f, $g \in L^1(\mathbb{R}^n)$. Then for almost all x, the function f(x-y)g(y) is integrable in y, and

$$\int |(f*g)(x)| dx \leq ||f||_{L^1} ||g||_{L^1}.$$

Proof.

f(x-y)g(y) is measurable on \mathbb{R}^{2n} , and by Tonnelli theorem:

$$\int_{\mathbb{R}^{2n}} |f(x-y) g(y)| d(x,y) = \int \left(\int |f(x-y)| |g(y)| dx \right) dy$$
$$= \left(\int |f(x)| dx \right) \left(\int |g(y)| dy \right) < \infty$$

By Fubini, $f(x - y) g(y) \in L^1(dy)$ for almost all x, so (f * g)(x) is defined for almost all $x \in \mathbb{R}^n$.

$$\int |f * g|(x) dx = \int \left| \int f(x - y) g(y) dy \right| dx$$

$$\leq \int \int |f(x - y)| |g(y)| dy dx = ||f||_{L^{1}} ||g||_{L^{1}}$$

(f * g)(x) = (g * f)(x) where the integral exists.

Proof. Letting z = x - y,

$$\int f(x-y)\,g(y)\,dy=\int f(z)\,g(x-z)\,dz$$

$$f*(g*h)=(f*g)*h$$

Proof. Where the d(y, z) integral exists (which is x a.e.)

$$f * (g * h)(x) = \int \int f(x - y) g(y - z) h(z) dz dy$$

=
$$\int \int f(x - z - y) g(y) h(z) dy dz = (f * g) * h(x)$$

where $y \rightarrow y + z$ in the second line.

Theorem

The product * turns the Banach space $L^1(\mathbb{R}^n)$ into a commutative and associative algebra, for which

$$||f * g||_{L^1} \le ||f||_{L^1} ||g||_{L^1}.$$

That is, $[L^1(\mathbb{R}^n), *]$ is a commutative *Banach algebra*.

More common usage of convolution: suppose $K(x) \in L^1(\mathbb{R}^n)$. Then the linear mapping

$$f \rightarrow K * f$$

is a bounded map on $L^1(\mathbb{R}^n)$ with operator norm $\leq \|K\|_{L^1}$, i.e.

$$\|K * f\|_{L^1} \le \|K\|_{L^1} \|f\|_{L^1}$$
.

Call K a convolution kernel.

Convolution kernels on L^p

Theorem

Suppose $K \in L^1(\mathbb{R}^n)$, and $f \in L^p(\mathbb{R}^n)$, some $p \in [1, \infty]$. Then $\int K(x-y)f(y) \, dy$ exists for almost all x, and

$$||K * f||_{L^p} \leq ||K||_{L^1} ||f||_{L^p}.$$

Proof. For $p = \infty$, then $|K(x - y)| |f(y)| \le |K(x - y)| ||f||_{L^{\infty}}$ for almost all y, so K * f(x) exists for every x, and for all x

$$\left| \int K(x-y) \, f(y) \, dy \right| \leq \int |K(x-y)| \, dy \cdot \|f\|_{L^{\infty}} = \|K\|_{L^{1}} \|f\|_{L^{\infty}} \, .$$

For $f \in L^p$, $1 \le p \le \infty$, write $f = f_0 + f_1$ where $f_0 \in L^\infty$, $f_1 \in L^1$, so

$$\int K(x-y) f(y) dy = \int K(x-y) \left(f_0(y) + f_1(y) \right) dy \text{ exists } x \text{ a.e.}$$

To see $\|K * f\|_{L^p} \le \|K\|_{L^1} \|f\|_{L^p}$, use the integral form of Minkowski's inequality:

$$\left\| \int K(y) f(x - y) dy \right\|_{L^{p}(dx)} \le \int \|K(y) f(x - y)\|_{L^{p}(dx)} dy$$

$$= \left(\int |K(y)| dy \right) \|f\|_{L^{p}}$$

$$= \|K\|_{L^{1}} \|f\|_{L^{p}}$$

Example: averaging operator

Given
$$r > 0$$
, let $K_r(x) = \frac{1}{m(B(r,0))} \mathbb{1}_{B(r,0)}(x)$. Then $\|K_r\|_{L^1} = 1$, and
$$K_r * f(x) = \frac{1}{m(B(r,0))} \int \mathbb{1}_{B(r,0)}(x-y) f(y) dy$$

$$= \frac{1}{m(B(r,0))} \int_{|y-x| < r} f(y) dy$$

$$= A_r f(x)$$

So: $||A_r f||_{L^p} \le ||f||_{L^p}$

Much deeper theorem: $Hf(x) := \sup_{r>0} A_r |f|(x)$ satisfies

$$||Hf||_{L^p} \leq C_p ||f||_{L^p}, \quad 1$$

Convolution and translations

Definition

For $y \in \mathbb{R}^n$, f a function on \mathbb{R}^n , define $\tau_y f$ by $(\tau_y f)(x) = f(x - y)$.

- By translation invariance of measure: $\|\tau_y f\|_{L^p} = \|f\|_{L^p}$.
- By density of step functions in L^p for $1 \le p < \infty$:

$$\lim_{y\to 0}\|\tau_y f-f\|_{L^p}=0\,,\quad 1\le p<\infty$$

• Can write K * f as "sum of translates of f":

$$(K*f)(\cdot) = \int K(y) f(\cdot - y) dy = \int K(y) \tau_y f(\cdot) dy.$$

Approximations to the identity

Definition

If
$$K \in L^1(\mathbb{R}^n)$$
, define $K_r(x) = r^{-n}K(r^{-1}x)$.

• By change of variables:

$$\int K_r(x) = \frac{1}{r^n} \int K\left(\frac{x}{r}\right) dx = \int K(x) dx$$

• If $\delta > 0$, then

$$\int_{|x|>\delta} |K_r(x)| dx = \int_{|x|>r^{-1}\delta} |K(x)| dx$$

so for any fixed $\delta > 0$:

$$\lim_{r\to 0}\int_{|x|>\delta}|K_r(x)|\,dx=0\,.$$

Approximations to the identity

Theorem

Suppose that $K \in L^1(\mathbb{R}^n)$, and $\int K(x) dx = 1$. If $f \in L^p(\mathbb{R}^n)$, and $1 \le p < \infty$, then $\lim_{r \to 0} ||K_r * f - f||_{L^p} = 0$.

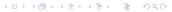
Proof. Given $\epsilon > 0$, $\exists \delta > 0$ such that $\|\tau_y f - f\|_{L^p} < \epsilon$ if $|y| < \delta$. Since $f(x) = \int K_r(y) f(x) dy$, write

$$\|(K_{r} * f) - f\|_{L^{p}} = \left\| \int K_{r}(y) \Big(\tau_{y} f(x) - f(x) \Big) dy \right\|_{L^{p}(dx)}$$

$$\leq \int_{|y| < \delta} |K_{r}(y)| \, \|\tau_{y} f - f\|_{L^{p}} dy + \int_{|y| > \delta} |K_{r}(y)| \, \|\tau_{y} f - f\|_{L^{p}} dy$$

$$\leq \epsilon \cdot \|K\|_{L^{1}} + 2 \, \|f\|_{L^{p}} \int_{|y| > \delta} |K_{r}(y)| \, dy$$

Both terms small if ϵ small and r small.



Application: smooth approximations to the identity

Lemma

Suppose that $\Phi \in C^m(\mathbb{R}^n)$ has compact support. If $f \in L^p(\mathbb{R}^n)$, $p \in [1, \infty]$, then $\Phi * f \in C^m(\mathbb{R}^n)$.

Proof. Write $(\Phi * f)(x) = \int \Phi(x - y) f(y) dy$ and differentiate under integral sign.

Theorem

Suppose that $\Phi \in C_c^m(\mathbb{R}^n)$ is non-negative and $\int \Phi(y) dy = 1$. Then $\Phi_r * f$ is a family of C^m functions, such that

$$\|\Phi_r * f\|_{L^p} \le \|f\|_{L^p}, \qquad \lim_{r \to 0} \|\Phi_r * f - f\|_{L^p} = 0.$$

