Math 524, Autumn 2007, Homework 9

The following homework is due Friday, December 7.

1. A Borel measure \(\mu \) on \(\mathbb{R}^n \) is called regular if \(\mu(K) < \infty \) for all compact sets \(K \), and if for all Borel sets \(E \) we have

\[
\mu(E) = \sup\{\mu(K) : K \subseteq E, \text{ K compact}\} = \inf\{\mu(U) : U \supseteq E, \text{ U open}\}
\]

Show that if \(\mu \) and \(\nu \) are regular Borel measures, and

\[
\int \phi \, d\mu = \int \phi \, d\nu
\]

for all \(\phi \in C_c(\mathbb{R}^n) \), then \(\mu = \nu \). [Consider functions \(\phi = 1 \) on \(K \) and \(\phi = 0 \) on \(U^c \).]

2. If \(f \in L^1(\mathbb{R}, dx) \), show that

\[
\int_{x_1 < x_2 < \cdots < x_n} f(x_1)f(x_2) \cdots f(x_n) \, dx_1 \, dx_2 \cdots dx_n = \frac{1}{n!} \left(\int f(x) \, dx \right)^n
\]

[Hint: consider how the integral behaves under permutation of the \(x_i \)'s.]

3. Let \(f(x) \) be a non-negative Lebesgue measurable function on \(\mathbb{R} \), and let

\[
\phi(t) = m\{x : f(x) > t\}
\]

Show that \(\phi \) is right-continuous and decreasing, and that

\[
\int_0^\infty \phi(t) \, dt = \int f(x) \, dx
\]

4.

(a.) If \(f, g \in L^1(\mathbb{R}, dx) \), show that \(f(x - y)g(y) \in L^1(\mathbb{R}, dx) \) for almost all \(x \).

(b.) If \(h(x) = \int f(x - y)g(y) \, dy \) (where defined), show that \(h \in L^1(\mathbb{R}, dx) \) and

\[
\int |h| \, dx \leq \left(\int |f| \, dx \right) \left(\int |g| \, dx \right)
\]