Lecture 8: The Residue Theorem

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Residue Theorem

Suppose Γ is a cycle in E such that $\operatorname{ind}_{\Gamma}(z) = 0$ for $z \notin E$.

Suppose that f is analytic on $E \setminus \{z_1, \ldots, z_n\}$; that is, f has isolated singularities at a finite set of points in E. Then

$$\int_{\Gamma} f(w) dw = 2\pi i \sum_{i=1}^{n} \operatorname{ind}_{\Gamma}(z_{i}) \cdot \operatorname{Res}(f, z_{j})$$

Proof. Take r small so $\overline{D_r}(z_j) \subset E$ contains only one singularity.

Then: $\Gamma' = \Gamma - \operatorname{ind}_{\Gamma}(z_1) \partial D_r(z_1) - \cdots - \operatorname{ind}_{\Gamma}(z_n) \partial D_r(z_n)$ satisfies $\operatorname{ind}_{\Gamma'}(z) = 0$ for all $z \notin E \setminus \{z_1, \dots, z_n\}$.

By Cauchy's Theorem :
$$\int_{\Gamma'} f(w) dw = 0$$
, so

$$\int_{\Gamma} f(w) dw = \sum_{j=1}^{n} \operatorname{ind}_{\Gamma}(z_{j}) \int_{\partial D_{r}(z_{0})} f(w) dw = 2\pi i \sum_{j=1}^{n} \operatorname{ind}_{\Gamma}(z_{j}) \cdot \operatorname{Res}(f, z_{j})$$

Examples

In most cases of interest:

- Γ is (equivalent to) a closed path.
- f(z) may have infinitely many singularities (like $\tan z$), but Γ encloses finitely many z_j , and $\operatorname{ind}_{\Gamma}(z_j) = \pm 1$ at each.

$$\int_{|z|=2\pi} \tan w \, dw = 2\pi i \sum_{k=-2}^{1} \text{Res}(\tan z, (k+\frac{1}{2})\pi) = -8\pi i$$

$$\int_{|z|=3} \frac{w+3}{(w+1)(w-2)} dw = 2\pi i \left(\frac{5}{3} - \frac{2}{3}\right) = 2\pi i$$

Evaluate: $\int_{\Gamma} \frac{e^{iz}}{z^2 + 1} dz$, where $\Gamma = \gamma_1 + \gamma_2$:

$$\gamma_1 = [-R, R], \quad \gamma_2(t) = Re^{it}, \quad t \in [0, \pi], \quad \text{with } R > 1.$$

Simple poles at $z = \pm i$, $\operatorname{ind}_{\Gamma}(i) = 1$, $\operatorname{ind}_{\Gamma}(-i) = 0$.

$$\operatorname{Res}\left(\frac{e^{iz}}{z^2+1},i\right) = \lim_{z \to i} \frac{(z-i)e^{iz}}{z^2+1} = \lim_{z \to i} \frac{e^{iz}}{z+i} = \frac{e^{-1}}{2i}$$

$$\int_{\Gamma} \frac{e^{iz}}{z^2 + 1} dz = 2\pi i \operatorname{Res}\left(\frac{e^{iz}}{z^2 + 1}, i\right) = \pi e^{-1}$$

If take $\gamma_2(t) = Re^{-it}$, $t \in [0, \pi]$, then

$$\int_{\Gamma} \frac{e^{iz}}{z^2+1} dz = -2\pi i \operatorname{Res}\left(\frac{e^{iz}}{z^2+1}, -i\right) = \pi e$$

Calculating residues for higher order poles

Pole of order 2 at z_0 : express the function f(z) as $\frac{g(z)}{(z-z_0)^2}$,

$$g(z) = g(z_0) + g'(z_0)(z - z_0) + \dots \Rightarrow \mathsf{Res}igg(rac{g(z)}{(z - z_0)^2}, z_0igg) = g'(z_0)$$

•
$$\frac{e^z}{(z-2)^2}$$
 : $g(z) = e^z$, $g'(z) = e^z$, $\text{Res}\left(\frac{e^z}{(z-2)^2}, 2\right) = e^2$

•
$$\frac{e^{iz}}{(z^2+1)^2} = \frac{e^{iz}}{(z-i)^2(z+i)^2}$$
 at $z_0 = i$: $g(z) = \frac{e^{iz}}{(z+i)^2}$

$$\operatorname{Res}\left(\frac{e^{iz}}{(z^2+1)^2},i\right) = \frac{ie^{iz}}{(z+i)^2} - \frac{2e^{iz}}{(z+i)^3}\bigg|_{z=i} = \frac{-ie^{-1}}{2}$$

• $\frac{e^z}{(e^z-1)^2}$ at $z_0=0$.

Method: write $e^z - 1 = zh(z)$, $h(z) = 1 + \frac{1}{2!}z + \frac{1}{3!}z^2 + \cdots$

$$rac{e^z}{(e^z-1)^2}=rac{g(z)}{z^2}$$
 where $g(z)=rac{e^z}{h(z)^2}$

$$g'(z) = \frac{e^z}{h(z)^2} - \frac{2e^z h'(z)}{h(z)^3}$$

Read off from Taylor expansion for $h: h(0) = 1, h'(0) = \frac{1}{2}$.

$$\operatorname{Res}\left(\frac{e^z}{(e^z-1)^2},0\right)=0$$