Lecture 21: More Fourier transforms. The Open Mapping Theorem

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 428, Winter 2020
Theorem

Assume $P(z)$, $Q(z)$ polynomials, and $\text{order}(Q) \geq \text{order}(P) + 1$, and $Q(z)$ has no zeroes on the real number line.

If $s < 0$:
\[
\int_{-\infty}^{\infty} e^{-ist} \frac{P(t)}{Q(t)} \, dt = 2\pi i \sum_{z_j} \text{Res} \left(e^{-isz} \frac{P(z)}{Q(z)}, z_j \right)
\]
with $\{z_j\}$ the zeroes of Q in upper half plane $\text{Im}(z) > 0$.

If $s > 0$:
\[
\int_{-\infty}^{\infty} e^{-ist} \frac{P(t)}{Q(t)} \, dt = -2\pi i \sum_{w_k} \text{Res} \left(e^{-isz} \frac{P(z)}{Q(z)}, w_k \right)
\]
where $\{w_k\}$ are the zeroes of Q in lower half plane $\text{Im}(w) < 0$.

If $s = 0$: integral converges only if $\text{order}(Q) \geq \text{order}(P) + 2$.
Evaluate: \(\hat{f}(s) \) for \(s \neq 0 \), where \(f(t) = \frac{1}{1 - i t} \).

For \(s < 0 \):
\[
\hat{f}(s) = \lim_{R \to \infty} \int_{[-R,R]+\mu_R^+} \frac{e^{-isz}}{1 - iz} \, dz
\]
\[
= 0 \quad \text{(no poles)}
\]

For \(s > 0 \):
\[
\hat{f}(s) = \lim_{R \to \infty} \int_{[-R,R]+\mu_R^-} \frac{e^{-isz}}{1 - iz} \, dz
\]
\[
= -2\pi i \text{Res}\left(\frac{e^{-isz}}{1 - iz}, -i\right) = 2\pi e^{-s}
\]

For \(s = 0 \):
\[
\int_{-\infty}^{\infty} \frac{1}{1 - it} \, dt \quad \text{depends on how you take limits.}
\]

Example: for symmetric limits
\[
\lim_{R \to \infty} \int_{-R}^{R} \frac{1}{1 - it} \, dt = \pi
\]
Evaluate: \(\hat{f}(s) \) for \(s \neq \pm 1 \), where \(f(t) = \frac{\sin t}{t} \).

\[
\hat{f}(s) = \lim_{R \to \infty} \int_{[-R,R]} \frac{e^{-i(s-1)z} - e^{-i(s+1)z}}{2iz} \, dz
\]

\(s > 1 \) : \(\hat{f}(s) = \lim_{R \to \infty} \int_{[-R,R] + \mu_R^{-}} \frac{e^{-i(s-1)z} - e^{-i(s+1)z}}{2iz} \, dz = 0 \)

\(s < -1 \) : \(\hat{f}(s) = \lim_{R \to \infty} \int_{[-R,R] + \mu_R^{+}} \frac{e^{-i(s-1)z} - e^{-i(s+1)z}}{2iz} \, dz = 0 \)

\(-1 < s < 1 \) : “go around 0” to handle exponentials separately.

\[
\lim_{R \to \infty} \int_{[-R,R]} \frac{e^{-i(s-1)z} - e^{-i(s+1)z}}{2iz} \, dz = 2\pi i \text{Res} \left(\frac{e^{-i(s-1)z}}{2iz}, 0 \right) = \pi
\]
Theorem: assume f analytic on open set E

Suppose that $f^{(k)}(z_0) = 0$ for $1 \leq k < m$, and $f^{(m)}(z_0) \neq 0$. Let $f(z_0) = w_0$. Then for some $r, \delta > 0$, if $w \in D_\delta(w_0) \setminus \{w_0\}$, the equation $f(z) = w$ has m distinct solutions for $z \in D_r(z_0)$.

- Assumptions say $f(z) - w_0$ has a zero of order m at $z = z_0$.
- Zeroes of $f(z) - w_0$ and of $f'(z)$ are isolated, so exists $r > 0$:

$$
\min_{|z - z_0| = r} |f(z) - w_0| = \delta > 0, \quad f'(z) \neq 0 \text{ if } 0 < |z - z_0| < r
$$

- If $|w - w_0| < \delta$, then

$$
|(f(z) - w) - (f(z) - w_0)| \leq |f(z) - w_0| \text{ for } z \in \partial D_r(z_0).
$$

By Rouché, $f(z) - w$ has m zeroes for $z \in D_r(z_0)$, which are simple if $w \neq w_0$ since $f'(z) \neq 0$ if $0 < |z - z_0| < r$.
Open Mapping Theorem: assume U is open, connected

If $f(z)$ is analytic on U and not constant, then $f(U) \subset \mathbb{C}$ is open.

- “f maps open sets to open sets, unless f is constant”.

Proof. By Theorem, if $w_0 \in f(U)$, $\exists \delta > 0$ with $D_\delta(w_0) \subset f(U)$.