Lecture 12: The Inverse Function Theorem

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Rouche's Theorem

If f, g are analytic on E, γ a simple path in E with $int(\gamma) \subset E$,

$$f,g$$
 have no zeroes on γ , and $\left| rac{f(z)}{g(z)} - 1
ight| \leq 1$ for all $z \in \{\gamma\}$,

then: $\#\{ {\it zeroes of } f \ {\it in } \gamma \} = \#\{ {\it zeroes of } g \ {\it in } \gamma \} \, .$

Another way to state criterion on f and g:

$$|f(z)-g(z)| \leq |g(z)|$$
 for all $z \in \{\gamma\}$.

Assume $f(z_0) = w_0$, and $f'(z_0) \neq 0$. Then there exists $f^{-1}(w)$:

- $f(f^{-1}(w)) = w$ for $w \in D_{\delta}(w_0)$, some $\delta > 0$.
- $f^{-1}(w_0) = z_0$; $f^{-1}(w)$ is analytic on $D_{\delta}(w_0)$.
- $f^{-1}(w)' = 1/f'(f^{-1}(w)).$

Existence of $f^{-1}(w)$:

- The function $f(z) w_0$ has a zero of order 1 at $z = z_0$.
- Zeroes are isolated: $f(z)-w_0$ has unique zero in $\overline{D_r}(z_0)$ for some r>0, so

$$\min_{|z-z_0|=r} |f(z) - w_0| = \delta > 0.$$

- If $|\mathbf{w} - \mathbf{w}_0| < \delta$, then

$$\left|\left(f(z)-w\right)-\left(f(z)-w_0\right)\right|\leq |f(z)-w_0| \ \ \text{for} \ \ z\in\partial D_r(z_0)$$
 so $f(z)-w$ has a unique zero in $D_r(z_0)$, which gives $f^{-1}(w)$.

Pictorial illustration behind existence of $f^{-1}(w)$

Let
$$f(z) = \tan z$$
, $z_0 = 0$, $w_0 = 0$. Then $\tan'(z_0) = 1$.

$$\partial D_1(0) = \{e^{it} : t \in [0, 2\pi]\}$$

Image of $\partial D_1(0)$ under $\tan z$: $\left\{ \tan(e^{it}) : t \in [0, 2\pi] \right\}$

Analyticity of $f^{-1}(w)$ for $|w - w_0| < \delta$

Key fact: $f^{-1}(w)$ is unique zero of f(z) - w for $z \in D_r(z_0)$,

$$\operatorname{Res}\left(\frac{f'(z)}{f(z)-w}, f^{-1}(w)\right) = 1$$

$$\Rightarrow \frac{f'(z)}{f(z)-w} = \frac{1}{z-f^{-1}(w)} + \text{analytic}$$

Explicit formula :
$$f^{-1}(w) = \frac{1}{2\pi i} \int_{\partial D_r(z_0)} \frac{z f'(z)}{f(z) - w} dz$$

This is analytic on $|w - w_0| < \delta$, and equals the power series

$$f^{-1}(w) = \sum_{k=0}^{\infty} a_k (w - w_0)^k \,, \quad \ a_k = \frac{1}{2\pi i} \int_{\partial D_r(z_0)} \frac{z \, f'(z)}{(f(z) - w_0)^{k+1}} \, dz$$

Example

Let $f(z) = \sin z$. Then $f'(z) = \cos z \neq 0$ if $z \neq (k + \frac{1}{2})\pi$.

Note: $\sin z = \pm 1 \Rightarrow \sin' z = 0$; no analytic inverse at $w_0 = \pm 1$.

For a local inverse, two values are possible for $(\sin^{-1})'(w)$:

$$(\sin^{-1})'(w) = \frac{1}{\cos(\sin^{-1}(w))} = \frac{1}{\sqrt{1-w^2}}$$

Take $z_0 = 0$, $w_0 = \sin(0) = 0$. Then for $|w| < \delta$: there is a choice of $\sin^{-1}(w)$ with $\sin^{-1}(0) = 0$, and

$$(\sin^{-1})'(0) = \cos(\sin^{-1}(0)) = \cos(0) = 1.$$

Take $z_0 = \pi$, $w_0 = \sin(\pi) = 0$. Then for $|w| < \delta$: there is a choice of $\sin^{-1}(w)$ with $\sin^{-1}(0) = \pi$, and

$$(\sin^{-1})'(0) = \cos(\sin^{-1}(0)) = \cos(\pi) = -1.$$