Webpage: sites.math.washington.edu/~hart/m428
Email: hfsmith@uw.edu

Text: Complex Variables, Joseph Taylor (AMS, 2011)

Office Hours: Padelford C-447, MWF 2:00 - 3:30 pm.

Grading:

- Midterm, Wednesday February 13: 30%
- Final Exam, Wednesday March 20: 50%
- Weekly Homework: 20%
Theorem \(\mathbb{R} \)

Assume that \(f(t) \) is a continuous, real valued function on \([a, b]\), and let \(M = \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \). Then if \(f(t) \leq M \) for all \(t \in [a, b] \), we must have \(f(t) = M \) for all \(t \in [a, b] \).

Theorem \(\mathbb{C} \)

Assume \(f(t) \) is a continuous, complex valued function on \([a, b]\), and let \(c = \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \). Then if \(|f(t)| \leq |c| \) for all \(t \in [a, b] \), we must have \(f(t) = c \) for all \(t \in [a, b] \).

Proof. Write \(c^{-1}f(t) = g(t) + ih(t) \), so \(|c^{-1}f(t)| \leq 1 \ \forall t \in [a, b] \).

Given: \(1 = \frac{1}{b-a} \int_{a}^{b} g(t) + ih(t) \, dt \), so \(g(t) = 1 \) for all \(t \).
Theorem: suppose $f(z)$ is analytic on $D_r(z_0)$

If $|f(z)| \leq |f(z_0)|$ for all $z \in D_r(z_0)$, then $f(z) = f(z_0)$ on $D_r(z_0)$.

Proof. For any $r' < r$, by the Cauchy integral formula

$$f(z_0) = \frac{1}{2\pi i} \int_{|w - z_0| = r'} \frac{f(w)}{w - z_0} \, dw = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + r'e^{it}) \, dt$$

$$|f(z_0 + r'e^{it})| \leq |f(z_0)| \Rightarrow f(z_0 + r'e^{it}) = f(z_0) \text{ by Theorem } \mathbb{C}.$$

This is true for any $r' < r$, so $f(z) = f(z_0)$ for all $z \in D_r(z_0)$.

Maximum modulus theorem

Assume $f(z)$ is analytic on E, and continuous on \bar{E}, where E is a bounded, connected, open set. Then the maximum of $|f(z)|$ on \bar{E} occurs on ∂E (and only on ∂E if f is not constant).

Proof. $|f(z)|$ can’t equal $\max_{\bar{E}} |f|$ for $z \in E$ unless f is constant.
Examples

1. \(|z^4 - 1|\) on \(\{z : |z| \leq 1\}\). Maximum is at some \(z = e^{i\theta}\),

\[
|e^{4i\theta} - 1|^2 = (\cos(4\theta) - 1)^2 + \sin(4\theta)^2
\]

Setting the derivative equal to 0 gives \(\sin(4\theta) = 0\):

\[
\theta = 0, \pm \frac{\pi}{2}, \pi \text{ (minimum)}, \quad \theta = \pm \frac{\pi}{4}, \pm \frac{3\pi}{4} \text{ (maximum)}
\]

2. \(|e^z|\) on the square: \(-1 \leq \text{Re}(z) \leq 1\), \(-1 \leq \text{Im}(z) \leq 1\).

\[
|e^{x+iy}| = e^x \quad \text{does not depend on } y.
\]

\(e^x\) is maximized over \(-1 \leq x \leq 1\) at \(x = 1\), so maximum is achieved at every point on right edge of the square.
Harmonic functions

Definition
A function $u(x, y)$ on an open set $E \subset \mathbb{R}^2$ is harmonic if:

$$\partial_x^2 u(x, y) + \partial_y^2 u(x, y) = 0 \quad \text{for all } (x, y) \in E.$$

Key fact: If $f = u + iv$ is analytic, then u and v are harmonic,

The real and imaginary parts of an analytic function are harmonic.

The proof is an easy consequence of the

Cauchy-Riemann equations

$$\partial_x u(x, y) = \partial_y v(x, y), \quad \partial_y u(x, y) = -\partial_x v(x, y).$$
Theorem: assume $E \subset \mathbb{C}$ is open, convex

If u is a real-valued, harmonic function on E, then there is a real-valued, harmonic function v on E so that $u + iv$ is analytic.

Proof. The function $g = \partial_x u - i \partial_y u$ is analytic on E, by the Cauchy-Riemann equations. Its anti-derivative $f(z)$ is analytic:

$$f(z) = u(x_0, y_0) + \int_{z_0}^{z} g(z) \, dz, \quad z_0 = x_0 + iy_0 \in E.$$

The real part of $f(z)$ equals $u(x, y)$, since

$$f(z) = u(x_0, y_0) + \int_{z_0}^{z} \left(\partial_x u \, dx + \partial_y u \, dy \right)$$

$$+ i \int_{z_0}^{z} \left(\partial_x u \, dy - \partial_y u \, dx \right)$$

Choose $v = \int_{z_0}^{z} \left(\partial_x u \, dy - \partial_y u \, dx \right)$
Mean value property for harmonic functions

Theorem

Suppose u is harmonic on E. Then, whenever $\overline{D_r(z_0)} \subset E$,

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) \, d\theta$$

Proof. There is analytic f on $\overline{D_r(z_0)} \subset E$, with $u(z) = \text{Re}(f(z))$,

$$u(z_0) = \text{Re}\left(\frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) \, d\theta \right) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) \, d\theta$$

Applying our first Theorem to $u(z)$ gives us

Maximum principle for harmonic functions

Assume u is harmonic on E, and continuous on \overline{E}, where E is a bounded, connected, open set. Then the maximum of u on \overline{E} occurs on ∂E (and only on ∂E if u is not constant).