Lecture 8: Branches of multi-valued functions

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Theorem: assume *f* is continuous

Suppose that f maps \mathbb{C} to either \mathbb{C} or \mathbb{R} . If E is open, then the pre-image $f^{-1}(E) = \{z : f(z) \in E\}$ is an open subset of \mathbb{C} .

Proof. Show if $w \in f^{-1}(E)$, then $D_{\delta}(w) \subset f^{-1}(E)$ some $\delta > 0$.

- Since *E* open, $E \supset D_{\epsilon}(f(w)), \ \epsilon > 0$.
- f continuous, so $f(z) \in D_{\epsilon}(f(w)) \subset E$ if $|w z| < \delta$.

Example: $\{z : |z^3 + z| < 1\}$ is open.

Fact

Suppose $E \subset \mathbb{C}$ is open, and f is a function from E to \mathbb{C} . Then f is continuous if and only if the following property holds:

 $f^{-1}(U)$ is an open subset of E whenever U is open.

A multi-valued function f on $E \subset \mathbb{C}$ assigns a **set** of complex values to each $z \in E$, i.e. f(z) is a set of complex numbers.

Examples:

- $\log z = \log |z| + i \arg(z)$ with domain $E = \mathbb{C} \setminus \{0\}$. The multiple values of $\log z$ differ by $k2\pi i$
- \sqrt{z} assigns to $z \in \mathbb{C}$ the numbers w with $w^2 = z$. If $z \neq 0$, \sqrt{z} has exactly two values, of the form $\{w, -w\}$.
- $\sqrt{z^2-1}$ assigns to $z \in \mathbb{C}$ the $w \in \mathbb{C}$ with $w^2=z^2-1$.

A **branch** of a multi-valued function f on $E \subset \mathbb{C}$ is a function that assigns to each $z \in E$ one value from f(z).

Principal branch of $z^{\frac{1}{n}}$.

The **principal branch** of $\log z$ is $\log |z| + i \arg_{(-\pi,\pi]}(z)$, $z \neq 0$.

• For any branch of log z,

$$\left(e^{\frac{1}{n}\log z}\right)^n = e^{\log z} = z$$

The **principal branch** of $z^{\frac{1}{n}} = \sqrt[n]{z}$, for $z \neq 0$, is the function

$$e^{(\log |z| + i \arg_{(-\pi,\pi]}(z))/n} = |z|^{\frac{1}{n}} e^{\frac{i}{n} \arg_{(-\pi,\pi]}(z)}$$

- Gives unique solution to $w^n = z$ such that $arg(w) \in (-\frac{\pi}{n}, \frac{\pi}{n}]$
- The principal branch of $z^{\frac{1}{n}}$ is continuous on $\mathbb{C} \setminus (-\infty, 0]$.

Two branches for the square root of $z^2 - 1$.

• Consider $\sqrt{z^2-1}$; $\sqrt{\cdot}$ the principal branch of square root. Let $E=\left\{z:z^2-1\in\mathbb{C}\setminus(-\infty,0]\right\}$. E is an open set, and

$$E = \mathbb{C} \setminus \{ [-1, 1] \cup i \mathbb{R} \}$$

Each point $z \in (-1,1) \cup i\mathbb{R}$ is a point of discontinuity.

- $w=\sqrt{z-1}\,\sqrt{z+1}\,$ also solves $w^2=z^2-1$. By composition, this is continuous on $F=\mathbb{C}\setminus(-\infty,1]$.
- In fact, it is continuous on C\[-1,1], and each point in (-1,1) is a point of discontinuity.