Lecture 24: Zeroes of analytic functions

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019
Assume $f(z)$ analytic on $E \subset \mathbb{C}$, and $f(z_0) = 0$. If $|z - z_0| < R$:

$$f(z) = \sum_{k=1}^{\infty} a_k (z - z_0)^k, \quad a_k = \frac{f^{(k)}(z_0)}{k!}$$

Two possibilities:

- If $a_k = 0$ for every k, then $f(z) = 0$ for $|z - z_0| < R$.

- If for some m, we have $a_m \neq 0$ but $a_k = 0$ when $k < m$, we say that $f(z)$ has a zero of order m at z_0. Equivalently:

 - $f(z)$ has a zero of order m at z_0 if:

 $$f^{(m)}(z_0) \neq 0, \quad \text{and} \quad f^{(k)}(z_0) = 0 \text{ for } k < m.$$
Examples

- \(\sin(z) \) has a zero of order 1 at \(z_0 = 0 \):
 \[
 \sin(z) = z - \frac{1}{3!} z^3 + \cdots, \quad \text{so} \quad a_0 = 0, \quad a_1 \neq 0.
 \]
 Can also check: \(\sin(z) = 0, \quad \sin'(0) = \cos(0) = 1 \neq 0 \).

- \(\sin(z) \) has a zero of order 1 at \(z_0 = k\pi \).

- \(z^3 - 1 \) has a zero of order 1 at \(z_0 = 1 \):
 \[
 z^3 - 1 = 0 \quad \text{when} \quad z = 1, \quad (z^3 - 1)' = 3z^2 = 3 \quad \text{when} \quad z = 1.
 \]

- \(e^z - z - 1 \) has a zero of order 2 at \(z_0 = 0 \):
 \[
 e^z - z - 1 = \frac{1}{2!} z^2 + \frac{1}{3!} z^3 + \cdots
 \]
Theorem: assume f analytic on $E \subset \mathbb{C}$

If $f(z)$ has a zero of order m at z_0, there is $g(z)$ analytic on E:

$$f(z) = (z - z_0)^m g(z), \quad \text{where} \quad g(z_0) \neq 0.$$

Proof. For $|z - z_0| < R$ we can write:

$$f(z) = \sum_{k=m}^{\infty} a_k (z - z_0)^k = (z - z_0)^m \sum_{k=0}^{\infty} a_{k+m} (z - z_0)^k.$$

Define:

$$g(z) = \begin{cases}
\sum_{k=0}^{\infty} a_{k+m} (z - z_0)^k, & |z - z_0| < R, \\
\frac{f(z)}{(z - z_0)^m}, & z \neq z_0.
\end{cases}$$

If $f(z)$ has a zero of order m at z_0, then $\frac{f(z)}{(z - z_0)^m}$, defined on the set $E \setminus \{z_0\}$, extends to an analytic function on E.
Theorem: L’Hôpital’s rule

If \(f(z_0) = g(z_0) = 0 \), then
\[
\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f'(z)}{g'(z)}
\]

Proof. Unless the order of zeroes of \(f \) and \(g \) at \(z_0 \) are the same, then both limits are either 0 or \(\infty \). If \(f \) and \(g \) have zero order \(m \):

\[
f(z) = \sum_{k=m}^{\infty} a_k (z - z_0)^k, \quad g(z) = \sum_{k=m}^{\infty} b_k (z - z_0)^k
\]

\[
f'(z) = \sum_{k=m}^{\infty} k a_k (z - z_0)^{k-1}, \quad g'(z) = \sum_{k=m}^{\infty} k b_k (z - z_0)^{k-1}
\]

\[
\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{a_m}{b_m}, \quad \lim_{z \to z_0} \frac{f'(z)}{g'(z)} = \frac{m a_m}{m b_m} = \frac{a_m}{b_m}
\]
Zeroes of analytic functions are isolated

Theorem: Suppose f is analytic on connected open set $E \subset \mathbb{C}$.

If $f(z_0) = 0$, and f is not identically 0, then for some $r > 0$:

$$f(z) \neq 0 \text{ if } 0 < |z - z_0| < r.$$

Proof. Write $f(z) = (z - z_0)^m h(z)$, $h(z_0) \neq 0$. By continuity:

$$h(z) \neq 0 \text{ if } |z - z_0| < r, \text{ for some } r > 0.$$

Application. If $\{z_k\} \subset E$ is a sequence with $\lim_{k \to \infty} z_k = z_0 \in E$, and $f(z_k) = g(z_k)$ for all k, then $f(z) = g(z)$ on E.

Proof. Let $h(z) = f(z) - g(z)$. Then $h(z_0) = 0$ by continuity. For every $r > 0$, is some z_k with $|z_k - z_0| < r$, and $h(z_k) = 0$, so $h(z)$ must be identically 0.