Name: Solutions
Mathematics
University of Washington
November 13, 2019

MIDTERM 2 REVIEW SOLUTIONS

Problem 1. Determine a suitable form for $Y_{p}(t)$, the particular solution, if the method of undetermined coefficients is to be used. You don't need to find the coefficients, just write down the form.
(a) $y^{\prime \prime}+3 y^{\prime}=2 t^{3}+t^{2} e^{-3 t}+4 \sin (3 t)$

Solutions:

(1) Find the solution to the homogeneous equation $y^{\prime \prime}+3 y^{\prime}=0$:

The characteristic polynomial is given by

$$
r^{2}+3 r=0 \quad \Rightarrow \quad r(r+3)=0
$$

Hence, the roots of the polynomial are given by $r=0$ and $r=-3$. These are distinct real roots so the solution is

$$
y=c_{1} e^{0 t}+c_{2} e^{-3 t}=c_{1}+c_{2} e^{-3 t}
$$

(2) Break the problem into separate differential equations:

$$
\begin{aligned}
& \text { (a) } \quad y^{\prime \prime}+3 y^{\prime}=2 t^{3} \\
& \text { (b) } \quad y^{\prime \prime}+3 y^{\prime}=t^{2} e^{-3 t} \\
& (c) \quad y^{\prime \prime}+3 y^{\prime}=4 \sin (3 t)
\end{aligned}
$$

(3) Guess the form for each of the differential equations:

$$
\begin{array}{ll}
\text { For }(a) & Y_{p}=t^{s}\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right) \\
\text { For }(b) & Y_{p}=t^{s}\left(B_{2} t^{2}+B_{1} t+B_{0}\right) e^{-3 t} \\
\text { For }(c) & Y_{p}=t^{s}(C \sin (3 t)+D \cos (3 t))
\end{array}
$$

(4) Determine s :

For (a):

- If $s=0$, then $Y_{p}=\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right)$ which contains a multiple of the homogeneous equation
- If $s=1$, then $Y_{p}=t\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right)$ which doesn't contain a multiple

$$
\text { Therefore, } Y_{p}=t\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right)
$$

For (b):

- If $s=0$, then $Y_{p}=\left(B_{2} t^{2}+B_{1} t+B_{0}\right) e^{-3 t}$ which contains a multiple of the homogeneous equation
- If $s=1$, then $Y_{p}=t\left(B_{2} t^{2}+B_{1} t+B_{0}\right) e^{-3 t}$ which doesn't contain a multiple

Therefore, $Y_{p}=t\left(B_{2} t^{2}+B_{1} t+B_{0}\right) e^{-3 t}$

For (c):

- If $s=0$, then $Y_{p}=C \sin (3 t)+D \cos (3 t)$ which is not a multiple.

Therefore, $Y_{p}=C \sin (3 t)+D \cos (3 t)$.

The form of the particular solution is then

$$
\begin{array}{ll}
\text { For }(a) & Y_{p}=t^{1}\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right) \\
\text { For }(b) & Y_{p}=t^{1}\left(B_{2} t^{2}+B_{1} t+B_{0}\right) e^{-3 t} \\
\text { For }(c) & Y_{p}=C \sin (3 t)+D \cos (3 t)
\end{array}
$$

(b) $y^{\prime \prime}+2 y^{\prime}+2 y=3 e^{-t}+e^{-t} \cos (2 t)+4 t^{2} e^{-t} \sin (t)$

Solutions:

(1) Find the solution to the homogeneous equation $y^{\prime \prime}+2 y^{\prime}+2 y=0$:

The characteristic polynomial is given by

$$
r^{2}+2 r+2=0 \Rightarrow \frac{-2 \pm \sqrt{4-4(2)}}{2}=-1 \pm i
$$

These are complex roots so the solution is

$$
y=c_{1} e^{-t} \cos (t)+c_{2} e^{-t} \sin (t)
$$

(2) Break the problem into separate differential equations:
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=3 e^{-t}$
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=e^{-t} \cos (2 t)$
(c) $y^{\prime \prime}+2 y^{\prime}+2 y=4 t^{2} e^{-t} \sin (t)$
(3) Guess the form for each of the differential equations:

$$
\begin{array}{ll}
\text { For }(a) & Y_{p}=t^{s} A e^{-t} \\
\text { For }(b) & Y_{p}=t^{s}\left(B e^{-t} \cos (2 t)+C e^{-t} \sin (2 t)\right) \\
\text { For }(c) & Y_{p}=t^{s}\left(\left(D_{2} t^{2}+D_{1} t+D_{0}\right) e^{-t} \sin (t)+\left(F_{2} t^{2}+F_{1} t+F_{0}\right) e^{-t} \cos (t)\right)
\end{array}
$$

(4) Determine s :

For (a):

- If $s=0$, then $Y_{p}=A e^{-t}$ does not contains a multiple of the homogeneous equation.

$$
\text { Therefore, } Y_{p}=A e^{-t}
$$

For (b):

- If $s=0$, then $Y_{p}=B e^{-t} \cos (2 t)+C e^{-t} \sin (2 t)$ which not contain a multiple.

$$
\text { Therefore, } Y_{p}=B e^{-t} \cos (2 t)+C e^{-t} \sin (2 t)
$$

For (c):

- If $s=0$, then $Y_{p}=\left(D_{2} t^{2}+D_{1} t+D_{0}\right) e^{-t} \sin (t)+\left(F_{2} t^{2}+\right.$ $\left.F_{1} t+F_{0}\right) e^{-t} \cos (t)$ which is a multiple of the homogeneous so $s \neq 0$
- If $s=1, Y_{p}=t\left(\left(D_{2} t^{2}+D_{1} t+D_{0}\right) e^{-t} \sin (t)+\left(F_{2} t^{2}+F_{1} t+\right.\right.$ $\left.\left.F_{0}\right) e^{-t} \cos (t)\right)$ which is not a multiple of the homogeneous.

Therefore,

$$
Y_{p}=t\left(\left(D_{2} t^{2}+D_{1} t+D_{0}\right) e^{-t} \sin (t)+\left(F_{2} t^{2}+F_{1} t+F_{0}\right) e^{-t} \cos (t)\right)
$$

The form of the particular solution is then
For (a) $\quad Y_{p}=A e^{-t}$
For (b) $\quad Y_{p}=B e^{-t} \cos (2 t)+C e^{-t} \sin (2 t)$
For $(c) \quad Y_{p}=t\left(\left(D_{2} t^{2}+D_{1} t+D_{0}\right) e^{-t} \sin (t)+\left(F_{2} t^{2}+F_{1} t+F_{0}\right) e^{-t} \cos (t)\right)$
(c) $y^{\prime \prime}+2 y^{\prime}+y=t \cos (2 t)+e^{-t} \sin (t)+e^{-t}$

Solutions:

(1) Find the solution to the homogeneous equation $y^{\prime \prime}+2 y+y=0$:

The characteristic polynomial is given by

$$
r^{2}+2 r+1=0 \quad \Rightarrow \quad(r+1)^{2}=0
$$

Hence the roots are $r=-1$. This is a repeated root so the solution is

$$
y=c_{1} e^{-t}+c_{2} t e^{-t}
$$

(2) Break the problem into separate differential equations:
(a) $y^{\prime \prime}+2 y+y=t \cos (2 t)$
(b) $y^{\prime \prime}+2 y+y=e^{-t} \sin (t)$
(c) $y^{\prime \prime}+2 y+y=e^{-t}$
(3) Guess the form for each of the differential equations:

$$
\begin{array}{ll}
\text { For }(a) & Y_{p}=t^{s}\left(\left(A_{1} t+A_{0}\right) \cos (2 t)+\left(B_{1} t+B_{0}\right) \sin (2 t)\right) \\
\text { For }(b) & Y_{p}=t^{s}\left(C e^{-t} \cos (t)+D e^{-t} \sin (t)\right) \\
\text { For }(c) & Y_{p}=t^{s} F e^{-t}
\end{array}
$$

(4) Determine s :

For (a):

- If $s=0$, then $Y_{p}=\left(\left(A_{1} t+A_{0}\right) \cos (2 t)+\left(B_{1} t+B_{0}\right) \sin (2 t)\right)$ does not contains a multiple of the homogeneous equation. Therefore, $Y_{p}=\left(A_{1} t+A_{0}\right) \cos (2 t)+\left(B_{1} t+B_{0}\right) \sin (2 t)$

For (b):

- If $s=0$, then $Y_{p}=C e^{-t} \cos (t)+D e^{-t} \sin (t)$ which not contain a multiple.

$$
\text { Therefore, } Y_{p}=C e^{-t} \cos (t)+D e^{-t} \sin (t)
$$

For (c):

- If $s=0$, then $Y_{p}=F e^{-t}$ which is a multiple of the homogeneous so $s \neq 0$
- If $s=1, Y_{p}=t F e^{-t}$ which is a multiple of the homogeneous so $s \neq 1$
- If $s=0, Y_{p}=t^{2} F e^{-t}$ which is not a multiple of the homogeneous so $s=2$.

Therefore, $Y_{p}=t^{2} F e^{-t}$

The form of the particular solution is then

$$
\begin{array}{ll}
\text { For }(a) & Y_{p}=Y_{p}=\left(A_{1} t+A_{0}\right) \cos (2 t)+\left(B_{1} t+B_{0}\right) \sin (2 t) \\
\text { For }(b) & Y_{p}=C e^{-t} \cos (t)+D e^{-t} \sin (t) \\
\text { For }(c) & Y_{p}=t^{2} F e^{-t}
\end{array}
$$

Problem 2. Find the general solution to

$$
y^{\prime \prime}-y^{\prime}+y=t e^{t}
$$

Solution:

(1) Find the solution to the homogeneous equation, $y^{\prime \prime}-y^{\prime}+y=0$. The characteristic polynomial is $r^{2}-r+1=0$. Hence by the quadradic formula

$$
r=\frac{1 \pm \sqrt{1-4(1)(1)}}{2}=\frac{1}{2} \pm i \frac{\sqrt{3}}{2} .
$$

Hence, the general solution is

$$
y=c_{1} e^{t / 2} \cos \left(\frac{\sqrt{3}}{2}\right)+c_{2} e^{t / 2} \sin \left(\frac{\sqrt{3}}{2}\right)
$$

(2) Guess the particular solution.

$$
Y_{p}=t^{s}\left(A_{1} t+A_{0}\right) e^{t} .
$$

(3) Determine s :

If $s=0$, then $Y_{p}=\left(A t+A_{0}\right) e^{t}$ and it is not a solution to the homogeneous.
(4) Find the coefficents:

First, one computes the derivatives

$$
\begin{aligned}
Y_{p}^{\prime} & =A_{1} e^{t}+\left(A_{1} t+A_{0}\right) e^{t} \\
Y_{p}^{\prime \prime} & =A_{1} e^{t}+A_{1} e^{t}+\left(A_{1} t+A_{0}\right) e^{t} .
\end{aligned}
$$

Plugging this into the differential equation, one has

$$
t e^{t}=y^{\prime \prime}-y^{\prime}+y=A_{1} e^{t}+A_{1} e^{t}+\left(A_{1} t+A_{0}\right) e^{t}-\left(A_{1} e^{t}+\left(A_{1} t+A_{0}\right) e^{t}\right)+\left(A_{1} t+A_{0}\right) e^{t} .
$$

This leads to following system:

$$
\begin{aligned}
\left(A_{1}+A_{1}+A_{0}-A_{1}-A_{0}+A_{0}\right) e^{t}=0 & \Rightarrow
\end{aligned} A_{1}+A_{0}=0
$$

Therefore, $A_{0}=-1$.

The general solution is given by

$$
y=c_{1} e^{t / 2} \cos \left(\frac{\sqrt{3}}{2}\right)+c_{2} e^{t / 2} \sin \left(\frac{\sqrt{3}}{2}\right)+(t-1) e^{t} .
$$

