Name: Solutions Mathematics University of Washington

November 13, 2019

MIDTERM 2 REVIEW SOLUTIONS

Problem 1. Determine a suitable form for $Y_p(t)$, the particular solution, if the method of undetermined coefficients is to be used. You don't need to find the coefficients, just write down the form.

(a) $y'' + 3y' = 2t^3 + t^2 e^{-3t} + 4\sin(3t)$

Solutions:

(1) Find the solution to the homogeneous equation y'' + 3y' = 0: The characteristic polynomial is given by

$$r^2 + 3r = 0 \quad \Rightarrow \quad r(r+3) = 0.$$

Hence, the roots of the polynomial are given by r = 0 and r = -3. These are distinct real roots so the solution is

$$y = c_1 e^{0t} + c_2 e^{-3t} = c_1 + c_2 e^{-3t}.$$

(2) Break the problem into separate differential equations:

(a)
$$y'' + 3y' = 2t^3$$

(b) $y'' + 3y' = t^2 e^{-3t}$
(c) $y'' + 3y' = 4\sin(3t)$

(3) Guess the form for each of the differential equations:

For (a)
$$Y_p = t^s (A_3 t^3 + A_2 t^2 + A_1 t + A_0)$$

For (b) $Y_p = t^s (B_2 t^2 + B_1 t + B_0) e^{-3t}$
For (c) $Y_p = t^s (C \sin(3t) + D \cos(3t))$

(4) Determine s:

For (a):	 If s = 0, then Y_p = (A₃t³ + A₂t² + A₁t + A₀) which contains a multiple of the homogeneous equation If s = 1, then Y_p = t(A₃t³ + A₂t² + A₁t + A₀) which doesn't contain a multiple Therefore, Y_p = t(A₃t³ + A₂t² + A₁t + A₀) 	
For (b):	 If s = 0, then Y_p = (B₂t² + B₁t + B₀)e^{-3t} which contains a multiple of the homogeneous equation If s = 1, then Y_p = t(B₂t² + B₁t + B₀)e^{-3t} which doesn't contain a multiple Therefore, Y_p = t(B₂t² + B₁t + B₀)e^{-3t} 	
For (c):	• If $s = 0$, then $Y_p = C\sin(3t) + D\cos(3t)$ which is not a multiple. Therefore, $Y_p = C\sin(3t) + D\cos(3t)$.	
The form of the particular solution is then		

For (a) $Y_p = t^1 (A_3 t^3 + A_2 t^2 + A_1 t + A_0)$ For (b) $Y_p = t^1 (B_2 t^2 + B_1 t + B_0) e^{-3t}$ For (c) $Y_p = C \sin(3t) + D \cos(3t)$

For (b)
$$Y_n = t^1 (B_2 t^2 + B_1 t + B_0) e^{-3t}$$

- (b) $y'' + 2y' + 2y = 3e^{-t} + e^{-t}\cos(2t) + 4t^2e^{-t}\sin(t)$ Solutions:
 - (1) Find the solution to the homogeneous equation y'' + 2y' + 2y = 0: The characteristic polynomial is given by

$$r^{2} + 2r + 2 = 0 \quad \Rightarrow \quad \frac{-2 \pm \sqrt{4 - 4(2)}}{2} = -1 \pm i.$$

These are complex roots so the solution is

$$y = c_1 e^{-t} \cos(t) + c_2 e^{-t} \sin(t).$$

(2) Break the problem into separate differential equations:

(a)
$$y'' + 2y' + 2y = 3e^{-t}$$

(b) $y'' + 2y' + 2y = e^{-t}\cos(2t)$
(c) $y'' + 2y' + 2y = 4t^2e^{-t}\sin(t)$

(3) Guess the form for each of the differential equations:

For (a)
$$Y_p = t^s A e^{-t}$$

For (b) $Y_p = t^s (B e^{-t} \cos(2t) + C e^{-t} \sin(2t))$
For (c) $Y_p = t^s ((D_2 t^2 + D_1 t + D_0) e^{-t} \sin(t) + (F_2 t^2 + F_1 t + F_0) e^{-t} \cos(t))$

(4) Determine s:

For (a):

• If s = 0, then $Y_p = Ae^{-t}$ does not contains a multiple of the homogeneous equation.

Therefore, $Y_p = Ae^{-t}$

For (b):	• If $s = 0$, then $Y_p = Be^{-t}\cos(2t) + Ce^{-t}\sin(2t)$ which not contain a multiple. Therefore, $Y_p = Be^{-t}\cos(2t) + Ce^{-t}\sin(2t)$
For (c):	• If $s = 0$, then $Y_p = (D_2 t^2 + D_1 t + D_0)e^{-t}\sin(t) + (F_2 t^2 + F_1 t + F_0)e^{-t}\cos(t)$ which is a multiple of the homogeneous so $s \neq 0$ • If $s = 1$, $Y_p = t \left((D_2 t^2 + D_1 t + D_0)e^{-t}\sin(t) + (F_2 t^2 + F_1 t + F_0)e^{-t}\cos(t) \right)$ which is not a multiple of the homogeneous.

Therefore,

$$Y_p = t \left(\left(D_2 t^2 + D_1 t + D_0 \right) e^{-t} \sin(t) + \left(F_2 t^2 + F_1 t + F_0 \right) e^{-t} \cos(t) \right)$$

The form of the particular solution is then

For (a)
$$Y_p = Ae^{-t}$$

For (b) $Y_p = Be^{-t}\cos(2t) + Ce^{-t}\sin(2t)$
For (c) $Y_p = t\left((D_2t^2 + D_1t + D_0)e^{-t}\sin(t) + (F_2t^2 + F_1t + F_0)e^{-t}\cos(t)\right)$

- (c) $y'' + 2y' + y = t\cos(2t) + e^{-t}\sin(t) + e^{-t}$ Solutions:
 - (1) Find the solution to the homogeneous equation y'' + 2y + y = 0: The characteristic polynomial is given by

$$r^2 + 2r + 1 = 0 \implies (r+1)^2 = 0.$$

Hence the roots are r = -1. This is a repeated root so the solution is

$$y = c_1 e^{-t} + c_2 t e^{-t}$$

(2) Break the problem into separate differential equations:

(a)
$$y'' + 2y + y = t\cos(2t)$$

(b) $y'' + 2y + y = e^{-t}\sin(t)$
(c) $y'' + 2y + y = e^{-t}$

(3) Guess the form for each of the differential equations:

For (a)
$$Y_p = t^s ((A_1 t + A_0) \cos(2t) + (B_1 t + B_0) \sin(2t))$$

For (b) $Y_p = t^s (Ce^{-t} \cos(t) + De^{-t} \sin(t))$
For (c) $Y_p = t^s Fe^{-t}$

(4) Determine s:

For (a):

- If s = 0, then $Y_p = ((A_1t + A_0)\cos(2t) + (B_1t + B_0)\sin(2t))$ does not contains a multiple of the homogeneous equation. Therefore, $Y_p = (A_1t + A_0)\cos(2t) + (B_1t + B_0)\sin(2t)$
- For (b):
- If s = 0, then $Y_p = Ce^{-t}\cos(t) + De^{-t}\sin(t)$ which not contain a multiple.

Therefore,
$$Y_p = Ce^{-t}\cos(t) + De^{-t}\sin(t)$$

For (c):

- If s = 0, then $Y_p = Fe^{-t}$ which is a multiple of the homogeneous so $s \neq 0$
 - If s = 1, $Y_p = tFe^{-t}$ which is a multiple of the homogeneous so $s \neq 1$
 - If s = 0, $Y_p = t^2 F e^{-t}$ which is not a multiple of the homogeneous so s = 2.
 - Therefore, $Y_p = t^2 F e^{-t}$

The form of the particular solution is then

For (a) $Y_p = Y_p = (A_1t + A_0)\cos(2t) + (B_1t + B_0)\sin(2t)$ For (b) $Y_p = Ce^{-t}\cos(t) + De^{-t}\sin(t)$ For (c) $Y_p = t^2Fe^{-t}$ **Problem** 2. Find the general solution to

 $y^{\prime\prime} - y^{\prime} + y = te^t$

Solution:

(1) Find the solution to the homogeneous equation, y'' - y' + y = 0. The characteristic polynomial is $r^2 - r + 1 = 0$. Hence by the quadradic formula

$$r = \frac{1 \pm \sqrt{1 - 4(1)(1)}}{2} = \frac{1}{2} \pm i \frac{\sqrt{3}}{2}.$$

Hence, the general solution is

$$y = c_1 e^{t/2} \cos\left(\frac{\sqrt{3}}{2}\right) + c_2 e^{t/2} \sin\left(\frac{\sqrt{3}}{2}\right)$$

(2) Guess the particular solution.

$$Y_p = t^s (A_1 t + A_0) e^t.$$

- (3) Determine s: If s = 0, then $Y_p = (At + A_0)e^t$ and it is not a solution to the homogeneous.
- (4) Find the coefficients: First, one computes the derivatives

$$Y'_{p} = A_{1}e^{t} + (A_{1}t + A_{0})e^{t}$$
$$Y''_{p} = A_{1}e^{t} + A_{1}e^{t} + (A_{1}t + A_{0})e^{t}.$$

Plugging this into the differential equation, one has

$$te^{t} = y'' - y' + y = A_{1}e^{t} + A_{1}e^{t} + (A_{1}t + A_{0})e^{t} - (A_{1}e^{t} + (A_{1}t + A_{0})e^{t}) + (A_{1}t + A_{0})e^{t}.$$

This leads to following system:

$$(A_1 + A_1 + A_0 - A_1 - A_0 + A_0)e^t = 0 \quad \Rightarrow \quad A_1 + A_0 = 0$$

$$(A_1 - A_1 + A_1)te^t = te^t \quad \Rightarrow \quad A_1 = 1.$$

Therefore, $A_0 = -1$.

The general solution is given by

$$y = c_1 e^{t/2} \cos\left(\frac{\sqrt{3}}{2}\right) + c_2 e^{t/2} \sin\left(\frac{\sqrt{3}}{2}\right) + (t-1)e^t.$$

Submitted by Name: Solutions on November 13, 2019.