Name: \qquad
Mathematics 307 L
University of Washington
November 15, 2019

MIDTERM 2 SOLUTIONS

Here are the rules:

- This exam is closed book. No note sheets, calculators, or electronic devices are allowed.
- In order to receive credit, you must show all of your work; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Give numerical answers in exact form (for example $\ln \left(\frac{\pi}{3}\right)$ or $5 \sqrt{3}$ or $e^{2.5}$).
- If you need more room, use the backs of the pages and indicate that you have done so.
- This exam has 5 pages, plus a cover sheet. Please make sure that your exam is complete.

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
\cos \alpha-\cos \beta & =-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
\cos \alpha+\cos \beta & =2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
\sin \alpha-\sin \beta & =2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
\sin \alpha+\sin \beta & =2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}
\end{aligned}
$$

Problem	Possible	Score
1	12	12
2	15	15
3	5	5
4	11	11
5	12	12
Total	55	55

Problem 1. (12 points)

(a) (9 points) Solve the following initial value problem.

$$
y^{\prime \prime}+3 y^{\prime}+\frac{5}{2} y=5 \cos t, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(b) (3 points) Identify the steady state for your answer y, and express it in the form $y_{\text {steady }}(t)=A \cos (\omega t-\phi)$,

Solution. Find the roots to $r^{2}+3 r+\frac{5}{2}=\left(r+\frac{3}{2}\right)^{2}+\frac{1}{4}$ which are $-\frac{3}{2} \pm \frac{1}{2} i$.
General solution to homogeneous equation is $y(t)=c_{1} e^{-\frac{3}{2} t} \cos \left(\frac{1}{2} t\right)+c_{2} e^{-\frac{3}{2} t} \sin \left(\frac{1}{2} t\right)$.
The term $5 \cos t$ is not a polynomial times a homogeneous solution, so we find a particular solution to the inhomogeneous equation by trying $Y(t)=A \cos t+B \sin t$.
Doing the math gives

$$
Y^{\prime \prime}+3 Y^{\prime}+\frac{5}{2} Y=\left(\frac{3}{2} A+3 B\right) \cos t+\left(\frac{3}{2} B-3 A\right) \sin t
$$

Setting $\frac{3}{2} A+3 B=5$ and $\frac{3}{2} B-3 A=0$ gives $A=\frac{2}{3}$ and $B=\frac{4}{3}$.
So the general solution to the inhomogeneous equation is

$$
y(t)=c_{1} e^{-\frac{3}{2} t} \cos \left(\frac{1}{2} t\right)+c_{2} e^{-\frac{3}{2} t} \sin \left(\frac{1}{2} t\right)+\frac{2}{3} \cos t+\frac{4}{3} \sin t .
$$

Then $1=y(0)=c_{1}+\frac{2}{3}$ gives $c_{1}=\frac{1}{3}$.
And $0=y^{\prime}(0)=-\frac{3}{2} c_{1}+\frac{1}{2} c_{2}+\frac{4}{3}$ gives $c_{2}=-\frac{5}{3}$. So, the answer to (a) is

$$
y(t)=\frac{1}{3} e^{-\frac{3}{2} t} \cos \left(\frac{1}{2} t\right)-\frac{5}{3} e^{-\frac{3}{2} t} \sin \left(\frac{1}{2} t\right)+\frac{2}{3} \cos t+\frac{4}{3} \sin t
$$

The steady state solution is the same as $Y(t)$. It is of the form $A \cos (t-\phi)$ where $A=\sqrt{\left(\frac{2}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}}=2 \sqrt{5} / 3$, and $\phi=\tan ^{-1}(2)$. (We use $\tan ^{-1}$ since $\frac{2}{3}>0$). So,

$$
y_{\text {steady }}=\frac{2 \sqrt{5}}{3} \cos \left(t-\tan ^{-1}(2)\right)
$$

Problem 2. (15 points) For each of the differential equations below, find the form for the particular solution, Y_{p}. You do NOT need to solve for the coefficients.
(a) (5 points)

$$
y^{\prime \prime}-2 y^{\prime}+10 y=2 t^{2} \cos (3 t)+\sin (3 t)
$$

Solution. Answer takes the form

$$
Y_{p}(t)=t^{s}\left(\left(A_{0} t^{2}+A_{1} t+A_{2}\right) \cos (3 t)+\left(B_{0} t^{2}+B_{1} t+B_{2}\right) \sin (3 t)\right)
$$

Roots of $r^{2}-2 r+10=0$ are $r=1 \pm 3 i$. The homogeneous general solution is

$$
y(t)=c_{1} e^{t} \cos (3 t)+c_{2} e^{t} \sin (3 t)
$$

So in this case $s=0$.
(b) (5 points)

$$
y^{\prime \prime}+y^{\prime}-6 y=10 t e^{2 t}+t^{2} e^{-t}
$$

Solution. Answer takes the form $Y_{p}(t)=Y_{1}+Y_{2}$ where

$$
Y_{1}(t)=t^{s}\left(A_{0} t+A_{1}\right) e^{2 t} \quad Y_{2}(t)=t^{s}\left(B_{0} t^{2}+B_{1} t+B_{2}\right) e^{-t}
$$

Roots of $r^{2}+r-6=(r-2)(r+3)=0$ are $r=-3$ and $r=2$. The homogeneous general solution is

$$
y(t)=c_{1} e^{2 t}+c_{2} e^{-3 t}
$$

So in this case $s=1$ for Y_{1} and $s=0$ for Y_{2}.
(c) (5 points)

$$
9 y^{\prime \prime}-12 y^{\prime}+4 y=4 t e^{2 t / 3}+t^{2}
$$

Solution. Answer takes the form $Y_{p}(t)=Y_{1}+Y_{2}$ where

$$
Y_{1}(t)=t^{s}\left(A_{0} t+A_{1}\right) e^{2 t / 3} \quad Y_{2}(t)=t^{s}\left(B_{0} t^{2}+B_{1} t+B_{2}\right)
$$

Roots of $9 r^{2}-12 r+4=(3 r-2)^{2}=0$ are $r=2 / 3$ repeated. The homogeneous general solution is

$$
y(t)=\left(c_{1} t+c_{2}\right) e^{2 t / 3}
$$

So in this case $s=2$ for Y_{1} and $s=0$ for Y_{2}.

Problem 3. (5 points) A spring is observed to stretch $\frac{1}{5}$ meter when a force of 1 newton is applied to it. A viscous damper is observed to yield a resistance of 2 newtons when it is moved at a velocity of 1 meter/second.
A mass of 2 kg is hung from the spring and attached to the viscous damper. It is then pulled $\frac{1}{2}$ meter below its rest position and released with 0 initial velocity.
Write down the differential equation and initial conditions for $u(t)$, the position of the mass at time t relative to its rest position, where $u>0$ means the mass is above the rest position. Do not solve the equation. (And yes, this problem is really short.)
Solution. $m=2 \mathrm{~kg}, \gamma=(2 N) /(1 m / s)=2 \mathrm{~kg} / \mathrm{s}$, and $k=(1 N) /\left(\frac{1}{5} m\right)=5 \mathrm{~kg} / \mathrm{s}^{2}$. So, with u in meters,

$$
2 u^{\prime \prime}+2 u^{\prime}+5 u=0 \quad u(0)=-\frac{1}{2}, \quad u^{\prime}(0)=0
$$

Problem 4. (11 points)

(a) (7 points) Solve the following equation, and sketch the graph of the solution

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

(b) (4 points) Find the time t at which $y(t)$ has its maximum value for $t>0$. You do not need to find the value of y there, but find an exact formula for t.

Solution. Roots of $r^{2}+2 r+5=(r+1)^{2}+4$ are $r=-1 \pm 2 i$. General solution is

$$
y(t)=c_{1} e^{-t} \cos (2 t)+c_{2} e^{-t} \sin (2 t)
$$

Then $1=y(0)=c_{1}$ gives $c_{1}=1$, and $1=y^{\prime}(0)=-c_{1}+2 c_{2}$ gives $c_{2}=1$.
The answer to part (a) is

$$
y(t)=e^{-t}(\cos (2 t)+\sin (2 t))
$$

You can write this as $\sqrt{2} e^{-t} \cos \left(2 t-\frac{\pi}{4}\right)$, though you do not need to.

To answer (b) we set $y^{\prime}(t)=0$. We calculate

$$
y^{\prime}(t)=-e^{-t}(\cos (2 t)+\sin (2 t))+e^{-t}(-2 \sin (2 t)+2 \cos (2 t))
$$

Since $e^{-t} \neq 0$, setting $y^{\prime}(t)=0$ leads to $\cos (2 t)=3 \sin (2 t)$, or $\tan (2 t)=\frac{1}{3}$.
Since the graph is initially increasing and the envelope is decreasing, the maximum is attained at the smallest positive value of t so $\tan (2 t)=\frac{1}{3}$, or $t_{\max }=\frac{1}{2} \tan ^{-1}\left(\frac{1}{3}\right)$.

Problem 5. (12 points) Each of the 6 differential equations below has a solution that is plotted in one of the graphs. Match each of the differential equations to its solution. (Note: only 6 of the graphs will correspond to an equation.)

(a)

(d)

(g)

(b)

(e)

(c)

(f)

Differential Equation	Graph
$y^{\prime \prime}+4 y=t$	b
$y^{\prime \prime}+4 y=\cos (2 t)$	d
$y^{\prime \prime}+4 y=\sin (t)$	f
$y^{\prime \prime}+5 y^{\prime}+4 y=0$	c
$y^{\prime \prime}+5 y^{\prime}+4 y=\cos (2 t)$	e
$y^{\prime \prime}+2 y^{\prime}+5 y=0$	g

