Name:

Mathematics 307 L University of Washington

November 15, 2019

MIDTERM 2 SOLUTIONS

Here are the rules:

- This exam is closed book. No note sheets, calculators, or electronic devices are allowed.
- In order to receive credit, you must **show all of your work**; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Give numerical answers in exact form (for example $\ln(\frac{\pi}{3})$ or $5\sqrt{3}$ or $e^{2.5}$).
- If you need more room, use the backs of the pages and indicate that you have done so.
- This exam has 5 pages, plus a cover sheet. Please make sure that your exam is complete.

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$
$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$
$$\cos\alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}$$
$$\sin\alpha - \sin\beta = 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$
$$\sin\alpha + \sin\beta = 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}$$

Problem	Possible	Score
1	12	12
2	15	15
3	5	5
4	11	11
5	12	12
Total	55	55

Problem 1. (12 points)

(a) (9 points) Solve the following initial value problem.

$$y'' + 3y' + \frac{5}{2}y = 5\cos t, \qquad y(0) = 1, \quad y'(0) = 0.$$

(b) (3 points) Identify the steady state for your answer y, and express it in the form $y_{\text{steady}}(t) = A \cos(\omega t - \phi)$,

Solution. Find the roots to $r^2 + 3r + \frac{5}{2} = (r + \frac{3}{2})^2 + \frac{1}{4}$ which are $-\frac{3}{2} \pm \frac{1}{2}i$. General solution to homogeneous equation is $y(t) = c_1 e^{-\frac{3}{2}t} \cos(\frac{1}{2}t) + c_2 e^{-\frac{3}{2}t} \sin(\frac{1}{2}t)$. The term $5 \cos t$ is not a polynomial times a homogeneous solution, so we find a particular solution to the inhomogeneous equation by trying $Y(t) = A \cos t + B \sin t$. Doing the math gives

$$Y'' + 3Y' + \frac{5}{2}Y = \left(\frac{3}{2}A + 3B\right)\cos t + \left(\frac{3}{2}B - 3A\right)\sin t$$

Setting $\frac{3}{2}A + 3B = 5$ and $\frac{3}{2}B - 3A = 0$ gives $A = \frac{2}{3}$ and $B = \frac{4}{3}$. So the general solution to the inhomogeneous equation is

$$y(t) = c_1 e^{-\frac{3}{2}t} \cos(\frac{1}{2}t) + c_2 e^{-\frac{3}{2}t} \sin(\frac{1}{2}t) + \frac{2}{3} \cos t + \frac{4}{3} \sin t.$$

Then $1 = y(0) = c_1 + \frac{2}{3}$ gives $c_1 = \frac{1}{3}$. And $0 = y'(0) = -\frac{3}{2}c_1 + \frac{1}{2}c_2 + \frac{4}{3}$ gives $c_2 = -\frac{5}{3}$. So, the answer to (a) is $y(t) = \frac{1}{3}e^{-\frac{3}{2}t}\cos(\frac{1}{2}t) - \frac{5}{3}e^{-\frac{3}{2}t}\sin(\frac{1}{2}t) + \frac{2}{3}\cos t + \frac{4}{3}\sin t$

The steady state solution is the same as Y(t). It is of the form $A\cos(t-\phi)$ where $A = \sqrt{(\frac{2}{3})^2 + (\frac{4}{3})^2} = 2\sqrt{5}/3$, and $\phi = \tan^{-1}(2)$. (We use \tan^{-1} since $\frac{2}{3} > 0$). So,

$$y_{\text{steady}} = \frac{2\sqrt{5}}{3} \cos\left(t - \tan^{-1}(2)\right)$$

- **Problem** 2. (15 points) For each of the differential equations below, find the form for the particular solution, Y_p . You do NOT need to solve for the coefficients.
 - (a) (5 points)

$$y'' - 2y' + 10y = 2t^2\cos(3t) + \sin(3t)$$

Solution. Answer takes the form

$$Y_p(t) = t^s \left(\left(A_0 t^2 + A_1 t + A_2 \right) \cos(3t) + \left(B_0 t^2 + B_1 t + B_2 \right) \sin(3t) \right)$$

Roots of $r^2 - 2r + 10 = 0$ are $r = 1 \pm 3i$. The homogeneous general solution is

$$y(t) = c_1 e^t \cos(3t) + c_2 e^t \sin(3t)$$

So in this case |s = 0|.

(b) (5 points)

$$y'' + y' - 6y = 10te^{2t} + t^2e^{-t}$$

Solution. Answer takes the form $Y_p(t) = Y_1 + Y_2$ where

$$Y_1(t) = t^s (A_0 t + A_1) e^{2t} \qquad Y_2(t) = t^s (B_0 t^2 + B_1 t + B_2) e^{-t}$$

Roots of $r^2 + r - 6 = (r - 2)(r + 3) = 0$ are r = -3 and r = 2. The homogeneous general solution is

$$y(t) = c_1 e^{2t} + c_2 e^{-3t}$$

So in this case $s = 1$ for Y_1 and $s = 0$ for Y_2 .

(c) (5 points)

$$9y'' - 12y' + 4y = 4te^{2t/3} + t^2$$

Solution. Answer takes the form $Y_p(t) = Y_1 + Y_2$ where

$$Y_1(t) = t^s (A_0 t + A_1) e^{2t/3} \qquad Y_2(t) = t^s (B_0 t^2 + B_1 t + B_2)$$

Roots of $9r^2 - 12r + 4 = (3r - 2)^2 = 0$ are r = 2/3 repeated. The homogeneous general solution is

$$y(t) = (c_1 t + c_2)e^{2t/c_1}$$

So in this case $s = 2$ for Y_1 and $s = 0$ for Y_2 .

Problem 3. (5 points) A spring is observed to stretch $\frac{1}{5}$ meter when a force of 1 newton is applied to it. A viscous damper is observed to yield a resistance of 2 newtons when it is moved at a velocity of 1 meter/second.

A mass of 2 kg is hung from the spring and attached to the viscous damper. It is then pulled $\frac{1}{2}$ meter below its rest position and released with 0 initial velocity.

Write down the differential equation and initial conditions for u(t), the position of the mass at time t relative to its rest position, where u > 0 means the mass is above the rest position. Do not solve the equation. (And yes, this problem is really short.)

Solution. m = 2 kg, $\gamma = (2N)/(1m/s) = 2 \text{kg/s}$, and $k = (1N)/(\frac{1}{5}m) = 5 \text{kg/s}^2$. So, with u in meters,

 $2u'' + 2u' + 5u = 0 \qquad u(0) = -\frac{1}{2}, \quad u'(0) = 0$

Problem 4. (11 points)

(a) (7 points) Solve the following equation, and sketch the graph of the solution

$$y'' + 2y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 1$.

(b) (4 points) Find the time t at which y(t) has its **maximum** value for t > 0. You do not need to find the value of y there, but find an exact formula for t.

Solution. Roots of $r^2 + 2r + 5 = (r+1)^2 + 4$ are $r = -1 \pm 2i$. General solution is

$$y(t) = c_1 e^{-t} \cos(2t) + c_2 e^{-t} \sin(2t)$$

Then $1 = y(0) = c_1$ gives $c_1 = 1$, and $1 = y'(0) = -c_1 + 2c_2$ gives $c_2 = 1$. The answer to part (a) is

$$y(t) = e^{-t} \Big(\cos(2t) + \sin(2t) \Big)$$

You can write this as $\sqrt{2} e^{-t} \cos(2t - \frac{\pi}{4})$, though you do not need to.

To answer (b) we set y'(t) = 0. We calculate

$$y'(t) = -e^{-t} \Big(\cos(2t) + \sin(2t) \Big) + e^{-t} \Big(-2\sin(2t) + 2\cos(2t) \Big)$$

Since $e^{-t} \neq 0$, setting y'(t) = 0 leads to $\cos(2t) = 3\sin(2t)$, or $\tan(2t) = \frac{1}{3}$. Since the graph is initially increasing and the envelope is decreasing, the maximum is attained at the smallest positive value of t so $\tan(2t) = \frac{1}{3}$, or $t_{\max} = \frac{1}{2} \tan^{-1}(\frac{1}{3})$.

Problem 5. (12 points) Each of the 6 differential equations below has a solution that is plotted in one of the graphs. Match each of the differential equations to its solution. (Note: only 6 of the graphs will correspond to an equation.)

Submitted by Name: 2019.

on November 15,

Math 307 L Midterm 2 Solutions