Name: \qquad
Mathematics 307 L
University of Washington
October 16, 2019

MIDTERM 1

Here are the rules:

- This exam is closed book. No note sheets, calculators, or electronic devices are allowed.
- In order to receive credit, you must show all of your work; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Give numerical answers in exact form (for example $\ln \left(\frac{\pi}{3}\right)$ or $5 \sqrt{3}$ or $e^{2.5}$).
- Simplify $e^{a \ln (x)}=x^{a}$ for $x>0$.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 6 pages, plus a cover sheet. Please make sure that your exam is complete.
- You have 50 minutes to complete the exam.
- HAVE FUN!

Problem	Possible	Score
1	10	
2	8	
3	10	
4	11	
5	16	
Total	55	

Good Luck!

Problem 1. (10 points) Consider the initial value problem,

$$
\frac{d y}{d t}+\frac{y}{10+2 t}=3, \quad y(0)=0
$$

(a) (2 points) Circle your answer
(i) Is this a linear differential equation?

YES
NO
(ii) Is this a separable differential equation?

YES
(b) (8 points) Solve the initial value problem.

Solution. Integrating factor solves

$$
\frac{d \mu}{d t}=\frac{\mu}{10+2 t} \Rightarrow \frac{d \mu}{\mu}=\frac{d t}{10+2 t} \Rightarrow \ln (\mu)=\frac{1}{2} \ln (10+2 t)
$$

so

$$
\mu=e^{\frac{1}{2} \ln (10+2 t)}=(10+2 t)^{\frac{1}{2}}
$$

Equation becomes

$$
(10+2 t)^{\frac{1}{2}} \frac{d y}{d t}+(10+2 t)^{-\frac{1}{2}} y=3(10+2 t)^{\frac{1}{2}}
$$

which we rewrite as

$$
\frac{d}{d t}\left((10+2 t)^{\frac{1}{2}} y\right)=3(10+2 t)^{\frac{1}{2}}
$$

Integrate to get

$$
(10+2 t)^{\frac{1}{2}} y=(10+2 t)^{\frac{3}{2}}+C
$$

Set $t=0$ and $y=0$ to solve

$$
C=-10^{\frac{3}{2}}
$$

Solve for y to get

$$
y=(10+t)-10^{\frac{3}{2}}(10+2 t)^{-\frac{1}{2}}
$$

Problem 2. (8 points) You borrow $\$ 100$ from your credit company at 5% annual interest, compounded continuously. You repay the loan at a continuous rate of $\$ 10$ per year. How many years does it take to pay off the loan?
Solution. Amount of the loan satisfies

$$
\frac{d P}{d t}=.05 P-10=\frac{1}{20}(P-200)
$$

Solve this most easily by separation of variables

$$
\begin{aligned}
\frac{d P}{P-200} & =\frac{1}{20} d t \\
\ln |P-200| & =\frac{t}{20}+C \\
P-200 & = \pm e^{C} e^{\frac{t}{20}}
\end{aligned}
$$

Setting $t=0$ and $P=100$ leads to setting $\pm e^{C}=-100$, and then

$$
P=200-100 e^{\frac{t}{20}}
$$

Loan is paid off when $P=0$ which happens when

$$
e^{\frac{t}{20}}=2 \Rightarrow t=20 \ln (2) \text {. }
$$

Problem 3. (10 points) Consider the initial value problem

$$
t \frac{d y}{d t}=\frac{-1}{y+1}, \quad y(1)=-4 .
$$

(a) (8 points) Solve the initial value problem. Give an explicit formula for y.

Solution. Use separation of variables

$$
\begin{aligned}
& (y+1) d y=\frac{-d t}{t} \\
& \frac{1}{2}(y+1)^{2}=-\ln |t|+C
\end{aligned}
$$

Set $y=-4$ and $t=1$ and use $\ln (1)=0$ to get $C=\frac{9}{2}$.
Multiply by 2 and take square root to get

$$
y+1= \pm \sqrt{9-2 \ln |t|}
$$

Since $y(1)=-4$, we must take the negative root, and then obtain

$$
y=-1-\sqrt{9-2 \ln |t|}
$$

Remark: Since the initial condition is at $t=1$ you can write $\ln (t)$ instead of $\ln |t|$ everywhere above. This is a subtle point, since the formula above is a solution for $t<0$ as well. We won't worry about this here; either answer is fine.
(b) (2 points) Find the largest interval of t containing $t=1$ on which your answer $y(t)$ is defined.
Solution. The argument inside the root is defined for $t \neq 0$. The square root is defined only for positive arguments, so we also need

$$
2 \ln |t| \leq 9 \quad \Rightarrow \quad|t| \leq e^{\frac{9}{2}}
$$

The largest interval containing the point $t=1$ that satisfies these conditions is

$$
0<t \leq \frac{9}{2}
$$

but $0<t<\frac{9}{2}$ is also perfectly fine as an answer.

Problem 4. (11 points) A tank holding water that contains an impurity Q is attached to a recirculating filter, as pictured below. The liquid passes through the filter at the rate of $6 \mathrm{gal} / \mathrm{min}$. The filter removes $2 / 3$ of the amount of Q that passes through it, and lets the remaining $1 / 3$ go back into the tank.

(a) (5 points) The tank contains 10 gallons of water. Initially there are 3 pounds of Q dissolved in the water. Pose a differential equation with initial value for the amount $Q(t)$ in the tank at time t.
Solution. Amount of Q passing through the filter per minute is $6 \times \frac{Q}{V}=\frac{6}{10} Q$. The filter removes $\frac{2}{3}$ of this from the system, or $\frac{2}{3} \cdot \frac{6}{10} Q=\frac{4}{10} Q$ per minute,

$$
\frac{d Q}{d t}=-\frac{4}{10} Q, \quad Q(0)=3
$$

(b) (6 points) Now suppose that the tank initially contains 3 pounds of Q dissolved in 10 gallons of water. Water containing 1 pound of Q per gallon is added to the tank at the rate of 2 gallons per minute. The volume of water in the tank therefore increases. The filter continues to operate as above at 6 gallons per minute, removing $2 / 3$ of the amount of Q passing through it. Pose a differential equation with initial value for the amount $Q(t)$ in the tank at time t.
Solution. Now the volume is $10+2 t$, and Q is added at the rate $2 \mathrm{lb} / \mathrm{min}$.
Q is removed by the filter at the rate $\frac{2}{3} \cdot 6 \frac{Q}{V}=\frac{4 Q}{10+2 t}$, so now

$$
\frac{d Q}{d t}=2-\frac{4}{10+2 t} Q, \quad Q(0)=3
$$

No need to solve this, but notice that it is very similar to problem $1 \odot$.

Problem 5. (16 points) The population P of goldfish in a pond is observed to satisfy an equation $P^{\prime}=f(P)$, where $f(P)$ is plotted here as a function of P.

(a) (3 points) Determine the equilibrium solutions and classify each one as stable or unstable.
Solution. Equilibrium are where $f(P)=0$, or $P=0,10,60$. The value is stable if $f(P)$ decreases there, unstable if $f(P)$ increases.

$$
\text { stable: } P=0,60 \quad \text { unstable: } P=10
$$

(b) (2 points) If the initial population satisfies $P(0)=20$, what will happen to the population as t increases to ∞ ?
Solution. $f(P)$ is strictly positive for $10<P<60$, so P will increase whenever it lies in this range. It cannot go past 60 since $f(P) \leq 0$ when $P \geq 60$.
So if $P(0)=20$, then $\lim _{t \rightarrow \infty} P(t)=60$.
(c) (2 points) What is the minimum sustainable population? That is, what is the smallest positive value of $P(0)$ for which the population does not eventually go to 0 ?
Solution. If $0<P<10$, then $f(P)$ is negative, so a solution $P(t)$ will decrease towards 0 if $0<P(0)<10$ (and will stay at 0 if $P(0)=0$). If $P(0)=10$ then $P(t)=10$ for all t. So the minimal sustainable population is $P(0)=10$.

These exciting solutions continue on the next page!

For the problems on this page, we consider the above population of goldfish, and catch them at a rate of R fish per year.
(d) (3 points) If the population satisfies $P(0)=50$, what is the maximum rate R at which you can catch fish without causing the population to eventually go to 0 ?
Solution. $R=30$. The growth rate of the fish is at most 30 per year, which happens when $P \approx 35$. If you catch at more than 30 per year, then they can never grow fast enough to replace the catch. If you start at $P(0)=50$ and catch at exactly 30 per year, then the population will decrease until it hits the semi-stable equilibrium at $P \approx 35$.
(e) (4 points) You catch fish at the rate of $R=20$ fish per year. Write the new equation for P^{\prime}, determine the equilibrium solutions, and classify each one as stable or unstable.

Solution. The new equation is $P^{\prime}=f(P)-20$. This has equilibriums where $f(P)=20$, so by the plot the equilibrium points are $P=20,50$. An equlibrium is stable if $f(P)$ is decreasing, unstable if $f(P)$ is increasing, so

$$
\text { unstable: } P=20, \quad \text { stable: } P=50 \text {. }
$$

(f) (2 points) You catch fish at the rate of $R=20$ per year. If $P(0)=30$, what will happen to the population as t increases to ∞ ?
Solution. $f(P)-20$ is positive for $20<P<50$, so P will increase whenever it lies in this range. Since we start with $P(0)=30, P$ will keep increasing as long as it is less than 50. So $\lim _{t \rightarrow \infty} P(t)=50$.

