Mathematics
University of Washington
December 4, 2019

WORKSHEET: LAPLACE TRANSFORM

Problem 1. Find the Laplace transform for
(a). $f(t)= \begin{cases}1 & 0 \leq t<4 \\ 3 & 4 \leq t<5 \\ 0 & 5 \leq t<\infty\end{cases}$
(b). $f(t)= \begin{cases}t & 0 \leq t<2 \\ 0 & 2 \leq t<\infty\end{cases}$
(c). $f(t)= \begin{cases}t^{2} & 0 \leq t<1 \\ 0 & 1 \leq t<\infty\end{cases}$
(d). $f(t)= \begin{cases}\sin (t) & 0 \leq t<\pi \\ \cos (t) & \pi \leq t<\infty\end{cases}$

Part (a) Solutions: First rewrite $f(t)$ in terms of heavyside functions:

$$
f(t)=1+(3-1) u_{4}(t)+(0-3) u_{5}(t)=1+2 u_{4}(t)-3 u_{5}(t)
$$

Using the linearity of the Laplace transform and the table:

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\underbrace{\mathcal{L}\{1\}}_{\# 1}+2 \underbrace{\mathcal{L}\left\{u_{4}(t)\right\}}_{\# 12 \mathrm{w} / c=4}-3 \underbrace{\mathcal{L}\left\{u_{5}(t)\right\}}_{\# 12 \mathrm{w} / c=5} \\
& =\frac{1}{s}+\frac{2 e^{-4 s}}{s}-\frac{3 e^{-5 s}}{s}
\end{aligned}
$$

Part (b) Solutions: First rewrite $f(t)$ in terms of heavyside functions:

$$
f(t)=t-t u_{2}(t)
$$

Using linearity, $\mathcal{L}\{f(t)\}=\mathcal{L}\{t\}-\mathcal{L}\left\{t u_{2}(t)\right\}$. For $\mathcal{L}\left\{t u_{2}(t)\right\}$, we want it to look like $\# 13$ with $c=2$. Thefore $t=f(t-2)$. In order to take the Laplace transform, we must find $f(v)$ so let $v=t-2$ or $v+2=t$. Then $f(v)=v+2$ and

$$
\mathcal{L}\{f(v)\}=\underbrace{\mathcal{L}\{v\}}_{\# 3 \mathrm{w} / n=1}+2 \underbrace{\mathcal{L}\{1\}}_{\# 1}=\frac{1}{s^{2}}+\frac{2}{s}
$$

Using \# 13,

$$
\mathcal{L}\left\{t u_{2}(t)\right\}=\mathcal{L}\{v+2\} e^{-2 t}=\left(\frac{1}{s^{2}}+\frac{2}{s}\right) e^{-2 s}
$$

Putting everything together

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\{t\}-\mathcal{L}\left\{t u_{2}(t)\right\}=\frac{1}{s^{2}}-e^{-2 s}\left(\frac{1}{s^{2}}+\frac{2}{s}\right)
$$

Part (c) Solutions: Rewrite $f(t)$ in terms of heavyside functions:

$$
f(t)=t^{2}+\left(0-t^{2}\right) u_{1}(t)=t^{2}-t^{2} u_{1}(t)
$$

The linearity of Laplace transform gives that $\mathcal{L}\{f(t)\}=\mathcal{L}\left\{t^{2}\right\}-\mathcal{L}\left\{t^{2} u_{1}(t)\right\}$. For $\mathcal{L}\left\{t^{2} u_{1}(t)\right\}$, we need to use $\# 13$. Let $t^{2}=f(t-1)$. Set $v=t-1(v+1=t)$ so $f(v)=(v+1)^{2}=v^{2}+2 v+1$. Then

$$
\mathcal{L}\{f(v)\}=\underbrace{\mathcal{L}\left\{v^{2}\right\}}_{\# 3 \mathrm{w} / n=2}+2 \underbrace{\mathcal{L}\{v\}}_{\# 3 \mathrm{w} / n=1}+\underbrace{\mathcal{L}\{1\}}_{\# 1}=\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s} .
$$

Hence,

$$
\mathcal{L}\left\{t^{2} u_{1}(t)\right\}=\mathcal{L}\{f(v)\} e^{-s}=\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s}\right) e^{-s}
$$

Therefore,

$$
\mathcal{L}\{f(t)\}=\underbrace{\mathcal{L}\left\{t^{2}\right\}}_{\# 3 \mathrm{w} / n=2}-\mathcal{L}\left\{t^{2} u_{1}(t)\right\}=\frac{2}{s^{3}}-e^{-s}\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s}\right)
$$

Part (d) Solutions: Rewrite $f(t)$ in terms of heavyside functions:

$$
f(t)=\sin (t)+(\cos (t)-\sin (t)) u_{\pi}(t)
$$

Using linearity of Laplace transform, $\mathcal{L}\{f(t)\}=\mathcal{L}\{\sin (t)\}+\mathcal{L}\left\{(\cos (t)-\sin (t)) u_{\pi}(t)\right\}$. For $\mathcal{L}\{(\cos (t)-$ $\left.\sin (t)) u_{\pi}(t)\right\}$, we need $\cos (t)-\sin (t)=f(t-\pi)$ and to find $f(t)$. Set $v=t-\pi$ so $v+\pi=t$. Then $\cos (v+\pi)-\sin (v+\pi)=f(v)$. Unfortunately, one does not know $\mathcal{L}\{\cos (v+\pi)\}$ or $\mathcal{L}\{\sin (v+\pi)\}$; however by trig. identities $\cos (v+\pi)=-\cos (v)$ and $\sin (v+\pi)=-\sin (v)$. Therefore, $f(v)=\sin (v)-\cos (v)$. It follows that

$$
\mathcal{L}\{f(v)\}=\underbrace{\mathcal{L}\{\sin (v)\}}_{\# 5 \mathrm{w} / a=1}-\underbrace{\mathcal{L}\{\cos (v)\}}_{\# 6 \mathrm{w} / a=1}=\frac{1}{s^{2}+1}-\frac{s}{s^{2}+1} .
$$

Hence,

$$
\mathcal{L}\left\{(\cos (t)-\sin (t)) u_{\pi}(t)\right\}=\mathcal{L}\{f(v)\} e^{-\pi s}=e^{-\pi s}\left(\frac{1}{s^{2}+1}-\frac{s}{s^{2}+1}\right) .
$$

Consequently,

$$
\mathcal{L}\{f(t)\}=\underbrace{\mathcal{L}\{\sin (t)\}}_{\# 5 \mathrm{w} / a=1}-\mathcal{L}\left\{(\cos (t)-\sin (t)) u_{\pi}(t)\right\}=\frac{1}{s^{2}+1}-e^{-\pi s}\left(\frac{1}{s^{2}+1}-\frac{s}{s^{2}+1}\right)
$$

Problem 2. Find the inverse Laplace transform for
(a). $F(s)=\frac{e^{-3 s}}{s^{2}-2 s-3}$
(b). $F(s)=\frac{3!}{(s-2)^{4}}$
(c). $F(s)=\frac{2(s-1) e^{-2 s}}{s^{2}-2 s+2}$
(d). $F(s)=\frac{e^{-s}+e^{-2 s}-e^{-3 s}-e^{-4 s}}{s}$

Part (a) Solutions: This looks like $\# 13$ on the Table. Let $H(s)=\frac{1}{s^{2}-2 s-3}$. Then

$$
\mathcal{L}^{-1}\left\{\frac{e^{-3 s}}{s^{2}-2 s-3}\right\}=\mathcal{L}^{-1}\left\{e^{-3 s} H(s)\right\}=u_{3}(t) h(t-3)
$$

It suffices to find $h(t)=\mathcal{L}^{-1}\{H(s)\}$. Observe by partial fractions

$$
H(s)=\frac{1}{s^{2}-2 s-3}=\frac{1}{4}(\underbrace{\frac{1}{s-3}}_{\# 2 \mathrm{w} / a=3})-\frac{1}{4}(\underbrace{\frac{1}{s+1}}_{\# 2 \mathrm{w} / a=-1})
$$

Hence,

$$
h(t)=\mathcal{L}^{-1}\{H(s)\}=\frac{1}{4} e^{3 t}-\frac{1}{4} e^{-t}
$$

Consequently,

$$
\mathcal{L}^{-1}\{F(s)\}=u_{3}(t) h(t-3)=u_{3}(t)\left(\frac{1}{4} e^{3(t-3)}-\frac{1}{4} e^{-(t-3)}\right)
$$

Part (b) Solutions: Let $G(s-2)=F(s)=\frac{3!}{(s-2)^{4}}$. Set $w=s-2$ so $w+2=s$ and $G(w)=\frac{3!}{w^{4}}$. The idea is to use $\# 14$ on the table with $G(s-2)$. Observe that $\mathcal{L}^{-1}\{G(w)\}=t^{3}$ by $\# 3$. By $\# 14$,

$$
\mathcal{L}^{-1}\{F(s)\}=\mathcal{L}^{-1}\{G(s-2)\}=e^{2 t} t^{3}
$$

Part (c) Solutions: The idea is to use \# 13. Let

$$
H(s)=\frac{2(s-1)}{s^{2}-2 s+2}=\frac{2(s-1)}{(s-1)^{2}+1}
$$

by completing the square. By $\# 10$ with $a=1$ and $b=1, \quad h(t)=\mathcal{L}^{-1}\{H(s)\}=2 e^{t} \cos (t)$.
By \#13,

$$
\mathcal{C}^{-1}\{F(s)\}=u_{2}(t) h(t-2)=2 u_{2}(t) e^{t-2} \cos (t-2) .
$$

Part (d) Solution: The idea is to apply \#12 repeatedly:

$$
\mathcal{L}^{-1}\{F(s)\}=u_{1}(t)+u_{2}(t)-u_{3}(t)-u_{4}(t)
$$

Problem 3. Find the solution of each of the following initial value problems
(a) $y^{\prime \prime}+2 y^{\prime}+y=2(t-3) u_{3}(t) ; \quad y(0)=2, y^{\prime}(0)=1$
(b) $y^{\prime \prime}+4 y=\left\{\begin{array}{ll}1 & 0 \leq t<4 \\ 0 & 4 \leq t<\infty\end{array} \quad y(0)=3, y^{\prime}(0)=-2\right.$
(c) $y^{\prime \prime}-2 y^{\prime}+y=\left\{\begin{array}{ll}0 & 0 \leq t<1 \\ t & 1 \leq t<2 \\ 0 & 2 \leq t<\infty\end{array} \quad y(0)=0, y^{\prime}(0)=1\right.$

Part (a) Solutions: Take the Laplace transform of both sides:

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+2 s Y(s)-2 y(0)+Y(s)=\mathcal{L}\left\{2(t-3) u_{3}(t)\right\}
$$

Observe that we want to use $\# 13$ and so need $f(t-3)=2(t-3)$. Setting $v=t-3$ (i.e. $v+3=t$), $f(v)=2 v$ with $\mathcal{L}\{v\}=\frac{2}{v^{2}}(\# 3$ with $n=1)$. Then $\mathcal{L}\left\{2(t-3) u_{3}(t)\right\}=\frac{2 e^{-3 s}}{s^{2}}$. Using this result and the initial conditions,

$$
\left(s^{2}+2 s+1\right) Y(s)-2 s-5=\frac{2 e^{-3 s}}{s^{2}}
$$

or equivalently,

$$
\begin{aligned}
Y(s) & =\frac{2 e^{-3 s}}{s^{2}\left(s^{2}+2 s+1\right)}+\frac{2 s+5}{s^{2}+2 s+1} \\
\text { partial fractions } & =e^{-3 s}\left(\frac{2}{s^{2}}+\frac{4}{s+1}+\frac{2}{(s+1)^{2}}-\frac{4}{s}\right)+2\left(\frac{s+\frac{5}{2}}{(s+1)^{2}}\right) \\
& =e^{-3 s}\left(\frac{2}{s^{2}}+\frac{4}{s+1}+\frac{2}{(s+1)^{2}}-\frac{4}{s}\right)+2\left(\frac{s+1}{(s+1)^{2}}+\frac{\frac{3}{2}}{(s+1)^{2}}\right) .
\end{aligned}
$$

For the first term, it looks like \# 13, so

$$
G(s)=\underbrace{\frac{2}{s^{2}}}_{\# 3 \mathrm{w} / n=1}+\underbrace{\frac{4}{s+1}}_{\# 14 \text { and } \# 1}+\underbrace{\frac{2}{(s+1)^{2}}}_{\# 14 \text { and } \# 3}-\underbrace{\frac{4}{s}}_{\# 1}
$$

Hence,

$$
g(t)=\mathcal{L}^{-1}\{G(s)\}=2 t+4 e^{-t}+2 e^{-t} t-4
$$

and so

$$
\mathcal{L}^{-1}\left\{e^{-3 s} G(s)\right\}=u_{3}(t) g(t-3)=u_{3}(t)\left(2(t-3)+4 e^{-(t-3)}+2 e^{-(t-3)}(t-3)-4\right)
$$

On the other hand, the second term is precisely

$$
H(s)=2 \underbrace{\frac{s+1}{(s+1)^{2}}}_{\# 2 \mathrm{w} / a=-1}+\underbrace{\frac{3}{(s+1)^{2}}}_{\# 14 \text { and } \# 3}
$$

so

$$
h(t)=\mathcal{L}^{-1}\{H(s)\}=2 e^{-t}+3 t e^{-t}
$$

Therefore,

$$
y(t)=\mathcal{L}^{-1}\{Y(s)\}=u_{3}(t) g(t-3)=u_{3}(t)\left(2(t-3)+4 e^{-(t-3)}+2 e^{-(t-3)}(t-3)-4\right)+2 e^{-t}+3 t e^{-t}
$$

Part (b) Solutions: Write $f(t)$ in terms of heavyside functions: $f(t)=1+(0-1) u_{4}(t)=1-u_{4}(t)$.
Observe that the Laplace transform of $f(t)$ is

$$
\mathcal{L}\{f(t)\}=\frac{1}{s}-\frac{e^{-4 s}}{s}
$$

Taking Laplace transform of the differential equation and plugging in initial conditions:

$$
\begin{gathered}
\qquad\left(s^{2}+4\right) Y(s)-3 s+2=\frac{1}{s}-\frac{e^{-4 s}}{s} \\
Y(s)=\frac{1}{s\left(s^{2}+4\right)}-\frac{e^{-4 s}}{s\left(s^{2}+4\right)}+\frac{3 s-2}{s^{2}+4} \\
\text { partial fractions }=\frac{1}{4} \cdot \frac{1}{s}-\frac{s}{4\left(s^{2}+4\right)}-e^{-4 s}\left(\frac{1}{4} \cdot \frac{1}{s}-\frac{s}{4\left(s^{2}+4\right)}\right)+3\left(\frac{s}{s^{2}+4}\right)-\frac{2}{s^{2}+4} .
\end{gathered}
$$

Take the inverse Laplace transform: $\quad \mathcal{L}^{-1}\left\{\frac{1}{4 s}-\frac{s}{4\left(s^{2}+4\right)}\right\}=\frac{1}{4}-\frac{1}{4} \cos (2 t)$.

$$
y(t)=\mathcal{L}^{-1}\{Y(s)\}=\frac{1}{4}-\frac{1}{4} \cos (2 t)-u_{4}(t)\left(\frac{1}{4}-\frac{1}{4} \cos (2(t-4))\right)+3 \cos (2 t)-\sin (2 t)
$$

Part (c) Solutions: Write $f(t)$ in terms of heavyside functions:

$$
f(t)=t u_{1}(t)+(0-t) u_{2}(t)=t u_{1}(t)-t u_{2}(t)
$$

Observe that we want $t=f_{1}(t-1)$ and $t=f_{2}(t-2)$. Setting $v=t-1$ and $w=t-2$, we have that $f_{1}(v)=v+1$ and $f_{2}(w)=v+2$. It follows that

$$
\mathcal{L}\left\{f_{1}(v)\right\}=\frac{1}{s^{2}}+\frac{1}{s} \text { and } \mathcal{L}\left\{f_{2}(t)\right\}=\frac{1}{s^{2}}+\frac{2}{s}
$$

Then by \# 13,

$$
\mathcal{L}\{f(t)\}=e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right)-e^{-2 s}\left(\frac{1}{s^{2}}+\frac{2}{s}\right)
$$

Taking Laplace transformations of the differential equation and plugging in initial conditions

$$
\left(s^{2}-2 s+1\right) Y(s)-1=e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right)-e^{-2 s}\left(\frac{1}{s^{2}}+\frac{2}{s}\right)
$$

Therefore, $\quad Y(s)=e^{-s}\left(\frac{1+s}{s^{2}(s-1)^{2}}\right)-e^{-2 s}\left(\frac{1+2 s}{s^{2}(s-1)^{2}}\right)+\frac{1}{(s-1)^{2}}$
Partial fractions $=e^{-s}\left(\frac{1}{s}+\frac{3}{s}-\frac{3}{s-1}+\frac{2}{(s-1)^{2}}\right)-e^{-2 s}\left(\frac{1}{s^{2}}+\frac{4}{s}-\frac{4}{s-1}+\frac{3}{(s-1)^{2}}\right)+\frac{1}{(s-1)^{2}}$.
Most are directly off the table, but for $\frac{1}{(s-1)^{2}}$. To find the inverse Laplace transform, use \#14:

$$
\mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\}=e^{t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}=t e^{t}
$$

Using \#13,

$$
y(t)=\mathcal{L}^{-1}\{Y(s)\}=u_{1}(t)\left(t-1+3-3 e^{t-1}+2(t-1) e^{t-1}\right)-u_{2}(t)\left(t-2+4-4 e^{t-2}+3(t-2) e^{t-2}\right)+t e^{t}
$$

