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ABSTRACT. We study the mathematical model of thermoacoustic tomography in media with a variable speed
for a fixed time intervalŒ0;T � so that all signals issued from the domain leave it after timeT . In case of
measurements on the whole boundary, we give an explicit solution in terms of a Neumann series expansion.
We give almost necessary and sufficient conditions for uniqueness and stability when the measurements are
taken on a part of the boundary.

1. INTRODUCTION

In thermoacoustic tomography, a short electro-magnetic pulse is sent through a patient’s body. The tissue
reacts and emits an ultrasound wave from any point, that is measured away from the body. Then one tries
to reconstruct the internal structure of a patient’s body form those measurements, see e.g, [5, 6, 10, 11, 22].
For more detail, an extensive list of references, and the recent progress in the mathematical understanding
of this problem, we refer to [1, 4, 8, 9, 12, 14]. Both constant and non-constant sound speeds have been
studied and naturally, the results are more complete in the constant speed case.

The purpose of this work is to study this problem under the assumption of a variable speed. We will
actually formulate the problem in anisotropic media. Letg be a Riemannian metric inRn, let a be a vector
field, and letc > 0, q � 0 be functions, all smooth and real valued. Assume for convenience thatg is
Euclidean outside a large compact, andc � 1 D q D a D 0 there (since we work witht in a fixed interval,
by the finite speed of propagation, this assumption is not essential). LetP be the differential operator
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t C P /u D 0 in .0;T / � Rn;

ujtD0 D f;

@tujtD0 D 0;

whereT > 0 is fixed.
Assume thatf is supported in N̋ , where˝ � Rn is some smooth bounded domain. The measurements

are modeled by the operator

(3) �f WD ujŒ0;T ��@˝ :

The problem is to reconstruct the unknownf .
The presence of the magnetic fieldfaj g is perhaps of no interest for applications but it does not cause any

additional difficulties.
If T D 1, then one can solve a problem with Cauchy data0 at t D 1 (as a limit), and boundary data

h D �f . The zero Cauchy data are justified by local energy decay that holds for non-trapping geometry, for
example (actually, it is always true but much weaker and not uniform in general). Then solving the resulting
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2 P. STEFANOV AND G. UHLMANN

problem backwards recoversf . Now, based on that, one can show that for a fixedT , one can still do the
same thing with an error�.T / ! 0, asT ! 1. This is known as the time reversal method. In the non-
trapping case,n odd, the error is uniform and�.T / D O.e�T =C /. There is no good control overC though.
Error estimates based on local energy decay can be found in [8], see also Corollary 1. Other reconstruction
methods have been used as well, see, e.g., [9] for a discussion, and they all use measurements for allt in the
variable coefficients case, i.e.,T D 1; and they are only approximate forT < 1 with an error depending
on the local energy decay rate. Of course, ifn is odd andP D ��, any finiteT > diam.˝/ suffices by the
Huygens’ principle.

We refer to Section 3 for a discussion of uniqueness results.
In this paper, we want to study what happens whenT < 1 is fixed, greater than the length of the longest

geodesic in̋ (thus the metricc�2g is assumed to be non-trapping). In case of measurements on the whole
boundary, our main result is that the problem is Fredholm, uniquely solvable, and can be solved explicitly
with a Neumann series expansion. In case of partial data, in Section 3 we give an almost necessary and
sufficient condition for uniqueness, and another almost necessary and sufficient condition for stability. In
Proposition 3 we characterize� as a sum of two Fourier Integral Operators with canonical relations of graph
type.

2. COMPLETE DATA

Notice first thatP is formally self-adjoint w.r.t. the measurec�2d Vol, where d Vol.x/ D
p

detg dx.
Given a domainU , and a functionu.t;x/, define the energy
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whereDj D �i@=@xj C aj , D D .D1; : : : ;Dn/, jDuj2 D gij .Diu/.Dj u/, and d Vol.x/ D .detg/1=2dx.
In particular, we define the spaceHD.U / to be the completion ofC 1

0
.U / under the Dirichlet norm
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It is easy to see thatHD.U / � H 1.U /, if U is bounded with smooth boundary, therefore,HD.U / is
topologically equivalent toH 1

0
.U /. If U D Rn, this is true forn � 3 only, if q D 0. By the finite speed of

propagation, the solution with compactly supported Cauchy data always stays inH 1 even whenn D 2. The
energy norm for the Cauchy data.f;  /, that we denote byk � kH is then defined by

k.f;  /k2
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This defines the energy space
H.U / D HD.U /˚ L2.U /:

Here and below,L2.U / D L2.U I c�2d Vol/. Note also that

(5) kf k
2
HD

D .Pf; f /L2 :

The wave equation then can be written down as the system

(6) ut D Pu; P D

�
0 I

P 0

�
;

whereu D .u;ut / belongs to the energy spaceH. The operatorP then extends naturally to a skew-
selfadjoint operator onH. In this paper, we will deal with eitherU D Rn or U D ˝. In the latter case, the
definition ofHD.U / reflects Dirichlet boundary conditions.
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One method to get an approximate solution of the thermoacoustic problem is the following time reversal
method, that is actually used in a modified form, see the comments below. Givenh, let v0 solve

(7)

8̂̂<̂
:̂
.@2

t C P /v0 D 0 in .0;T / �˝;

v0jŒ0;T ��@˝ D h;

v0jtDT D 0;

@tv0jtDT D 0:

Then we define the following “approximate inverse”

A0h WD v0.0; �/ in N̋ :

ThenA0�f is viewed as an approximation tof . As we mentioned above, that is actually true asymptoti-
cally asT ! 1, with the modified version of the time reversal method described below, (see [8]) butT is
fixed in our analysis.

In this form, the time reversal method has the following downside:h may not vanish onfT g � @˝,
therefore the mixed problem above has boundary data with a possible jump type of singularity atfT g � @˝

(the compatibility conditions might be violated). That singularity will propagate back tot D 0 and will
affectv0, and thenv0 may not be in the energy space. The operatorA0� may fail to be Fredholm or even
bounded then, and in particularA0�f might be more singular thanf . For this reason,h is usually cut off
smoothly neart D T , i.e.,h is replaced by�.t/h.t;x/, where� 2 C 1.R/, � D 0 for t D T , and� D 1 in
a neighborhood of.�1;T .˝//, see e.g., [8, Section 2.2].

We will modify this approach in a way that would make the problem Fredholm, and will make the error
operator a contraction. To this end, we proceed as follows. Givenh (that eventually will be replaced by
�f ), solve

(8)

8̂̂<̂
:̂
.@2

t C P /v D 0 in .0;T / �˝;

vjŒ0;T ��@˝ D h;

vjtDT D �;

@tvjtDT D 0;

where� solves the elliptic boundary value problem

(9) P� D 0; �j@˝ D h.T; �/:

SinceP is a positive operator,0 is not a Dirichlet eigenvalue ofP in ˝, and therefore (9) is uniquely
solvable. Note that the initial data att D T satisfy compatibility conditions of first order (no jump at
fT g � @˝). Then we define the following pseudo-inverse

(10) Ah WD v.0; �/ in N̋ :

The operatorA maps continuously the closed subspace ofH 1.Œ0;T � � @˝/ consisting of functions that
vanish att D T (compatibility condition) toH 1.˝/, see [13]. It also sends the range of� to H 1

0
.˝/ Š

HD.˝/, as the proof below indicates.
In the next theorem and everywhere below,T .˝/ is the supremum of the lengths of all geodesics of the

metric c�2g in N̋ . Also, dist.x;y/ denotes the distance function in that metric. We then call.˝; c�2g/

non-trapping, ifT .˝/ < 1.

Theorem 1. Let.˝; c�2g/ be non-trapping, and letT > T .˝/. ThenA� D Id�K, whereK is compact in
HD.˝/, andkKkHD.˝/ < 1. In particular, Id�K is invertible onHD.˝/, and the inverse thermoacoustic
problem has an explicit solution of the form

(11) f D

1X
mD0

KmAh; h WD �f:



4 P. STEFANOV AND G. UHLMANN

Proof. Letw solve

(12)

8̂̂<̂
:̂
.@2

t C P /w D 0 in .0;T / �˝;

wjŒ0;T ��@˝ D 0;

wjtDT D ujtDT � �;

wt jtDT D ut jtDT ;

whereu solves (2) with a givenf 2 HD . Let v be the solution of (8) withh D �f . Thenv Cw solves the
same initial boundary value problem inŒ0;T � �˝ thatu does (with initial conditions att D T ), therefore
u D v C w. Restrict this tot D 0 to get

f D A�f C w.0; �/:

Therefore,
Kf D w.0; �/:

In what follows, .�; �/HD.˝/ is the inner product inHD.˝/, see (4), applied to functions that belong to
H 1.˝/ but maybe not toHD.˝/ (because they may not vanish on@˝). SetuT WD u.T; �/. By (5) and the
fact thatuT D � on@˝, we get

.uT
� �; �/HD.˝/ D 0:

Then
kuT

� �k
2
HD.˝/ D kuT

k
2
HD.˝/ � k�k

2
HD.˝/ � kuT

k
2
HD.˝/:

Therefore, the energy of the initial conditions in (12) satisfies the inequality

(13) E˝.w;T / D kuT
� �k

2
HD.˝/ C kuT

t k
2
L2.˝/

� E˝.u;T /:

Since the Dirichlet boundary condition is energy preserving, we get that

E˝.w; 0/ D E˝.w;T / � E˝.u;T / � ERn.u;T / D E˝.u; 0/ D kf k
2
HD.˝/:

In particular,

(14) kKf k
2
HD.˝/ � E˝.w; 0/ � kf k

2
HD.˝/:

We show next that actually the inequality above is strict, i.e.,

(15) kKf kHD.˝/ < kf kHD.˝/; f 6D 0:

Assume the opposite. Then for somef 6D 0, all inequalities leading to (14) are equalities. In particular,
E˝.w;T / D ERn.u;T /. Then

u.T;x/ D 0; for x 62 ˝:

By the finite domain of dependence then

(16) u.t;x/ D 0 when dist.x; ˝/ > jT � t j:

One the other hand, we also have

(17) u.t;x/ D 0 when dist.x; ˝/ > jt j:

Therefore,

(18) u.t;x/ D 0 when dist.x; @˝/ > T=2; �T=2 � t � 3T=2:

Sinceu extends to an even function oft that is still a solution of the wave equation, we get that (18) actually
holds forjt j < 3T=2. Then one concludes by Tataru’s theorem, see Theorem 4, thatu D 0 on Œ0;T � �˝,
therefore,f D 0. We refer to [4] for a similar argument. Note that the time interval here is actually larger
than what we need for the uniqueness argument, see also Theorem 2 and Corollary 2 below.
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We will show now thatK is compact. SinceT > T .˝/, all singularities starting fromN̋ leave N̋ at
t D T . Therefore,u.T; �/ andut .T; �/, restricted to N̋ , areC 1. Moreover, considered as linear operators
of f , they are operators (FIOs, actually) with smooth Schwartz kernels. Then so is�, see (9), by elliptic
regularity. Therefore, the mapHD.˝/ 3 f 7! u.T; �/ � � 2 HD.˝/ is compact because it is an operator
with smooth kernel onN̋ . Next, the mapHD.˝/ 3 f 7! ut .T; �/ 2 HD.˝/ is compact as well. Since
the solution operator of (12) fromt D T to t D 0 is unitary inHD.˝/ ˚ L2.˝/, we get that the map
HD.˝/ 3 f 7! w.0; �/ 2 HD.˝/ is compact, too, as a composition of a compact and a bounded one.

Now, one has

(19) kKf kHD.˝/ �

p
�1kf kHD.˝/; f 6D 0;

where�1 is the largest eigenvalue ofK�K. Then�1 < 1 by (15). �

Remark1. Although we proved thatK is compact, we did not show thatK is smoothing of1 degree.
Actually, we showed thatK is a composition of a smoothing operator and a bounded one. To makeK

smoothing, we need to modify the initial condition forwt .T; �/ in (12), as we did it forw.T; �/, so that
it would satisfy the compatibility atfT g � @˝ (no jump there, i.e,wt .T; �/ 2 H 1

0
.˝/). That will put

.w.T; �/; wt .T; �// in the domain of the generator of the solution group, in other words,.wt ;Pw.T; �//

would be in the energy space. Then the same would be true forPw.0; �/ D �PKf , henceKf 2 H 2.˝/.
Then we get a Fredholm problem again but the norm ofK may not be less than1 (that still might be true in
a suitable norm). In any case, Id�K will be invertible. One can also modify the initial data att D T in (12)
to satisfy even higher order compatibility condition, and that will increase the smoothing properties ofK.

Remark2. The smoothness requirements on the coefficients ofP can be relaxed to require smoothness of a
finite degree. All we need, besides a well posed problem in the energy space, is a propagation of singularities
result with a gain of smoothness ont D T enough to guarantee compactness ofK; and Tataru’s uniqueness
theorem in that case. We will not pursue this for the sake of simplicity of the exposition.

The proof of Theorem 1 provides an estimate of the error in the reconstruction if we use the first term
in (11) only that isAh. It is in the spirit of [8] and relates the error to the local energy decay, as can be
expected.

Corollary 1.

kf � A�f kHD.˝/ �

�
E˝.u;T /

E˝.u; 0/

� 1
2

kf kHD.˝/; 8f 2 HD.˝/; f 6D 0;

whereu is the solution of (2).

Note that thef � A�f D Kf , and the corollary actually provides an upper bound forkKf k. The
estimate above also can be used to estimate the rate of convergence of the Neumann series (11) when we
have a good control over the uniform local energy decay from timet D 0 to timet D T . The estimate holds
even without the non-trapping condition and for anyT > 0 but E˝.u;T /=E˝.u; 0/, that is always less or
equal to1, can be guaranteed to have a uniform upper bound less than1 for all f only whenT > T .˝/; then
the operator norm ofK is less than1, as well. IfT .˝/=2 < T � T .˝/, we can only say thatkKf k < kf k

for anyf , see Corollary 2, below but that does not necessarily imply thatkKk < 1. If T < T .˝/=2, then
there is alwaysf so that that quantity equals1 by a trivial domain of dependence argument.

3. INCOMPLETE DATA

The case of partial measurements has been discussed in the literature as well, see e.g.,[12, 23, 24]. One
of the motivations is that in breast imaging, for example, measurements are possible only on part of the
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boundary. For simplicity, we assume in this section thatP D �� outside˝; in particularc D 1 andg is
Euclidean outside̋ :

(20) c.x/ D 1; gij .x/ D ıij ; for x 62 ˝:

All geodesics below are related to the metricc�2g.
Let � � @˝ be a relatively open subset of@˝. Set

(21) G WD f.t;x/I x 2 �; 0 < t < s.x/g ;

wheres is a fixed continuous function on� . This corresponds to measurements taken at eachx 2 � for
the time interval0 < t < s.x/. The special case studied so far iss.x/ � T , for someT > 0; then
G D Œ0;T � � � .

We assume now that the observations are made onG only, i.e., we assume we are given

(22) �f jG ;

where, with some abuse of notation, we denote by� the operator in (3), withT D 1 (that actually can
be replaced by any upper bound of the functions). Then we want to know under what conditions one can
recoverf , and when that recovery is stable.

Uniqueness and reconstruction results in the constant coefficients case based on spherical means were
known for a while, see e.g., the review paper [12]. IfP D �c2.x/�, andG D Œ0;T � � @˝, Finch and
Rakesh [4] have proved that�f recoversf uniquely as long asT > T .˝/. A uniqueness result when� is
a part of@˝ in the constant coefficients case is given in [3], and we follow the ideas of that proof below. The
Holmgren’s uniqueness theorem for constant coefficients and its analogue for variable ones, see Theorem 4
below, play a central role in the proofs that suggests possible instability without further assumptions, see also
the remark following Theorem 3 below. Stability of the reconstruction whenP D �� andT D 1 follows
from the known reconstruction formulas, see e.g., [12]. In the variable coefficients case, stability estimates
asT ! 1 based on local energy decay have been established recently in [8]. WhenT is fixed, there is
the general feeling that if one can recover “stably” all singularities, and if there is uniqueness, there must be
stability (although this has been viewed from the point of view of integral geometry, see also Section 4). We
prove this to be the case in Theorem 3, and we use analysis in [16], as well.

We present some heuristic arguments for our main assumption below. We will restrictf below to a class
of functions with support in some fixed compactK � ˝. Intuitively, to be able to recover allf supported in
K, we want for anyx 2 K, at least one signal fromx to reachG, i.e., we want to have a signal that reaches
somez 2 � for t < s.z/. In other words, we should at least require that

(23) 8x 2 K; 9z 2 � so that dist.x; z/ < s.z/;

(one may want to have a non-strict equality above but we will not pursue this). In Theorem 4 below, we
show that this necessary condition, up to replacing the< sign by the� one, is sufficient, as well.

If we want that recovery to be stable, we need to be able to recover all singularities off “in a stable way.”
By the zero initial velocity condition, each singularity.x; �/ splits into two parts, see Proposition 3 below:
one that starts propagating in the direction�; and another one propagates in the direction��. Moreover,
neither one of those singularities vanishes att D 0 (and therefore never vanishes), they actually start with
equal amplitudes. For a stable recovery, we need to be able to detect at least one of them, in the spirit of
[16], i.e., at least one of them should reachG. This in particular allows us to reduceT by half in the full
boundary data case, i.e., whenG D .0;T / � @˝, one can choose

(24) T > T .˝/=2;

and still hope that a stable recovery is possible. In the general case, define�˙.x; �/ by the condition

�˙.x; �/ D max
�
� � 0I x;�.˙�/ 2 N̋

�
:
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Based on the arguments above, for stable recovery we should assume thatG satisfies the following condition

(25) 8.x; �/ 2 S�K,
�
�� .x; �/; x;�.�� .x; �/

�
2 G for either� D C or � D � (or both).

Compared to condition (23), this means that for eachx 2 K and each unit direction�, at least one of the
signals from.x; �/ and.x;��/ reachesG. This condition becomes necessary, if we replaceG by its closure
above, see Remark 4. In Theorem 3 below, we show that it is also sufficient.

3.1. Uniqueness.We have the following uniqueness result, that in particular generalizes the result in [3] to
the variable coefficients case.

Remark3. Note that we do not need the geodesic flow to be non-trapping in this theorem since (23) is a
condition on a subset of the geodesics only.

Theorem 2. Let P D �� outside˝, and let@˝ be strictly convex. Then under the assumption (23), if
�f D 0 onG for f 2 HD.˝/ with suppf � K, thenf D 0.

Proof. We follow the proof in [3], whereg is Euclidean everywhere, andT D 1 (actually, it is easy to see
there thatT can be any number larger thanT .˝/). We preserve the notation of [3] as much as possible.

Recall that dist.x;y/ is the distance in the metricc�2g. Letd.x;y/ be the (Euclidean) distance inRn n˝

defined as the infimum of the Euclidean length of all smooth curves inRn n˝ joining x andy. The function
d is Lipschitz continuous, see [3]. LetEr .x/ be the ball with centerx and radiusr > 0 in that metric. Then
in [3, Proposition 2], Finch et al. proved the following domain of dependence results for solutions vanishing
on a part of@˝.

Proposition 1 ([3]). Let˝ be an open bounded connected subset ofRn with a smooth boundary. Suppose
u is a smooth solution of the exterior problem

ut t ��u D 0; t 2 RI x 2 Rn
n˝;

u D h onR � @˝:

Choosep 62 ˝, andt0 < t1. If u.t0; �/ D ut .t0; �/ D 0 onEt1�t0
.p/, andh is zero on

f.t;x/I x 2 @˝; t0 � t � t1; d.x;p/ � t1 � tg ;

thenu.t;p/ D ut .t;p/ D 0 for all t 2 Œt0; t1�.

Let�f D 0 onG, with f as in the theorem, and letu be the corresponding solution of (2). Fix a point
x0 2 K. We will show thatf D 0 nearx0. By (23), there isp 2 @˝ so that dist.x0;p/ < s.p/; then
.s.p/;p/ 2 G. Let 0 < � � 1 be such thatŒ0; s.p/� ��� .E�.p/\ @˝/ � G, and dist.x0; q/ < s.q/� �,
8q 2 E�.p/ \ @˝. We can therefore assume that

(26) G D Œ0;T � � �;where� D E�.p/ \ @˝;

and

(27) dist.x0; q/ < T 8q 2 �:

The first step of the proof if to show that

(28) f D 0 in B�.p/;

whereB�.p/ is the ball in the metricg with centerp and radius�. The proof of (28) is the same as in [3]
with taking extra care about the range of thet variable. Indeed, notice first thatu solves the wave equation
in Rn n ˝ with zero Cauchy data there, and boundary datah D ujRC�@˝ vanishing onG, see (26). Fix a
small neighborhoodU of p outside̋ . By (27) and the finite domain of dependence result in Proposition 1,
we getu D 0 on .��C "; � � "/ � U , where0 < " ! 0, when the size ofU tends to0.
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FIGURE 1. Illustrates Lemma 1. One can also show thatA 2 @˝ \ @Br .p/.

Next, u solves the wave equation in the whole space, and can be extended (as a solution) as an even
function oft . Therefore, by the unique continuation principle, see Theorem 4, we get (28).

The next step is to iterate this argument and to prove thatf D 0 nearx0. This would follow from the
following property that we prove next: For some� > 0 independent of�, we have

(29) f D 0 in Br .p/; r � � H) f D 0 in Bminf�C�;T g.p/:

The reason we did not just replace the minimum above with�C� is that we apply (29) consecutively several
times; at each step we gain� , and we would like to make the radius equal toT . The last step needed for
that might be smaller than� though, and (26), (27) pose a restriction on how far we can go.

Relation (29) follows from the following.

Lemma 1. Assume thatsuppf � K D N̋ nBr .p/ with somer � �. Letı D dist.E�.p/;K/. Thenf D 0

in Bminf�Cı;T g.p/.

We prove Lemma 1 below. Let̨ be the supremum of the distance dist.p; q/, q 2 � . Since@˝ is strictly
convex,˛ < �. Indeed,̨ is actually the maximum of those distances, if we replace� by the compactN� .
Then˛ D dist.p; q0/ for someq0 2 N� . Because of the strict convexity the latter is the length of the shortest
geodesic on@˝ connectingp andq0. If we assume that̨ D �, then that geodesic will be a minimizing
curve forc�2g as well, therefore it will be a geodesic for that metric. That is impossible because for� � 1,
there is unique minimizing geodesic connectingp andq0, and that geodesic cannot be on@˝.

The following lemma generalizes [3, Propositon 5] to the current setting. We refer to Fig. 1 that is similar
to Fig. 2.5 there for better understanding of the lemma and its proof.

Lemma 2. dist.K; NE�.p// is the length of some geodesic segment joining a pointA 2 K and a point
B 2 � .

The proof is provided below, and we continue with the proof of Theorem 2. By Lemma 2,ı is the length
of the geodesic segment connectingA andB, as in the lemma. Then

�C ı D �C dist.A;B/ D dist.A;B/C dist.B;p/C .� � dist.B;p//

� dist.p;A/C .� � dist.B;p// � r C .� � ˛/:
(30)

Note that� WD ��˛ > 0 is independent ofr . This proves the property (29), and therefore, the theorem.�

It remains to prove the two lemmas above.
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Proof of Lemma 2.We will provide a proof that is different and shorter than that in [3]. Since dist.K; NE�.p//

is the distance between two compact sets, there isA 2 K and B 2 NE�.p/ so that dist.K; NE�.p// D

dist.A;B/. By the Hopf-Rynow theorem, there is a geodesic connectingA, B so that dist.A;B/ is
the length of . Clearly,B belongs to@E�.p/ that consists of two parts: the first one that we denote by
@Eext

� .p/, that is outside N̋ ; and the second one is� , see (26) We will show first thatB must belong to
the second one. Assume the opposite. Then intersects@˝ once (because of the strict convexity) at some
point C 62 � because ifC 2 � , then we would haveC D B. Then the segmentCB of  is a straight line
segment outsideE�.p/, see Figure 2.

K

vB (p) r

pr

E (p)r

G

vW

A

B

D

C

FIGURE 2

Let c be the minimizing curve for the metricd , lying outside̋ , that connectsB andp. It is easy to see
(see [3]) thatc exists and consists of a straight line segmentc1 D BD betweenC and someD 2 @E�.p/,
and a geodesicc2 on@˝, possibly reduced to a point, so thatc1 andc2 are tangent to each other and to@˝
at their common point that we denote byD. Note that@Eext

� .p/ is an open surface, thereforeB 6D D. Then
the curveCB [ BD locally minimizes the lengths of all curves connectingC andD with the property that
they consist of a curve outsideE�.p/ [ ˝ connectingC and someB0 2 @Eext

� .p/ close toB; and then
another curve, outside̋ but insideE�.p/, connectingB0 to D. ThenCB [ BD must be a straight line
segment; otherwise we can make it shorter by an arbitrary small perturbation, and that would contradict the
minimizing property above. That segment is tangent to@˝. By the strict convexity of̋ , it cannot have
two common pointsC andD with @˝. This contradiction shows thatB 2 � , and this proves the second
statement of the lemma. �

Proof of Lemma 1.Roughly speaking, the idea of the proof is that we can apply the arguments at the begin-
ning of the proof of the theorem by shifting the initial moment formt D 0 to t D ı.

First, by the definition ofı and the standard domain of dependence argument,

(31) u D ut D 0 on Œ�ı; ı� � E�.p/:

Let U be a small enough neighborhood ofp in E�.p/. If ıC� � T , by the domain of dependence argument
for the exterior problem [3, Proposition 2], in view of (26), (27),u D 0 on Œı; ı C � � o.1/� � U , where by
o.1/we denote terms tending to0 when the size ofU tends to0. If ıC� > T , then we can prove that only in
the time intervalŒı;T �o.1/�. Therefore, in both cases, the time interval isŒı;minfıC�;T g�o.1/�. Sinceu

extends as an even solution in thet variable, we get thatu D 0 for jt j � minfıC�;T g�o.1/, x 2 U . Then
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from the unique continuation result in Theorem 4,ujtD0, and thereforef vanishes inBminfıC�;T g�o.1/.p/.
LettingU tend top, we get thatf D 0 in BminfıC�;T g.p/. �

It is probably worth mentioning that we actually proved the following result about partial recovery given
insufficient information.

Proposition 2. LetP D �� outside̋ , and let@˝ be strictly convex. Assume that�f D 0 onG for some
f 2 HD.˝/ with suppf � ˝ with G as in (20) that may not satisfy (23). Thenf D 0 in W , where

W WD fx 2 ˝I 9z 2 � so that dist.x; z/ < s.z/g :

Moreover, no information aboutf on˝ n NW is contained in�f jG .

3.2. Stability. In this section, we use tools from microlocal analysis. We refer, for example, to [20] for an
introduction to the theory of pseudo-differential operators (	DOs) and to [21, 2] for the theory of Fourier
Integral Operators (FIOs).

We now consider the situation where�f is given on a setG satisfying (25). SinceK is compact andG is
closed, one can always chooseG0 b G that still satisfies (25). Fix� 2 C 1

0
.Œ0;T �� @˝/ so that supp� � G

and� D 1 onG0. The measurements are then modeled by��f , which depends on�f onG only.
We start with a description of the operator� that is of independent interest as well. In the next proposition,

we formally chooseT D 1.

Proposition 3. � D �C C ��; where�˙ W C 1
0
.˝/ ! C 1..0;1/ � @˝/ are elliptic Fourier Integral

Operators of zeroth order with canonical relations given by the graphs of the maps

(32) .y; �/ 7!

�
�˙.y; �/; y;˙�.�˙.y; �//; j�j; P 0

y;˙�.�˙.y; �//
�
;

wherej�j is the norm in the metricc�2g, and the prime inP 0 stands for the tangential projection ofP on
T @˝.

Proof. This statement is well known and follows directly from [2], for example. We will give more details
that are needed just for the proof of this proposition in order to be able to compute the principal symbol in
Theorem 3.

We start with a standard geometric optics construction. Fixx0 2 ˝. In a neighborhood of.0;x0/, the
solution to (8) is given by

(33) u.t;x/ D .2�/�n
X

�D˙

Z
ei�� .t;x;�/a� .x; �; t/ Of .�/d�;

modulo smooth terms, where the phase functions�˙ are positively homogeneous of order1 in � and solve
the eikonal equations

(34) �@t�˙ D jdx�˙j; �˙jtD0 D x � �;

while a˙ are classical amplitudes of order0 solving the corresponding transport equations, see [2, p. 128]
or [21, eqn. (VI.1.50)]. In particular,a˙ satisfy

aC C a� D 1 for t D 0:

Since@t�˙ D �� for t D 0, andut D 0 for t D 0, we also see that

aC D a� for t D 0:

Therefore,aC D a� D 1=2 at t D 0. Note that ifP D �, then�˙ D x � � � t j�j, andaC � a� D 1=2.
The principal terma

.0/
˙

of a˙ �
P

j�0 a
.�j/
˙

satisfies the homogeneous transport equation

(35)
�
@t � c2gij .@xj �˙/@xj C C˙

�
a˙ D 0; a˙jtD0 D 1=2;
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whereCj depend on the coefficients ofP and on�˙, see [21, eqn. (VI.1.49)].
By the stationary phase method, singularities starting from.x; �/ 2 WF.f / propagate along geodesics

in the phase space issued from.x; �/, for � D C. i.e., they stay on the curve.x;�.t/; Px;�.t//; and from
.x;��/, for � D �, i.e., they stay on the curve.x;��.t/; Px;��.t//. This is consistent with the general
propagation of singularities theory for the wave equation because the principal symbol of the wave operator
�2 � c2j�jg has two roots� D ˙cj�jg.

The construction is valid as long as the eikonal equations are solvable, i.e., along geodesics issued from
.x;˙�/ that do not have conjugate points. Assume that WF.f / is supported in a small neighborhood of
.x0; �0/ with some�0 6D 0. Assume first that the geodesic from.x0; �0/ with endpoint on@˝ has no
conjugate points. We will study the� D C term in (33) first. Let�b, ab be the restrictions of�C, aC,
respectively, onR � @˝. Then, modulo smooth terms,

(36) �Cf WD uC.t;x/jR�@˝ D .2�/�n

Z
ei�b.t;x;�/ab.x; �; t/ Of .�/d�;

whereuC is the� D C term in (33). Sett0 D �C.x0; �0/, y0 D x0;�0
.t0/, �0 D Px0;�0

.t0/; in other
words,.y0; �0/ is the exit point and direction of the geodesic issued from.x0; �0/ when it reaches@˝. Let
x D .x0;xn/ be boundary normal coordinates neary0. Writing Of in (36) as an integral, we see that (36) is
an oscillating integral with phase function̊D �C.t;x

0; 0; �/ � y � �. Then (see [21], for example), the set
˙ WD f˚� D 0g is given by the equation

y D @��C.t;x
0; 0; �/

It is well known, see e.g., Example 2.1 in [21, VI.2], that this equation implies that.x0; 0/ is the endpoint of
the geodesic issued from.y; �/ until it reaches the boundary, andt D �C.y; �/, i.e., t is the time it takes to
reach@˝. In particular,̇ is a manifold of dimension2n, parametrized by.y; �/. Next, the map

(37) ˙ 3 .y; t;x0; �/ 7�!
�
y; t;x0;��; @t�C; @x0�C

�
is smooth of rank2n at any point. This shows that̊ is a non-degenerate phase, see [21, VIII.1], and that
f 7! �Cf is an FIO associated with the Lagrangian given by the r.h.s. of (37). The canonical relation is
then given by

C WD
�
y; �; t;x0; @t�C; @x0�C

�
; .y; t;x0; �/ 2 ˙:

Then (32) follows from the way�C is constructed by the Hamilton-Jacobi theory. The proof in the� D �

case is the same.
The proof above was done under the assumption that there are no conjugate points ony0;�0

.t/, 0 �

t � �C.y0; �0/. To prove the theorem in the general case, lett1 2 .0; �C.y0; �0// be such that there are
no conjugate points on that geodesic fort1 � t � �C.y0; �0/. Then each of the terms in (33) extends to a
global elliptic FIO mapping initial data att D 0 to a solution att D t1, see e.g., [2]. Its canonical relation
is the graph of the geodesic flow between those two moments of time (for� D C, and with obvious sign
changes when� D �). We can compose this with the local FIO constructed above, and the result is a well
defined elliptic FIO of order0 with canonical relation (32). �

Choose and fixT > sup� s, see (21). LetA be the “back-projection” operator defined in (8) and (10).
Note thatA is always applied to�� below, therefore� D 0 in this case.

Theorem 3. A�� is a zero order classical	DO in some neighborhood ofK with principal symbol

1

2

�
�.x;�.�C.x; �///C �.x;�.��.x; �///

�
:

If G satisfies (25), then
(a) A�� is elliptic,
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(b) A�� is a Fredholm operator onHD.K/, and
(c) there exists a constantC > 0 so that

(38) kf kHD.K/ � C k�f kH 1.G/:

Remark4. By [16, Proposition 3], condition (25), withG replaced by its closure, is a necessary condition
for stability in any pair of Sobolev spaces. In particular,c�2g has to be non-trapping for stability. Indeed,
then the proof below shows thatA�� will be a smoothing operator on some non-empty open conic subset
of T �K n 0.

Remark5. Note that� W HD.K/ ! H 1.Œ0;T � � @˝/ is bounded. This follows for example from Proposi-
tion 3.

Proof. We will use the geometric optics construction in the proof of Proposition 3, using the notation there.
To construct a parametrix forA��f , we apply a geometric optic construction again, using the two

characteristic rootṡ cj�jg. The boundary data�Cf have a wave front set in a small conic neighborhood
of ..t0;y0

0
/; .1; �0

0
//. Note that�n

0
6D 0 because geodesics issued fromK cannot be tangent to@˝. Then for

the solutionv of (8) with h D �Cf , we can apply the geometric optics construction above, but now with
initial condition onR � @˝, to get two types of singularities starting from that one. The first one propagates
along the geodesics close tox0;�0

in the opposite direction. The second one propagates along the geodesic
close to the one issued from..t0;y0/; .�

0;��n//, that is transversal to@˝. This ray is in fact a reflected
x0;�0

. By the propagation of singularities results, those singularities stay on those geodesics until they
reach@˝ again, then reflect by law of geometric optics, etc., i.e., they propagate along the broken geodesics
issued from a neighborhood of that point. Neart D T however, the solution to (8), where� D 0, is zero
because we have zero Cauchy data, andh D ��f D 0 for t close toT . This shows that the second types
of singularities do not exist; and in our parametrix construction, we need to work with the first one only.

We look for a parametrix of the solution of the wave equation (8) with zero Cauchy data att D T and
boundary data��Cf in the form

v.t;x/ D .2�/�n

Z
ei Q�.t;x;�/b.x; �; t/ Of .�/d�:

The arguments above show thatQ� D �C. Next, for x 2 @˝, we haveb D �a. We need to findb at
t D 0. The amplitudeb satisfies the same transport equation as in the proof of Proposition 3 but with initial
condition atR � @˝. In particular, it is a classical amplitude of order0. Let b0 be its principal part. Then
b0 satisfies (35), also satisfied bya

.0/
C , that is a linear homogeneous ODE along the bicharacteristic close

to .x0;�0
; Px0;�0

/. Therefore,b0 is a linear function of its initial condition atR � @˝. If we assume for a

moment that� D 1, then we would getb0 D a
.0/
C , therefore,b0 D 1=2 for t D 0. Therefore, we get that

b0.x; �/jtD0 is given by the value of�=2 at the exit point ofx;� on @˝ because that value is the initial
condition of the transport equation on that bicharacteristic.

The arguments above reveal the geometry of the singularities but some of them are not needed for the
formal proof. One can definev as above, localized near the bicharacteristic issued from.x0; �0/, and letuC

be the solution of (8) with� D 0 andh D ��Cf . Then one easily checks thatw WD uC � v solves the
wave equation modulo smooth terms, with smooth boundary condition, and thatw D 0 neart D T ; and is
therefore smooth.

In the same way one treats the� D � term. This proves the theorem assuming no conjugate points in˝.
In the general case, we can apply those arguments step by step, in intervalsŒ0; t1�, thenŒt1; t2�, etc., short

enough so that there are no conjugate points on the corresponding geodesic segments. After the first step,
we get.u;ut / at t D t1. Then we construct a parametrix fromt D t1 to t D t2 using a new phase function.
Note that now, when� D C, for example,ut jtDt1

does not vanish anymore. On the other hand,.u;ut /jtDt1
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is Cauchy data of a solution which singularities do not travel in two opposite directions, and we will still
get one term only, that is an analogue of the� D C one in (33). Then we reach the boundary and apply
the result above. Next, step by step, we go back to the hyperplanet D 0. An alternative way is to apply
the Egorov’s theorem fromt D 0 to t D Qt , instead of the partition of the time interval, whereQt is such that
there are no conjugate points on the bicharacteristic issued from.x0; �0/ from Qt to �C.x0; �0/; and on that
segment, we use the arguments above.

This proves the first statement of the theorem.
Parts (a), (b) follows immediately from the ellipticity ofA�� that is guaranteed by (25).
To prove part (c), note first that the ellipticity ofA�� and the mapping property ofA, see [13], imply the

estimate

kf kHD.K/ � C .k��f kH 1 C kf kL2/ :

By Theorem 2, and (25),�� is injective onHD.K/. By [19, Proposition V.3.1], one gets estimate (38) with
a constantC > 0 possibly different than the one above. �

Corollary 2. Letg be Euclidean outside̋ , and let@˝ be strictly convex. Then if�f D 0 on Œ0;T � � @˝
for somef 2 HD.˝/, with T > T .˝/=2, thenf D 0.

4. THERMOACOUSTIC TOMOGRAPHY AND INTEGRAL GEOMETRY

If P D ��, and if n is odd, the solution of the wave equation can be expressed in terms of spherical
means, as it is well known. Then the problem can be formulated as an integral geometry problem — recover
f from integrals over spheres centered at@˝, with radii in Œ0;T �, and this point of view has been exploited
a lot in the literature. One may attempt to apply the same approach in the variable coefficients case; then one
has to integrate over geodesic spheres. This has two drawbacks. First, those integrals represent the leading
order terms of the solution operator only, not the whole solution. That would still be enough for constructing
a parametrix however but not the Neumann series solution in Theorem 1. The second problem is that the
geodesic spheres become degenerate in presence of caustics. The wave equation viewpoint that we use in
this paper is not sensitive to caustics. We still have to require that the metric be non-trapping in some of our
theorems. By the remark following Theorem 3 however, this is a necessary condition for stability. On the
other hand, it is not needed for the uniqueness result as long as (23) is satisfied.
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APPENDIX A. UNIQUE CONTINUATION FOR THE WAVE EQUATION

We recall here a Holmgren’s type of theorem for the wave equation.@2
t C P /u D 0 due mainly to Tataru.

While this theorem is well known and used, and follows directly from the results cited below, we did not
find it clearly formulated in the literature.

Theorem 4. LetP be the differential operator inRn as in the Introduction. Assume thatu 2 H 1
loc satisfies

.@2
t C P /u D 0

in a neighborhood ofŒ�T;T � � fx0g, with someT > 0, x0 2 Rn. Then

u.t;x/ D 0 for jt j C dist.x0;x/ � T:
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Proof. If P has analytic coefficients, this is Holmgren’s theorem. In the non-analytic coefficients case, a
version of this theorem was proved by Robbiano [15] with� replaced byK� with an unspecified constant
K > 0. It is derived there from a local unique continuation theorem across a surface that is “not too close
to being characteristic”. In [7], Ḧormander showed that one can chooseK D

p
27=23, in both the local

theorem [7, Thm 1] and the global theorem [7, Corollary 7]. Moreover, he showed thatK in the global
one can be chosen to be the same as theK in the local one. Finally, Tataru [17, 18] proved a unique
continuation result that implies unique continuation across any non-characteristic surface. This shows that
actuallyK D 1 in Hörmander’s work, and the theorem above then follows from [7, Corollary 7]. �
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