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Abstract. We survey some recent progress on the problem of recovering a tensor
from its integral along geodesics in the two dimensional case. We also propose several
open problems.

1. Introduction

We define the geodesic ray transform for any compact, oriented Riemannian manifold
(M, g) with boundary of any dimension. Let ν denote the unit-inner normal to ∂M.
We denote by S (M)→M the unit-sphere bundle over M :

S(M) =
⋃
x∈M

Sx, Sx = {ξ ∈ Tx(M) : |ξ|g = 1}.

S(M) is a (2 dim M − 1)-dimensional compact manifold with boundary, which can be
written as the union ∂S (M) = ∂+S (M) ∪ ∂−S (M)

∂±S (M) = {(x, ξ) ∈ ∂S (M) , ± (ν (x) , ξ) ≥ 0 }.

The manifold of inner vectors ∂+S (M) and outer vectors ∂−S (M) intersect at the set
of tangent vectors

∂0S (M) = {(x, ξ) ∈ ∂S (M) , (ν (x) , ξ) = 0 }.

The standard measures that we will use are defined below,

dΣ2n−1 = dV n ∧ dSx
dΣ2n−2 = dV n−1 ∧ dSx

where dV n (resp. dV n−1) is the volume form ofM (resp. ∂M ), and dS =
√

det g(x)dSx
where dSx is the Euclidean volume form of Sx in TxM . For (x, ξ) ∈ ∂S(M), let
µ(x, ξ) =< ν(x), ξ > and L2

µ(∂+S(M)) is the space of functions on ∂+S(M) with inner
product

(u, v)L2
µ(∂+S(M)) =

∫
∂+S(M)

uvµ dΣ2n−2

Assume that (M, g) is embedded in (S, g) where S is a compact n-dimensional man-
ifold without boundary. Let ϕt be the geodesic flow on S and X = d

dt
ϕt|t=0 be the

geodesic vector field. If (x, v) ∈ S(M), let γ(t, x, v) be the unit speed S-geodesic
starting from x in the direction of v. Define travel time τ : S(M)→ [0,∞] by

τ(x, v) = inf{t > 0 : γ(t, x, v) ∈ S\M}

Definition 1.1. (M, g) is non-trapping if τ(x, v) <∞ for all (x, v) ∈ S(M).
1
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The function τ 0 = τ |∂S(M) is equal zero on ∂−S(M) and is smooth on ∂+S(M). Its
odd part with respect to ξ

τ 0
−(x, ξ) =

1

2

(
τ 0(x, ξ)− τ 0 (x,−ξ)

)
is a smooth function.

Let uf be the solution of the boundary value problem

Xu = −f, u|∂−S(M) = 0,

which can be written as

uf (x, v) =

τ(x,v)∫
0

f(ϕt(x, v))dt, (x, v) ∈ S(M).

In particular

Xτ = −1.

The trace

If = uf |∂+S(M)

is called the geodesic ray transform of the function f . If the manifold (M, g) is non-
trapping, that is every geodesic has finite length, I : C∞(S(M))→ C∞(∂+S(M)).

We define ψ : S(M)→ ∂−S(M) by

ψ(x, v) = ϕ−τ(x,−v)(x, v), (x, v) ∈ S(M).

So, ϕ is the end point which maps the vector (x, v) along the geodesic γ(x, v, t) in the
back direction into an incoming vector. The solution of the boundary value problem
for the transport equation

Xu = 0, u|∂+S(M) = w

can be written in the form

u = wψ = w ◦ ψ.
It is easy to show using Santalo’s formula:

Proposition 1.2. I : L2(M)→ L2
µ(∂+S(M)) is bounded.

The adjoint I∗ is bounded L2
µ(∂+S(M))→ L2(M). For f ∈ C∞(M), w ∈ C∞(∂+S(M)),

(If, w)L2
µ(∂+S(M)) =

∫
∂+S(M)

∫ τ(x,v)

0

f(ϕt(x, v))wψ(ϕt(x, v))µ dtdΣ2n−2

=

∫
S(M)

fwψdΣ2n−1

=

∫
S(M)

f(x)

(∫
Sx

wψ(x, v) dSx(v)

)
dV n(x)

so

I∗w(x) =

∫
Sx

wψ(x, v) dSx

.
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Clearly a function f is not determined by its geodesic ray transform alone, since it
depends on more variables than If . We consider the geodesic ray transform acting on
symmetric tensor fields.

We denote by fm(x, v) an homogeneous polynomial of degree m with respect to v,
induced by the symmetric tensor field f on (M, g) of m degree :

(1) fm(x, v) = fi1...im (x) vi1 ...vim .

The operator Im, defined by

(2) Imf = Ifm

is called the geodesic ray transform of the symmetric tensor field f . If the manifold
(M, g) is non-trapping and the boundary ∂M is strictly convex Im : C∞(M,Sm(M))→
C∞(∂+S(M)), where Sm(M) denotes the bundle of symmetric tensors over (M, g).

The adjoint of the operator Im is the bounded operator I∗m : L2
µ (∂+S (M)) →

L2 (M,Sm(M)) which is given by

(I∗mw)i1...im (x) =

∫
Sx

wψ(x, v)vi1 ...vimdSx.

The Hilbert space L2 (M,Sm(M)) may be considered as subspace of L2(S(M)) of ho-
mogeneous polynomials with respect to v of degree m. distributions.Im : L2(S(M))→
L2
µ (∂+S (M)) is given by

I∗w = wψ.

It is known that any symmetric smooth enough tensor field f may be decomposed
in a potential and solenoidal part [16]:

f = dp+ f s, p|∂M = 0, δf s = 0,

where δ notes the divergence and d = σ∇ is the symmetric part of the covariant
derivative. It is easy to see that the geodesic ray transform of the potential part dp is
zero. We denote by C∞sol(M,Sm(M)) the space of smooth solenoidal symmetric tensor
fields so that we can recoverer only the solenoidal part of the tensor field.

Definition 1.3. A tensor of order m is s-injective if Imf = 0 implies f s = 0.

The transforms Im arise in several applications as well as in the boundary rigidity
problem. The case of I0 when the metric is Euclidean is the standard X-ray transform
that integrates a function along lines. Radon found in 1917 an inversion formula in
two dimensions to determine a function knowing the X-ray transform. This formula
is non-local in the sense that in order to find the function at a point x one needs to
know the integral of the function along lines far from the point. Radon’s inversion
formula has been implemented numerically using the filtered backprojection algorithm
which is used today in CT scans. Another important transform in medical imaging
and other applications is the Doppler transform which integrates a vector field along
lines. This corresponds to the case of I1 for the case of the Euclidean metric. The
motivation is ultrasound Doppler tomography. It is known that blood flow is irregular
and faster around tumor tissue than in normal tissue and Doppler tomography attempts
to reconstruct the blood flow pattern. Mathematically the problem is to what extend



4 G.P. PATERNAIN, M. SALO, AND G. UHLMANN

a vector field is determined from its integral along lines. The case of integration along
more general geodesics arises in geophysical imaging in determining the inner structure
of the Earth since the speed of elastic waves generally increases with depth, thus curving
the rays back to the Earth surface. It also arises in ultrasound imaging.

The geodesic ray transform I0, that is, the integration of a function along geodesics,
arises as the linearization of the problem of determining a conformal factor of a Rie-
mannian metric on a compact Riemannian manifold with boundary from the boundary
distance function. This is the boundary rigidity problem, see [20] for a recent review.
the linearization of the boundary rigidity problem is I2 the integration of tensors of
order two along geodesics. The case of integration of tensors of order 4 along geodesics
arises in some inverse problems arising in elasticity [16].

We assume throughout that (M, g) is simple, a notion that naturally arises in the
context of the boundary rigidity problem [7]. We recall that a Riemannian manifold
with boundary is said to be simple if the boundary is strictly convex and given any
point p in M the exponential map expp is a diffeomorphism onto M . In particular, a
simple manifold is nontrapping.

One of the main results we review in this paper is the s-injectivity of Im for all m
for simple surfaces.

Theorem 1.4. Let (M, g) be a simple 2D manifold and let m ≥ 0. If f is a smooth
symmetric m-tensor field on M which satisfies If = 0, then f = dh for some smooth
symmetric (m− 1)-tensor field h on M with h|∂M = 0. (If m = 0, then f = 0.)

We also review what is known about stability, reconstruction and the range for Im.
We also propose several open problems.

2. Pestov Identity

In this section we consider the Pestov identity, which is the basic energy identity
that has been used since the work of Mukhometov [8] in most injectivity proofs of
ray transforms in the absence of real-analyticity or special symmetries. The Pestov
identity often appears in a somewhat ad hoc way, but in [10] a new point of view was
given which makes its derivation more transparent. We give an account of this for I0

in the two dimensional case.
Since M is assumed oriented there is a circle action on the fibers of SM with infini-

tesimal generator V called the vertical vector field. It is possible to complete the pair
X, V to a global frame of T (SM) by considering the vector field X⊥ := [X, V ]. There
are two additional structure equations given by X = [V,X⊥] and [X,X⊥] = −KV
where K is the Gaussian curvature of the surface. Using this frame we can define a
Riemannian metric on SM by declaring {X,X⊥, V } to be an orthonormal basis and
the volume form of this metric will be denoted by dΣ3. The fact that {X,X⊥, V } are
orthonormal together with the commutator formulas implies that the Lie derivative of
dΣ3 along the three vector fields vanishes.

We consider the ray transform on functions. The first step is to recast the injectivity
problem as a uniqueness question for the partial differential operator P on SM where

P := V X.
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This involves a standard reduction to the transport equation.

Proposition 2.1. Let (M, g) be a compact oriented nontrapping surface with strictly
convex smooth boundary. The following statements are equivalent.

(a) The geodesic ray transform I0 : C∞(M)→ C(∂+(SM)) is injective.
(b) Any smooth solution of Pu = 0 in SM with u|∂(SM) = 0 is identically zero.

Proof. Assume that the ray transform is injective, and let u ∈ C∞(SM) solve Pu = 0
in SM with u|∂(SM) = 0. This implies that Xu = −f in SM for some smooth f only
depending on x, and we have 0 = u|∂+(SM) = If . Since I is injective one has f = 0
and thus Xu = 0, which implies u = 0 by the boundary condition.

Conversely, assume that the only smooth solution of Pu = 0 in SM which vanishes
on ∂(SM) is zero. Let f ∈ C∞(M) be a function with If = 0, and define the function

u(x, v) :=

∫ τ(x,v)

0

f(γ(t, x, v)) dt, (x, v) ∈ SM.

This function satisfies the transport equation Xu = −f in SM and u|∂(SM) = 0
since If = 0, and also u ∈ C∞(SM). Since f only depends on x we have V f = 0,
and consequently Pu = 0 in SM and u|∂(SM) = 0. It follows that u = 0 and also
f = −Xu = 0. �

We now focus on proving a uniqueness statement for solutions of Pu = 0 in SM .
For this it is convenient to express P in terms of its self-adjoint and skew-adjoint parts
in the L2(SM) inner product as

P = A+ iB, A :=
P + P ∗

2
, B :=

P − P ∗

2i
.

Here the formal adjoint P ∗ of P is given by

P ∗ := XV.

In fact, if u ∈ C∞(SM) with u|∂(SM) = 0, then

‖Pu‖2 = ((A+ iB)u, (A+ iB)u) = ‖Au‖2 + ‖Bu‖2 + i(Bu,Au)− i(Au,Bu)(3)

= ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u).

This computation suggests to study the commutator i[A,B]. We note that the argu-
ment just presented is typical in the proof of L2 Carleman estimates [?].

By the definition of A and B it easily follows that i[A,B] = 1
2
[P ∗, P ]. By the

commutation formulas for X, X⊥ and V , this commutator may be expressed as

[P ∗, P ] = XV V X − V XXV = V XV X +X⊥V X − V XV X − V XX⊥
= V [X⊥, X]−X2

= −X2 + V KV.

Consequently

([P ∗, P ]u, u) = ‖Xu‖2 − (KV u, V u).
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If the curvature K is nonpositive, then [P ∗, P ] is positive semidefinite. More generally,
one can try to use the other positive terms in (3). Note that

‖Au‖2 + ‖Bu‖2 =
1

2
(‖Pu‖2 + ‖P ∗u‖2).

The identity (3) may then be expressed as

‖Pu‖2 = ‖P ∗u‖2 + ([P ∗, P ]u, u).

Moving the term ‖Pu‖2 to the other side, we have now proved the version of the Pestov
identity which is most suited for our purposes. The main point in this proof was that
the Pestov identity boils down to a standard L2 estimate based on separating the
self-adjoint and skew-adjoint parts of P and on computing one commutator, [P ∗, P ].

Proposition 2.2. If (M, g) is a compact oriented surface with smooth boundary, then

‖XV u‖2 − (KV u, V u) + ‖Xu‖2 − ‖V Xu‖2 = 0

for any u ∈ C∞(SM) with u|∂(SM) = 0.

It is well known (cf. proof of [3, Proposition 7.2]) that on a simple surface, one has

‖XV u‖2 − (KV u, V u) ≥ 0, u ∈ C∞(SM), u|∂(SM) = 0.

Also, if Xu = −f where f = f0 + f1 + f−1 is the sum of a 0-form and 1-form, we have

‖Xu‖2 − ‖V Xu‖2 = ‖f0‖2 ≥ 0.

This term may be negative, and the Pestov identity may not give useful information
unless there is some extra positivity like a curvature bound.

In the scalar case the following result holds on the solvability of I∗m,m = 0, 1 [14].

Theorem 2.3. Let (M, g) be a simple, compact Riemannian manifold with boundary.
Then the operator I∗0 : C∞α (∂+S(M))→ C∞(M) is onto.

3. A microlocal approach

A different approach that is useful to prove s-injectivity of Im in some cases and
gives stability estimates as well as reconstruction formulas in some cases was started
in [21] and developed further in [19],[?], [?]. We describe the result in more detail for
I0.

Theorem 3.1. I∗0I0 is an elliptic pseudodifferential operator on S of order -1.

therefore Fredholm and with close range. The surjectivity of I∗0 follows then since I0

is injective.

Proof. It is easy to see, that

(4) (I∗0I0f) (x) =

∫
Ωx

dΩx

τ(x,v)∫
−τ(x,−v)

f (γ (x, v, t)) dt = 2

∫
Ωx

dΩx

τ(x,v)∫
0

f (γ (x, n, t)) dt.

Before we continue we make a remark concerning notation. We have used up to
know the notation γ(x, v, t) for a geodesic. But it is known, that a geodesic depends
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smoothly on the point x and vector ξt ∈ Tx(M). Therefore in what follows we will also
use sometimes the notation γ(x, vt) for a geodesic. Since the manifold M is simple and
any small enough neighborhood U (in (S, g)) is also simple (an open domain is simple if
its closure is simple). For any point x ∈ U there is an open domain DU

x ⊂ Tx (U) such
that exponential map expx : DU

x → U, expxη = γ(x, η) is a diffeomorphism onto U. Let
Dx, x ∈ M be the inverse image of M , then expx(Dx) = M and expx|Dx : Dx → M
is a diffeomorphism.

Now we change variables in (3.1), y = γ(x, vt). Then t = dg (x, y) and

(I∗If) (x) =

∫
M

K (x, y) f (y) dy,

where

K (x, y) = 2
det (exp−1

x )
′
(x, y)

√
det g (x)

dn−1
g (x, y)

.

Notice, that since

(5) γ(x, η) = x+ η +O(|η|2),

it follows, that the Jacobian matrix of the exponential map is 1 at 0, and then
det(exp−1′

x )(x, x) = 1/ det (expx)
′ (x, 0) = 1. From (3) we also conclude that

d2 (x, y) = Gij (x, y) (x− y)i (x− y)j , Gij (x, x) = gij (x) , Gij ∈ C∞ (M ×M)

Therefore the kernel of I∗I can be written in the form

K (x, y) =
2 det (exp−1

x )
′
(x, y)

√
det g (x)(

Gij (x, y) (x− y)i (x− y)j
)(n−1)/2

.

Thus the kernel K has at the diagonal x = y a singularity of type |x− y|−n+1 . The
kernel

K0 (x, y) =
2
√

det g (x)(
gij (x) (x− y)i (x− y)j

)(n−1)/2

has the same singularity. Clearly, the difference K − K0 has a singularity of type
|x− y|−n+2 . Therefore the principal symbols of both operators coincide. The principal
symbol of the integral operator, corresponding to the kernel K0 coincide with its full
symbol and is easily calculated. As a result

σ (I∗0I) (x, v) = 2
√

det g (x)

∫
e−i(y,v)

(gij (x) yiyj)(n−1)/2
dy = cn |v|−1 .

�

The analog result for vector fields was proven in [?].

Theorem 3.2. Let (M, g) be a simple, compact Riemannian manifold with boundary.
Then for any field v ∈ C∞sol(M,T (M)) there exists a function w ∈ C∞α (∂+S(M)) such

v = I∗1w
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4. Stability estimates

Theorem 4.1. Let g be a simple metric in M and assume that g is extended smoothly
as a simple metric near the simple manifold M1 ⊃⊃ M . Then for any function f ∈
L2(M),

M‖f‖/C ≤ ‖Ngf‖H1(M1) ≤ C‖f‖.

Theorem 4.2. Assume that g is simple metric in M and extend g as a simple metric
in M1 ⊃⊃M . Then for any 1-form f = fidx

i in L2(Ω) we have

M ‖f s‖L2(M) /C ≤ ‖Ngf‖H1(M1) ≤ C ‖f s‖L2(Ω) .

Introduce the norm

|Ngf‖H̃2(Ω1) =
n∑
i=1

‖∂iNgf‖H̃1(Ω1) + ‖Ngf‖H1(Ω1)

The H̃1 norm above is defined as in n̊orm with the integral taken in a small two sided
neighborhood of ∂Ω, not only outside Ω as in n̊orm. The norm above defines a Hilbert
space H̃2(Ω1). We have therefore proved part (a) of the following theorem. Recall that
S is the projection onto the space of solenoidal tensors.

Theorem 4.3. Assume that g is simple metric in M and extend g as a simple metric
in i M1 ⊃⊃M .

(a) The following estimate holds for each symmetric 2-tensor f in H1(Ω):

‖f s‖L2(M) ≤ C‖Ngf‖MH̃2(M1)
+ Cs‖f‖H−s(M1), ∀s > 0.

(b) Ker Ig ∩ SL2(Ω) is finite dimensional and included in C∞(Ω̄). (c) Assume that Ig
is s-injective in Ω, i.e., that Ker Ig ∩ SL2(Ω) = {0}. Then for any symmetric 2-tensor
f in H1(Ω) we have

(6) M ‖f s‖L2(M) ≤ C‖Ngf‖H̃2(M1).

5. The Scattering Relation

Suppose we have a Riemannian metric in Euclidean space which is the Euclidean
metric outside a compact set. The inverse scattering problem for metrics is to determine
the Riemannian metric by measuring the scattering operator (see [?]). obstruction to
the boundary rigidity problem occurs in this case with the diffeomorphism ψ equal to
the identity outside a compact set.the scattering operator, one can determine, under
some non-trapping assumptions on the metric, the scattering relation on the bound-
ary of a large ball. This uses high frequency information of the scattering operator. In
the semiclassical setting Alexandrova has shown for a large class of operators that the
scattering operator associated to potential and metric perturbations of the Euclidean
Laplacian is a semiclassical Fourier integral operator quantized by the scattering rela-
tion [?]. The scattering relation maps the point and direction of a geodesic entering
the manifold to the point and direction of exit of the geodesic. We proceed to define in
more detail the scattering relation and its relation with the boundary distance function.
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Definition 5.1. Let (M, g) be non-trapping with strictly convex boundary. The scat-
tering relation α : ∂S (M)→ ∂S (M) is defined by

α(x, v) = (γ(x, v, 2τ 0
−(x, ξ)), γ̇(x, v, 2τ 0

−(x, v))).

The scattering relation is a diffeomorphism ∂S (M)→ ∂S (M) .Notice that α|∂+S(M) :
∂+S (M) → ∂−S (M) , α|∂−S(M) : ∂−S (M) → ∂+S (M) are diffeomorphisms as well.
Obviously, α is an involution, α2 = id and ∂0S (M) is the hypersurface of its fixed
points, α(x, ξ) = (x, ξ), (x, ξ) ∈ ∂0S (M) .

A natural inverse problem is whether the scattering relation determines the metric
g up to an isometry which is the identity on the boundary. This information takes into
account all the travel times not just the first arrivals.

In the case that (M, g) is a simple manifold, and we know the metric at the boundary
(and this is determined if dg is known, see [?]), knowing the scattering relation is
equivalent to knowing the boundary distance function ([7]).

We introduce the operators of even and odd continuation with respect to α:

A±w(x, ξ) = w(x, ξ), (x, ξ) ∈ ∂+S (M) ,

A±w(x, ξ) = ± (α∗w) (x, ξ), (x, ξ) ∈ ∂−S (M) .

We will examine next the boundness properties of A−, A+.

Lemma 5.2. A± : L2
µ(∂+S(M))→ L2

|µ|(∂S(M)) are bounded.

Proof.

‖A±w‖2
L2
|µ|(∂S(M))

=

∫
∂+S(M)

w2µ dΣ2n−2 +

∫
∂−S(M)

(α∗w)2(−µ dΣ2n−2)

=

∫
∂+S(M)

w2µ dΣ2n−2 +

∫
∂+S(M)

w2α∗(−µ dΣ2n−2)

where α : ∂+S(M)→ ∂−S(M) is a diffeomorphism. Thus it is enough to show that

α∗(−µdΣ2n−2) = µdΣ2n−2

Let w ∈ C∞(∂+S(M)). Then∫
∂+S(M)

wτµ dΣ2n−2 =

∫
∂+S(M)

∫ τ(x,ξ)

0

wψ(ϕt(x, ξ))µ dtdΣ2n−2 =

∫
S(M)

wψ dΣ2n−1

Set ũ(x, ξ) = u(x,−ξ) for u ∈ C∞(S(M)), one has∫
S(M)

wψ dΣ2n−1 =

∫
S(M)

w̃ψ dΣ2n−1

=

∫
∂−S(M)

∫ τ(y,−η)

0

w̃ψ(ϕt(y,−η))(−µ) dtdΣ2n−2

=

∫
∂−S(M)

∫ τ(y,−η)

0

w(α(y, η))(−µ) dtdΣ2n−2

=

∫
∂+S(M)

wτα∗(−µdΣ2n−2)

Varying w shows that α∗(−µdΣ2n−2) = µdΣ2n−2 on ∂+S(M)\∂0S(M). �
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The adjoint A∗± : L2
|µ|(∂S(M))→ L2

µ(∂+S(M)) satisfies

(A±w, u)L2
|µ|(∂S(M)) =

∫
∂+S(M)

wuµdΣ2n−2 ±
∫
∂−S(M)

(w ◦ α)u(−µ dΣ2n−2)

=

∫
∂+S(M)

w(u± u ◦ α)µ dΣ2n−2

so A∗±u = (u± u ◦ α)|∂+S(M).
In [14] the following characterization of the space of smooth solutions of the transport

equation was given

Lemma 5.3.

C∞α (∂+S(M)) = {w ∈ C∞(∂+S(M)) : A+w ∈ C∞(∂S(M))}.

Then I∗w ∈ C∞(M) whenever w ∈ C∞α (∂+S(M)).

6. The Hilbert Transform

We recall first the definition of the Hilbert transform on the unit disc ∂D. Writing
x1 + ix2 = (x1, x2), we get ∂̄u = ∇u = (∂1u, ∂2u), and −i∂̄v = ∇⊥v = (∂2v,−∂1v).
Thus u and v are conjugate harmonic iff

∇u = ∇⊥v, ∇v = −∇⊥u

This is an invariant formulation, and can be used to define conjugate harmonic func-
tions in (TxM, g(x)) ' (R2, e) by the following lemma ( then ∇⊥ = ε∇ ):

Lemma 6.1. Let M be a 2D oriented manifold. Then ∃aunique 2-tensor field ε (
”multiplication by -i” ) such that {v,−εv} is a positive orthonormal basis of TxM
whenever v ∈ TxM with |v| = 1. It holds that

< εv, εw >=< v,w >, < εv, w >= − < v, εw >

The Hilbert transform on ∂D is

Hf(z) = P.V.

∫
∂D

1 +Re(zw̄)

−Re(izw̄)
f(w) dm(w) where dm(eiθ) =

1

2π
dθ

Write x1 + ix2 = (x1, x2), then z · w = Re(zw̄) and −iz = εz = z⊥, so

Hf(z) = P.V.

∫
∂D

1 + z · w
z⊥ · w

f(w) dm(w)

Let now u ∈ C∞(S(M)). The fiberwise Hilbert transform is defined by

(7) Hu(x, ξ) = P.V.
1

2π

∫
Sx

1+ < ξ, η >

< ξ⊥, η >
u(x, η) dSx(η) ξ ∈ Sx.

Here ⊥ means a 90o degree rotation. In coordinates (ξ⊥)i = εijξ
j, where

ε =
√

det g

(
0 1

−1 0

)
.
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The Hilbert transform H transforms even (respectively odd) functions with respect
to ξ to even (respectively odd) ones. If H+ (respectively H−) is the even (respectively
odd) part of the operator H:

H+u(x, ξ) =
1

2π

∫
Sx

(ξ, η)

(ξ⊥, η)
u(x, η)dSx(η),

Hu−(x, ξ) =
1

2π

∫
Sx

1

(ξ⊥, η)
u(x, η)dSx(η)

and u+, u− are the even and odd parts of the function u, then H+u = Hu+, H−u =
Hu−. The above integrals are understood in the principal value sense.

We have that X⊥ = (ξ⊥,∇) = −(ξ,∇⊥), where ∇⊥ = ε∇ and ∇ is the covariant
derivative with respect to the metric g. The following commutator formula for the
geodesic vector field and the Hilbert transform, is a crucial ingredient in the proofs of
the main theorems surveyed in these notes (see [14]).

Theorem 6.2. Let (M, g) be a two dimensional Riemannian manifold. For any smooth
function u on S(M) we have the identity

(8) [H,X]u = X⊥u0 +X⊥u)0

where

u0(x) =
1

2π

∫
Sx

u(x, ξ)dSx

is the average value.

Proof. Using the frame {X,X⊥, V }, defined earlier we can define a Riemannian metric
on SM by declaring {X,X⊥, V } to be an orthonormal basis and the volume form of
this metric will be denoted by dΣ3. The fact that {X,X⊥, V } are orthonormal together
with the commutator formulas implies that the Lie derivative of dΣ3 along the three
vector fields vanishes. Given functions u, v : SM → C we consider the inner product

(u, v) =

∫
SM

uv̄ dΣ3.

Since X,X⊥, V are volume preserving we have (V u, v) = −(u, V v) for u, v ∈ C∞(SM),
and if additionally u|∂(SM) = 0 or v|∂(SM) = 0 then also (Xu, v) = −(u,Xv) and
(X⊥u, v) = −(u,X⊥v). The space L2(SM) decomposes orthogonally as a direct sum

L2(SM) =
⊕
k∈Z

Hk

where Hk is the eigenspace of −iV corresponding to the eigenvalue k. A function
u ∈ L2(SM) has a Fourier series expansion

u =
∞∑

k=−∞

uk,
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where uk ∈ Hk. Also ‖u‖2 =
∑
‖uk‖2, where ‖u‖2 = (u, u)1/2. The even and odd parts

of u with respect to velocity are given by

u+ :=
∑
k even

uk, u− :=
∑
k odd

uk.

Locally we can always choose isothermal coordinates (x1, x2) so that the metric can be
written as ds2 = e2λ(dx2

1+dx2
2) where λ is a smooth real-valued function of x = (x1, x2).

This gives coordinates (x1, x2, θ) on SM whereθ is the angle between a unit vector v
and ∂/∂x1. In these coordinates we may write V = ∂/∂θ and

uk(x, θ) =

(
1

2π

∫ 2π

0

u(x, t)e−ikt dt

)
eikθ = ũk(x)eikθ.

Observe that for k ≥ 0, uk may be identified with a section of the k-th tensor power of
the canonical line bundle; the identification takes uk into ũke

kλ(dz)k wherez = x1 + ix2.
Following Guillemin and Kazhdan in [5] we introduce the first order elliptic operators

η± : C∞(SM)→ C∞(SM) given by

η+ := (X + iX⊥)/2, η− := (X − iX⊥)/2.

Clearly X = η++η−. Let Ωk := C∞(SM)∩Hk. The commutation relations [−iV, η+] =
η+ and [−iV, η−] = −η− imply that η± : Ωk → Ωk±1. If A(x, v) = αj(x)vj where α is a
purely imaginary 1-form on M , we also split A = A+ +A− where A± ∈ Ω±1 and write

µ+ := η+ + A+, µ− := η− + A−.

It suffices to show that

[Id+ iH,X]u = iX⊥u0 + i(X⊥u)0.

Since X = η+ + η−, we need to compute [Id + iH, η±], so let u s find [Id + iH, η+]u,
where u =

∑
k uk. Recall that (Id+ iH)u = u0 + 2

∑
k≥1 uk. We find:

(Id+ iH)η+u = η+u−1 + 2
∑
k≥0

η+uk,

η+(Id+ iH)u = η+u0 + 2
∑
k≥1

η+uk.

Thus

[Id+ iH, η+]u = η+u−1 + η+u0.

Similarly, we find

[Id+ iH, η−]u = −η−u0 − η−u1.

Therefore using that iX⊥ = η+ − η− we obtain

[Id+ iH,X]u = iX⊥u0 + i(X⊥u)0

as desired.
�
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We define
P− = A∗−H−A+, P+ = A∗−H+A+.

Separating the odd and even parts in (1.4) we get

H+Hu−HH−u = (H⊥u)0, H−Hu−HH+u = H⊥u0

Take u = wψ with w ∈ C∞α (∂+Ω(M)). Then

2πHH+wψ = −H⊥I∗w
using (1) we conclude

(9) 2πA∗−H−A+w = IH⊥I∗w
since wψ|∂Ω(M) = A+w. Let h = I∗w, since IH⊥h = IHh∗ = −A∗−h0

∗, one obtains

(10) 2πA∗−H−A+w = −A∗−h0
∗.

7. Range and inversion of the geodesic ray transform

Let T (M) be the tangent bundle of M. We denote by δ the divergence operator
δ : C∞(M,TM))→ C∞(M). In local coordinates this is given by δu = gkj∇kuj using
Einstein’s summation convention.

We define the operator δ⊥ : C∞ (M,T (M))→ C∞ (M) by

δ⊥u = −δu⊥.
Then

δ⊥∇⊥f = δ∇f = ∆f, δ⊥∇f = −δ∇⊥f = 0.

We now give the characterization of the range of I0 and I1 in terms of the scat-
tering relation only. We have that these are the projections of the operators P−, P+

respectively. For the details see [?].

Theorem 7.1. Let (M, g) be simple two dimensional compact Riemannian manifold
with boundary. Then
i) The maps

δ⊥I
∗
1 : C∞α (∂+S (M))→ C∞ (M) ,

∇⊥I∗0 : C∞α (∂+S (M))→ C∞sol (M,T (M))

are onto.
ii). A function u ∈ C∞ (∂+S (M)) belong to Range I0 iff u = P−w, w ∈ C∞α (∂+S (M)) .
iii). A function u ∈ C∞ (∂+S (M)) belong to Range I1 iff u = P+w, w ∈ C∞α (∂+S (M)) .

Proposition 7.2. The operator W : C∞0 (M)→ C∞(M), defined by

Wf = (H⊥uf )0

can be extended to a smoothing operator W : L2(M)→ C∞(M).

We remark that in the case of constant Gaussian curvature W = 0 and this does
not depend on whether the metric has conjugate points so that the inversion formulas
of Theorem 5.2 hold for all two dimensional manifolds with boundary with constant
curvature.

The inversion formulas are (see [?])
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Theorem 7.3. Let (M, g) be a two-dimensional simple manifold. Then we have

f +W 2f =
1

2π
δ⊥I

∗
1w, w =

1

2
α∗H(I0f)−|∂+S(M), f ∈ L2 (M) ,

h+ (W ∗)2 h =
1

2π
I∗0w, w =

1

2
α∗H(I1H⊥h)+|∂+S(M), h ∈ H1

0 (M) ,

where W,W ∗ : L2 (M) → C∞ (M) . In the case of a manifold of constant curvature
W = 0, W ∗ = 0.

References

[1] Yu. Anikonov, V. Romanov, On uniqueness of determination of a form of first degree by its
integrals along geodesics, J. Inverse Ill-Posed Probl. 5 (1997), 467–480.

[2] N.S. Dairbekov, Integral geometry problem for nontrapping manifolds, Inverse Problems 22
(2006), 431–445.

[3] D. Dos Santos Ferreira, C.E. Kenig, M. Salo, G. Uhlmann, Limiting Carleman weights and
anisotropic inverse problems, Invent. Math. 178 (2009), 119–171.

[4] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Reprint of the 1978 original Wiley
Classics Library. John Wiley & Sons, Inc., New York, 1994.

[5] V. Guillemin, D. Kazhdan, Some inverse spectral results for negatively curved 2-manifolds, Topol-
ogy 19 (1980), 301–312.
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