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Abstract
Let g be a Riemannian metric on a bounded domain in two dimensions with a
Lipschitz boundary. We show that one can determine the equivalent class of g
and β in the W 1,p topology, p > 2, from knowledge of the associated Dirichlet-
to-Neumann (DN) map �g,β to the elliptic equation divg(β∇gu) = 0. The DN
map encodes all the voltage and current measurements at the boundary.

1. Introduction

Let � ⊂ R
2 be a bounded domain with a Lipschitz boundary and let g = (gi j) be a Riemannian

metric on � in the W 1,p(�) class with p > 2. Let β ∈ W 1,p(�) be a scalar function with a
positive lower bound. Consider the following elliptic differential operator associated with the
metric g:

Lg,β (u) = divg(β∇gu) = 1√|g|
2∑

i, j=1

∂

∂xi

(√|g|βgi j ∂u

∂x j

)
, (1.1)

where (gi j) is the inverse of g and |g| = det(gi j). Then for every f ∈ W 2−1/p,p(�), the
boundary value problem

Lg,β (u) = 0, u|∂� = f, (1.2)

has a unique solution u ∈ W 2,p(�). The Dirichlet-to-Neumann (DN) map associated with (1.2)
is defined as the map f → �g,β f ∈ W 1−1/p,p(�) where

�g,β f = (β∇gu)� dVg|∂� = ν · (√|g|β∇gu
)∣∣

∂�
=

2∑

i, j=1

√|g|βνi g
i j ∂u

∂x j

∣∣∣∣
∂�

, (1.3)

with u the unique solution of (1.2) and ν the outer normal of ∂�. See endnote 1
Physically β models the electrical conductivity of the domain � provided with the metric g.

The DN map encodes the current and voltage measurements at the boundary.
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2 Z Sun and G Uhlmann

Clearly, both the Dirichlet boundary value problem (1.2) and the DN map (1.3) are
conformally invariant. In fact, if g̃ = cg for a scalar function c ∈ W 1,p(�) with a positive
lower bound, then

Lg̃,β = c−1 Lg,β , �g̃,β = �g,β . (1.4)

In addition, the DN map �g,β has an invariance property when changing variables in �.
Let � : � → �̃ be a W 2,p diffeomorphism. The push forward of g under � is given by

g̃ = �∗g = [(D�)−1g((D�)−1)T] ◦ �−1, (1.5)

where AT denotes the transpose of the matrix A.
Then the pull back of g̃, given by

�∗ g̃ = ((D�)g̃(D�)T) ◦ �,

is identical to g. By writing the equation Lg,βu = 0 in the integral form
∫

�

2∑

i, j=1

∂φ

∂xi

(√|g|βgi j ∂u

∂x j

)
dx = 0, ∀φ ∈ C∞

0 (�),

and making the change of variables y = �(x), it is easy to show that u is a solution of
Lg,βu = 0 in � if and only if ũ = u ◦ �−1 is a solution of Lg̃,β̃ ũ = 0 in �̃, where

β̃ = β ◦ �−1 = �∗β. (1.6)

Furthermore, the DN maps �g,β and �g̃,β̃ are related by the following identity:
∫

∂�

φ�g,β ( f ) ds =
∫

∂�̃

φ̃�g̃,β̃ ( f̃ ) ds̃, (1.7)

where f ∈ W 2−1/p,p(�̃), f̃ = f ◦�−1 and �̃ = �◦�−1. Here ds and ds̃ denote the measures
on ∂�, ∂�̃ respectively.

Identity (1.7) implies that if the diffeomorphism above is the identity on ∂�, then

�g,β = �g̃,β̃ .

This shows that the DN map �g,β is also invariant under the above transformation in g and β

defined in (1.5) and (1.6). Therefore we have

�c�∗g,�∗β = �g,β (1.8)

for any diffeomorphism � ∈ W 2,p(�) with �|∂� = identity and any scalar function
c ∈ W 1,p(�) with a positive lower bound.

Given (g1, β1) and (g2, β2), we define (g1, β1) ∼ (g2, β2) if there is a diffeomorphism
� ∈ W 2,p(�) with �|∂� = identity and a scalar function c ∈ W 1,p(�) with a positive lower
bound such that g2 = c�∗g1 and c2 = �∗c1. Then from (1.8) we see that the map

� : [(g, β)] → �g,β

is well defined where [(g, β)] stands for the equivalent class under the equivalence relation ∼. See endnote 2
In this paper, we prove that the map � is injective. In other words, we show that one can

determine [(g, β)] from knowledge of �g,β .

Theorem 1.1. Let � ⊂ R
2 be a bounded domain with a Lipschitz boundary. Let g1 and g2 be

two Riemannian metrics in W 1,p(�) with g1 − g2 ∈ W 1,p
0 (�). Let β1 and β2 be two scalar

functions in W 1,p(�) with positive lower bounds. If

�g1,β1 = �g2,β2 ,
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then there exists a diffeomorphism � : � → � in the W 2,p class with �|∂� = identity such
that

g2 = c�∗g1

for some positive function c ∈ W 1,p(�) and

β2 = �∗β1.

Remarks.

(a) We remark that if the metric g is C2,1(�) near the boundary and the domain � is C1,1(�),
it seems possible to remove the assumption that the metrics coincide to order one at the
boundary. The boundary determination of the metric g and β and its derivatives would
follow by using the method of singular solutions of Alessandrini [A] combined with the
use of boundary normal coordinates as in [LU].

(b) The method of proof of theorem 1.1 is based on the reduction to a first-order system as
in [BU] for isotropic conductivities and isothermal coordinates [Ah]. The uniqueness
proof in [BU] was developed into a reconstruction method in [KT] for conductivities in
C1+ε . By solving the Beltrami equation (see section 2) and using [KT], it is likely that one
can also develop a reconstruction algorithm for slightly smoother β. Stability estimates
were derived in [BBR] using the uniqueness proof of [BU] for C1+ε conductivities. We
also expect that stability estimates can be proven under slightly smoother assumptions on
β for the case considered in this paper.

In the case where β1 = β2 = 1 on � and the Riemannian metric is smooth, theorem 1.1
was proven in [LU] and was extended to general connected, compact Riemannian manifolds
with a boundary in [LaU]. In the case where the Riemannian metric is Euclidean, this problem
is the electrical impedance tomography problem for isotropic conductivities. Uniqueness was
proven in [N] for β ∈ W 2,p, p > 1 and extended in [BU] to conductivities in W 1,p, p > 2. An
immediate consequence of theorem 1.1 is the extension of the [BU] result when the background
metric is not Euclidean. More precisely we have

Theorem 1.2. Let � ⊂ R
2 be a bounded domain with a Lipschitz boundary. Let g a

Riemannian metric in W 1,p(�). Let β1 and β2 be two scalar functions in W 1,p(�) with
positive lower bounds. If

�g,β1 = �g,β2 ,

then

β1 = β2.

We now discuss an application of theorem 1.1 to anisotropic conductivities. See [U2] for
a recent survey. Let γ = (γ i j) be a positive definite symmetric matrix on �̄ in the W 1,p class,
p > 2. The conductivity equation is given by

Lγ (u) =
2∑

i, j=1

∂

∂xi

(
γ i j ∂u

∂x j

)
= 0, u|∂� = f, (1.9)

and the DN map is defined as before by f → �γ f ∈ W 1−1/p,p(�) where

�γ f =
2∑

i, j=1

νiγ
i j ∂u

∂x j

∣∣∣∣
∂�

, (1.10)
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with u the unique solution of (1.9) and ν the unit outer normal of ∂�.
Let � : � → �̃ be a W 2,p diffeomorphism. The push forward of γ under � is given by

�∗γ =
(

[(D�)−1g((D�)−1)T]

|det D�|
)

◦ �−1. (1.11)

A direct consequence of theorem 1.1 is the following.

Theorem 1.3. Let � ⊂ R
2 be a bounded domain with a Lipschitz boundary. Let γ1 and γ2 be

two anisotropic conductivities in W 1,p(�) with γ1 − γ2 ∈ W 1,p
0 (�). Assume

�γ1 = �γ2;
then there exists a diffeomorphism � : � → � in the W 2,p class with �|∂� = identity such
that

γ2 = �∗γ1.

This result follows from theorem 1.1 on taking γi = g−1
i and βi = √|gi |, i = 1, 2.

This result was previously known for C3(�) anisotropic conductivities. It follows by
combining the result of [S], which reduces the anisotropic problem to the isotropic one by
using isothermal coordinates [Ah], and the result of Nachman [N] for isotropic conductivities.

The following theorem shows that the smoothness of the diffeomorphism � depends only
on the smoothness of the metric g.

Theorem 1.4. Let � ⊂ R
2 be a bounded domain with a Ck,α boundary, where k is a positive

integer and 0 < α < 1. Let g1 and g2 be two Riemannian metrics in Ck,α (�̄) with
Dγ g1 = Dγ g2 on ∂�, |γ | � k. Let β1 and β2 be two scalar functions in W 1,p(�) with
positive lower bounds. If

�g1,β1 = �g2,β2 ,

then there exists a diffeomorphism � : � → � in the Ck+1,α(�̄) class with �|∂� = identity
such that

g2 = c�∗g1

for some scalar function c ∈ Ck,α (�̄) with positive lower bound and

β2 = �∗β1.

For a description of other results in anisotropic inverse boundary problems, we refer the
reader to the survey papers [U1] and [U2].

2. Lemmas

Lemma 2.1. Let g1 and g2 be two Riemannian metrics in W 1,p(�) with g1 − g2 ∈ W 1,p
0 (�).

Let β1 and β2 be two positive scalar functions in W 1,p(�). If

�q1,β1 = �q2,β2 ,

then on ∂�,

β1 = β2.

Proof. Since g1 − g2 ∈ W 1,p
0 (�), we can extend g1 and g2 outside � so that

g1(x) = g2(x), x ∈ �c,

and
g1(x) = g2(x) = e, for |x | large enough,

(2.1)
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and the extended metrics, which we still denote by gi , i = 1, 2, are in W 1,p(R2). Let
� ∈ W 2,p(�) be a conformal diffeomorphism: � → �̃ (see (2.4) below) so that �∗g1 is
the Euclidean metric on �̃. Then �∗g2 is also the Euclidean metric on ∂�̃. From the proof
in [A] we see that on ∂�̃,

�∗β1 = �∗β2.

This, together with g1 − g2 ∈ W 1,p
0 (�), implies the result. �

According to lemma 2.1, we can extend β1 and β2 outside � so that

β1(x) = β2(x), x ∈ �c,

and
β1(x) = β2(x) = 1, for |x | large enough,

(2.2)

and the extended function, which we still denote by βi , i = 1, 2, is in W 1,p(R2), where e
stands for the Euclidean metric. We shall assume (2.1) and (2.2) throughout the rest of the
paper.

Let g, β ∈ W 1,p(R2) with

g(x) = e, β(x) = 1, for |x | large enough. (2.3)

We use the notation

µg = g11 − g22 + 2ig12

g11 + g22 + 2
√|g| < 1

and consider as in [Ah] the Beltrami equation

∂̄�g = µg∂�g. (2.4)

Then any diffeomorphism solution of (2.4) corresponds to an isothermal coordinate for the
metric g. More precisely,

(�g)∗g = age

for some ag > 0, and the equation Lg,βu = 0 is transformed to

L(�g)∗g,(�g)∗βv = ∇ · (β ◦ �−1
g ∇v) = 0,

where v = u ◦ �−1
g . In the next lemma, we construct a diffeomorphism �g that behaves like

z = x1 + ix2 as |z| → ∞ in an appropriate sense. We denote by L∞
1 (R2) the space of functions

satisfying | f (z)| � C|z|−1 for some constant C , or equivalently,

L∞
1 (R2) = { f ∈ L∞(R2) : z f (z) ∈ L∞(R2)}.

Lemma 2.2. Let g ∈ W 1,p(R2) satisfying equation (2.3). Then there exists a diffeomorphism
�g ∈ W 2,p

loc (R2), a diffeomorphism of R
2, which solves (2.4) and satisfies

�g − z ∈ L∞
1 (R2). (2.5)

Moreover, �−1
g , D�g − I and D�−1

g − I are all bounded in the L∞
1 (R2) norm.

Proof. We use the method of isothermal coordinates [Ah] although we need the solvability of
the Beltrami equation in different spaces to the ones used in [Ah]. We will use the solvability
of the Beltrami equation in weighted L p spaces as was done in [S].

Since g ∈ W 1,p
loc (R2) ⊂ L∞

loc(R
2), we can construct �g = z + F with F solving the

equation

∂̄ F − µg∂ F = µg (2.6)



6 Z Sun and G Uhlmann

in the weighted space Lγ

δ (R2) for some γ and δ, which satisfy (2.18) in [S] (with γ = p).
Clearly, since µg is in the W 1,p class, we have that F and thus �g is in W 2,p

loc (R2). From the
argument following (2.6) in [S], we see that �g is a diffeomorphism from R

2 to itself. We shall
show that this diffeomorphism carries the property of (2.5). We recall that if h is a function in
Lγ (R2), γ � 1, with compact support, then

∂̄−1h = 1

2π i

∫

R2

h(w)

z − w
dw ∧ dw̄ ∈ L∞

1 (R2). (2.7)

Since µg has compact support (note that g = e for |z| large enough) and µg(∂ F +1) ∈ L p(R2),
it follows from (2.7) that

F = ∂̄−1(µg(∂ F + 1)) ∈ L∞
1 (R2),

which leads to (2.5). To see that �g with (2.5) is unique, let �̃g be another diffeomorphism
satisfying (2.4) and (2.5). Then h = �g − �̃g is in L∞

1 (R2) and solves ∂̄h = µg∂h. Since
h is uniformly bounded in R

2, it follows from Liouville’s theorem (see for instance [BU],
section 3) that h = 0.

From (2.5) it is easy to see that �−1
g − z ∈ L∞

1 (R2). To show that D�g − I ∈ L∞
1 (R2),

let H be one of the derivatives of F = �g − z, say, H = ∂ F , then, by differentiating (2.6),
we have

∂̄ H − µg∂ H = ∂µg(1 + ∂ F).

Again, since µg and therefore ∂µg has compact support and µg∂ H + ∂µg(1 + ∂ F) ∈ L p(R2),
it follows from (2.7) that

H = ∂̄−1(µg∂ H + ∂µg(∂ F + 1)) ∈ L∞
1 (R2).

It remains to show that D�−1
g − I ∈ L∞

1 (R2). We note that

D�−1
g = (D�g)

−1 ◦ �−1
g .

Since �−1
g − z ∈ L∞

1 (R2), �−1
g behaves like z + O(z−1) as |z| → ∞, we only have to show

that See endnote 3

(D�g)
−1 − I ∈ L∞

1 (R2). (2.8)

For |z| large enough, we have

(D�g)
−1 − I = (D�g − I + I )−1 − I = (D�g − I )

∞∑

n=0

(−1)n+1(D�g − I )n,

and ∣∣∣∣
∞∑

n=0

(−1)n+1(D�g − I )n

∣∣∣∣ �
∞∑

n=0

Cn|z|−n = (1 + (C/|z|)−n)−1.

So

|(D�g)
−1 − I | � C|z|−1(1 + (C/|z|)−n)−1 � 2C|z|−1

for |z| large enough. This proves (2.8). �

Lemma 2.3. Let g, β ∈ W 1,p
loc (R2) satisfying (2.3). Then for each k ∈ C there exists a pair of

solutions ug,β (z, k) and vg,β (z, k) of (1.1) in R
2 such that

(
∂ug,β ∂vg,β

∂̄ug,β ∂̄vg,β

) (
e−izk 0

0 eiz̄k

)
− I ∈ Lq(R2), ∀q > 2. (2.9)

Moreover, this pair of solutions is unique modulo constants.
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Proof. Let �g be the diffeomorphism constructed in lemma 2.2. Under �g, the equation
Lg,βu = 0 is transformed to ∇ · (β ◦ �−1

g ∇w) = 0. As in [BU], this equation can be reduced
to the first-order elliptic system

[(
∂̄ 0
0 ∂

)
−

(
0 Q
Q̄ 0

)](
w1

w2

)
= 0, (2.10)

where

Q = − 1
2 ∂ log(β ◦ �−1

g ),

(
w1

w2

)
= (β ◦ �−1

g )1/2

(
∂w

∂̄w

)
. (2.11)

For each k ∈ C , this system carries a unique matrix solution in the form


(z, k) = m(z, k)

(
eizk 0
0 e−iz̄k

)
(2.12)

with

m(·, k) − I ∈ Lq(R2), ∀q > 2. (2.13)

Here, m is a matrix function of z and k [BU].
By using �−1

g , we can transform 
(z, k) to obtain a unique pair of solutions ug,β and vg,β

(modulo constants) and, according to (2.10) and (2.11),

β1/2

(
∂ug,β ∂vg,β

∂̄ug,β ∂̄vg,β

)
= H�g(m ◦ �g)

(
ei�g k 0

0 e−i�̄g k

)
. (2.14)

Here H�g is the gradient transformation matrix associated with the diffeomorphism �g:

H�g =
(

∂�g ∂�̄g

∂̄�g ∂̄�̄g

)
. (2.15)

From (2.14) we get
(

∂ug,β ∂vg,β

∂̄ug,β ∂̄vg,β

) (
e−izk 0

0 eiz̄k

)
− I = β−1/2 H�g(m ◦ �g)

(
ei�gk−izk 0

0 e−i�̄g k+iz̄k

)
− I.

(2.16)

Since β−1/2 = 1 for |z| large enough, it is enough to show that

H�g(m ◦ �g)

(
ei�g k−izk 0

0 e−i�̄g k+iz̄k

)
− I ∈ Lq(R2), ∀q > 2.

We rewrite this as

H�g(m ◦ �g)

(
ei�g k−izk 0

0 e−i�̄g k+iz̄k

)
− I = H�g(m ◦ �g − I )

(
ei�gk−izk 0

0 e−i�̄g k+iz̄k

)

+ (H�g − I )

(
ei�g k−izk 0

0 e−i�̄g k+iz̄k

)
+

(
ei�g k−izk − 1 0

0 e−i�̄g k+iz̄k − 1

)
.

(2.17)

From (2.5) it is clear that
(

ei�g k−izk − 1 0
0 e−i�̄g k+iz̄k − 1

)
∈ L∞

1 (R2), (2.18)
(

ei�g k−izk 0
0 e−i�̄g k+iz̄k

)
∈ L∞(R2) (2.19)

and

H�g − I ∈ L∞
1 (R2), H�g ∈ L∞(R2). (2.20)
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So, the second and the third terms on the right-hand side of (2.17) are in L∞
1 (R2) ⊂ Lq(R2),

∀q > 2. From (2.13) and (2.5), it is easy to show that

m ◦ �g − I ∈ Lq(R2), ∀q > 2.

This, together with (2.19) and (2.20), implies that the first term on the right-hand side of (2.17)
is also in Lq(R2), ∀q > 2. This proves that the solution pair constructed above satisfies the
property (2.9).

To prove the uniqueness (modulo constants), let ug,β and vg,β be a pair of solutions
satisfying Lg,βw = 0 and (2.9). Then

(β ◦ �−1
g )1/2 H�−1

g

(
∂ug,β ∂vg,β

∂̄ug,β ∂̄vg,β

)
◦ �−1

g

is a matrix solution to the system (2.10). Using the properties of D�g and D�−1
g and the

argument above that leads to (2.9), one can show that this matrix solution takes the form (2.12)
with (2.13), which is unique. This completes the proof. �

3. Proof of theorems

We extend g1, g2, β1 and β2 as we did in (2.1) and (2.2). Let�g1 and �g2 be the diffeomorphisms
in lemma 2.2 associated with g1 and g2, respectively.

We shall first prove that

�g1(z) = �g2(z), z ∈ �c. (3.1)

To this end we consider the solution pairs constructed in lemma 2.3: (ug1 , vg1) and (ug2 , vg2).
From (2.14), we have

β1/2

(
∂ugi ,βi ∂vgi ,βi

∂̄ugi ,βi ∂̄vgi ,βi

)
= H�gi

(mi ◦ �gi )

(
ei�gi k 0

0 e−i�̄gi k

)
, (3.2)

for i = 1, 2, where mi corresponds to the matrix function m in (2.12) under the diffeomorphism
�gi . Notice that mi satisfies (2.13). We claim that

ug1,β1(z) = ug2,β2(z), vg1,β1(z) = vg2,β2(z), z ∈ �c. (3.3)

To see this, we construct a new solution pair (u∗
g1,β1

, v∗
g1,β1

) as follows. For z ∈ �, u∗
g1,β1

solves (1.2) with g = g1, β = β1 and f = ug2,β2 |∂�. Similarly, v∗
g1,β1

solves (1.2) with
g = g1, β = β1 and f = vg2,β2 |∂�. For z ∈ �c, u∗

g1,β1
= ug2,β2 and v∗

g1,β1
= vg2,β2 . Since

�g1,β1 = �g2,β2 , a well known argument shows that (u∗
g1,β1

, v∗
g1,β1

) is a solution pair of (1.1)
with g = g1 and β = β1 in W 1,p(R2). Since

(u∗
g1,β1

, v∗
g1,β1

) = (ug2,β2 , vg2,β2) (3.4)

for z ∈ �c, it is clear that (u∗
g1,β1

, v∗
g1,β1

) satisfies the condition in (2.9). Thus it is the unique
solution pair claimed by lemma 2.3 with g = g1 and β = β1. Therefore,

(u∗
g1,β1

, v∗
g1,β1

) = (ug1,β1 , vg1,β1). (3.5)

Combining (3.4) with (3.5) yields (3.3).
Fix z ∈ �c. From (3.2) and (3.3) we conclude that

H�g1
(m1 ◦ �g1)

(
ei�g1 k 0

0 e−i�̄g1 k

)
= H�g2

(m2 ◦ �g2)

(
ei�g2 k 0

0 e−i�̄g2 k

)
. (3.6)

From theorem 2.3 in [BU] we know that mi (z, k) satisfies

sup
z

‖mi(z, ·) − I‖Lq (R2) � C
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for some constant C and q > 2. Then it is easy to show that there exist a sequence {kn} ⊂ C
with limn→∞ |kn| = ∞ such that

lim
n→∞(mi (z, kn) − I ) = 0, i = 1, 2. (3.7)

Let us use the notation

H�gi
=

(
h(i)

11 h(i)
12

h(i)
21 h(i)

22

)
, mi =

(
m(i)

11 m(i)
12

m(i)
21 m(i)

22

)
,

for i = 1, 2. Then, by setting the (1, 1) entries on either side of (3.6) equal, we get See endnote 4

(h(1)
11 m(1)

11 + h(1)
12 m(1)

21 )ei�g1 k = (h(2)
11 m(2)

11 + h(2)
12 m(2)

21 )ei�g2 k . (3.8)

Replacing k by kn in (3.8) and letting n be large enough, we conclude from (3.7) and the fact
that h(i)

11 �= 0 (if h(i)
11 = 0, then by (2.15), the definition of the matrix and (2.4), we would have

that h(i)
12 = 0, implying that the matrix H is not invertible) that

h(i)
11 m(i)

11 (z, kn) + h(i)
12 m(i)

21 (z, kn) �= 0, i = 1, 2.

Thus we can take the logarithm of both sides of (3.8) (restricted on {kn} with large n) to get

log(h(1)

11 m(1)

11 (z, kn) + h(1)

12 m(1)

21 (z, kn)) + i�g1 kn

= log(h(2)

11 m(2)

11 (z, kn) + h(2)

12 m(2)

21 (z, kn)) + i�g2 kn. (3.9)

Dividing by kn on both sides of (3.9) and then letting n → ∞ yields

�g1(z) = �g2(z).

This gives (3.1).
Equation (3.1) implies that both �g1,β1 and �g2,β2 send � to the same open set �∗. Then

by (1.7),

�(�g1 )∗g1,(�g1 )∗β1 = �(�g2 )∗g2,(�g2 )∗β2

for the equation ∇ · (β ◦ �−1
gi

∇w) = 0 with i = 1, 2. Thus, by the uniqueness result in [BU],

β1 ◦ �−1
g1

= β2 ◦ �−1
g2

.

If we define � = �−1
g2

�g1 , then �|∂� = identity and

β2 = β1 ◦ �−1.

But (�gi )∗gi = agi e for some scalar function agi ∈ W 1,p(R2), i = 1, 2, with a positive lower
bound, so we have

(ag1 a−1
g2

)g2 = (�g2)
−1
∗ ◦ (�g1)∗g1 = �∗g1.

In other words,

g2 = (a−1
g1

ag2)�∗g1.

This completes the proof of theorem 1.1. See endnote 5
To prove theorem 1.3, we only need to show that � ∈ Ck+1,α(�̄). Since �gi , i = 1, 2,

solves (2.4) with µgi ∈ Ck,α(R2) (we can extend the gi smoothly in Ck,α outside � so
that they satisfy (2.1)), we have, by elliptic regularity, that �gi ∈ Ck+1,α(R2). Therefore
� = �−1

g2
�g1 ∈ Ck+1,α(�̄).
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