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Abstract

We describe recent theoretical and experimental progress on mak-
ing objects invisible to detection by electromagnetic waves. Ideas for
devices that would have once seemed fanciful may now be at least
approximately implemented physically using a new class of artificially
structured materials called metamaterials. Maxwell’s equations have
transformation laws that allow for design of electromagnetic material
parameters that steer light around a hidden region, returning it to its
original path on the far side. Not only would observers be unaware
of the contents of the hidden region, they would not even be aware
that something was being hidden. The object, which would have no
shadow, is said to be cloaked. Proposals for, and even experimental
implementations of, such cloaking devices have received the most at-
tention, but other designs having striking effects on wave propagation
are possible. All of these designs are initially based on the transfor-
mation laws of the equations that govern wave propagation but, due
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to the singular parameters that give rise to the desired effects, care
needs to be taken in formulating and analyzing physically meaningful
solutions. We recount the recent history of the subject and discuss
some of the mathematical and physical issues involved.

1 Introduction

Invisibility has been a subject of human fascination for millenia, from the
Greek legend of Perseus versus Medusa to the more recent The Invisible
Man and Harry Potter. Over the years, there have been occasional scientific
prescriptions for invisibility in various settings, e.g., [46, 7]. However, since
2005 there has been a wave of serious theoretical proposals [1, 72, 69, 65, 80]
in the physics literature, and a widely reported experiment by Schurig et
al. [88], for cloaking devices — structures that would not only render an ob-
ject invisible but also undetectable to electromagnetic waves. The particular
route to cloaking that has received the most attention is that of transforma-
tion optics [101], the designing of optical devices with customized effects on
wave propagation, made possible by taking advantage of the transformation
rules for the material properties of optics: the index of refraction n(x) for
scalar optics, governed by the Helmholtz equation, and the electric permit-
tivity €(x) and magnetic permeability p(z) for vector optics, as described by
Maxwell’s equations. It is this approach to cloaking that we will examine in
some detail.

As it happens, two papers appeared in the same issue of Science with trans-
formation optics-based proposals for cloaking. Leonhardt [65] gave a descrip-
tion, based on conformal mapping, of inhomogeneous indices of refraction n
in two dimensions that would cause light rays to go around a region and
emerge on the other side as if they had passed through empty space (for
which n = 1). (The region in question is then said to be cloaked.) On the
other hand, Pendry, Schurig and Smith [80] gave a prescription for values
of € and pu giving a cloaking device for electromagnetic waves, based on the
fact that ¢ and p transform in the same way (7) as the conductivity tensor
in electrostatics. In fact, they used exactly the same singular transformation
(15), resulting in singular electromagnetic material parameters, as had al-
ready been used three years earlier to describe examples of nondetectability
in the context of the Calderén Problem [38, 39]!



Science magazine stated, in its ranking of cloaking as the No. 5 Breakthrough
of 2006 (“The Ultimate Camouflage”),

“...The real breakthrough may lie in the theoretical tools used
to make the cloak. In such “transformation optics,” researchers
imagine — 4 la Einstein — warping empty space to bend the path of
electromagnetic waves. A mathematical transformation then tells
them how to mimic the bending by filling unwarped space with a
material whose optical properties vary from point to point. The
technique could be used to design antennas, shields, and myriad
other devices. Any way you look at it, the ideas behind invisibility
are likely to cast a long shadow.”

The papers [38, 39] considered the case of electrostatics, which can be con-
sidered as optics at frequency zero. In §2 we describe this case in more
detail since it already contains the basic idea of transformation optics and
also shows the importance of careful formulation and analysis of solutions in
the setting of singular transformation optics. These articles give counterex-
amples to uniqueness in Calderén’s Problem, which is the inverse problem
for electrostatics which lies at the heart of Flectrical Impedance Tomography.
This consists in determining the electrical conductivity of a medium filling
a region () by making voltage and current measurements at the boundary
0f). The counterexamples were motivated by consideration of certain de-
generating families of Riemannian metrics, which in the limit correspond to
singular conductivities, i.e., that are not bounded below or above, so that the
corresponding PDE is no longer uniformly elliptic. A related example of a
complete but noncompact two-dimensional Riemannian manifold with boun-
dary having the same Dirichlet—Neumann map as a compact one was given
in [62]. The techniques in [38, 39] are valid in dimensions three and higher,
but the same construction has been shown to work in two dimensions [55].
We point out here that although we emphasize boundary observations using
the Dirichlet—Neumann map or the set of Cauchy data, this is equivalent to
scattering information [6]; see [98].

In considering wave propagation, one can either work in the frequency do-
main or the time domain. Because the metamaterials that have been pro-
posed for use in cloaking (and more general transformation optics designs)
are inherently prone to dispersion, ¢.e., their material parameters n,e and



i are frequency-dependent, and only have the desired values over relatively
narrow bandwidths, it is natural to work in the frequency domain, with
time-harmonic waves of frequency k. Further comments on the time-domain
approach are in §7(d).

In §3 we consider cloaking for the Helmholtz equation and Maxwell’s equa-
tions. We place special emphasis on the behavior of the waves near the
boundary of the cloaked region. This is crucial given that the electromagnetic
parameters are singular at this cloaking surface. The analysis of [65, 81] uses
ray tracing which explains the behavior of the light rays but not the full elec-
tromagnetic waves. The article [80] analyses the behavior of the waves outside
the cloaked region, using the transformation law for solutions to Maxwell’s
equations under smooth transformations, which unfortunately is not valid
at the cloaking surface. The article [26], which gave numerical simulations
of the electromagnetic waves in the presence of a cloak, states: “Whether
perfect cloaking is achievable, even in theory, is also an open question”. In
[32], perfect cloaking was shown to indeed hold with respect to finite energy
distribution solutions of Maxwell’s equations, with passive objects (no inter-
nal currents) being cloaked (see Theorem 3.4 below). The electromagnetic
material parameters used are the push-forward of a homogeneous, isotropic
medium by a singular transformation that “blows up” a point to the cloaking
surface. This is referred to in [32] as the single coating construction and is
the same “spherical cloak” as described in [38, 39, 80]. We also analyze the
case of cloaking active objects for both Helmholtz’s equation and Maxwell’s
equations. For Helmholtz, such cloaking is always possible!, but for Maxwell
certain overdetermined boundary conditions emerge at the cloaking surface.
While satisfied for passive cloaked objects, they cannot be satisfied for generic
internal currents, i.e., for active objects that are themselves radiating within
the cloaked region. However, the situation can be rectified by either in-
stalling a lining at the cloaking surface, or by using a double coating, which
corresponds to matched metamaterials on both sides of the cloaking surface,
while the construction above is what we call the single coating [32]. This the-
oretical description of an invisibility device can, in principle, be physically
realized by taking an arbitrary object in N, and surrounding it with special
material, located in Nj, which implements the values of €, jz. The materials

'Since Helmholtz also governs acoustic waves, this allows the theoretical description of
a 3D acoustic cloak, a spherically symmetric case of which was subsequently obtained in
the physics literature [22, 28]; see [36].



proposed for cloaking with electromagnetic waves are artificial materials re-
ferred to as metamaterials. The study of these material has undergone an
explosive growth in recent years. There is no universally accepted definition
of metamaterials, which seem to be in the ‘know it when you see it” cate-
gory. However, the label usually attaches to macroscopic material structures
having a manmade one-, two- or three-dimensional cellular architecture, and
producing combinations of material parameters not available in nature (or
even in conventional composite materials), due to resonances induced by the
geometry of the cells [100, 30]. Using metamaterial cells (or ‘atoms”, as they
are sometimes called), designed to resonate at the desired frequency, it is
possible to specify the permittivity and permeability tensors fairly arbitrar-
ily at a given frequency, so that they may have very large, very small or
even negative eigenvalues, cf. §7(i). The use of resonance phenomenon also
explains why the material properties of metamaterials strongly depend on
the frequency, and broadband metamaterials may not be possible.

In §4 we consider the case of cloaking an infinite cylinder for Maxwell’s
equations; the experiment [88] was designed to implement a “reduced” set
of material parameters, easier to construct but replicating a 2D slice of the
ray geometry of the mathematical ideal. To ensure that the solutions of
Maxwell’s equations are well defined in the case of the cylindrical cloaking,
we will consider the single coating construction with a lining to enforce the
Soft-and-Hard Boundary (SSH) boundary conditions considered by Kildal
(47, 48], see also [67]. If these conditions are not satisfied the fields blow
up [87, 34], and this has important implications for approximate cloaking,
the analysis of the behavior of waves in the presence of less-than-perfect
cloaks. We should point out that serious skepticism concerning the practical
advantages of transformation optics based cloaking over earlier techniques for
reducing scattering has been expressed in the engineering community [49].
Exactly how effective cloaking and transformation optics devices will be in
practice is very much at the mercy of future improvements in the design,
analysis and fabrication of metamaterials.

In §5 we describe the electromagnetic wormholes introduced in [33, 35] which
allow for an invisible tunnel between two points in space. Electromagnetic
waves are tricked by the metamaterial specification into behaving as though
they were propagating on a handlebody, rather than on R3. The prescription
of appropriate metamaterials covering and filling a cylinder and producing
this behavior is obtained using a pair of singular transformations that effec-



tively blow up a curve rather than a point. For popular accounts of this work
see (83, 43, 97].

In §6, we describe a framework for a less ad hoc approach to transformation
optics when the transformation fails to be smooth and the chain rule no longer
fully applies; we refer to this as singular transformation optics. Ultimately,
the fundamental justification for a singular transformation optics—based de-
vice will be, just as for cloaking and the wormhole, a removable singularities
theorem. Finally, in §7, we discuss some of the other recent progress in
cloaking and transformation optics.

2 The case of electrostatics:
Calderoén’s problem

Calderén’s inverse problem, which forms the mathematical foundation of
Electrical Impedance Tomography (EIT), is the question of whether an un-
known conductivity distribution inside a domain in R", modelling for ex-
ample the Earth, a human thorax, or a manufactured part, can be de-
termined from voltage and current measurements made on the boundary.
A.P. Calder6n’s motivation to propose this problem [19] was geophysical
prospection. In the 1940’s, before his distinguished career as a mathemati-
cian, Calderén was an engineer working for the Argentinian state oil com-
pany “Yacimientos Petroliferos Fiscales” (YPF). Apparently, at that time
Calderén had already formulated the problem that now bears his name, but
did not publicize his work until thirty years later.

One widely studied potential application of EIT is the early diagnosis of
breast cancer [24]. The conductivity of a malignant breast tumor is typically
0.2 mho, significantly higher than normal tissue, which has been typically
measured at 0.03 mho. See the book [41] and the special issue of Physiological
Measurement [42] for applications of EIT to medical imaging and other fields.

For isotropic conductivities this problem can be mathematically formulated
as follows: Let € be the measurement domain, and denote by o(z) the
coefficient, bounded from above and below by positive constants, describing
the electrical conductivity in €2. In € the voltage potential u satisfies a
divergence form equation,

V.oVu=0. (1)



Figure 1: Left: An EIT measurement configuration for imaging objects in
a tank. The electrodes used for measurements are at the boundary of the
tank, which is filled with a conductive liquid. Right: A reconstruction of
the conductivity inside the tank obtained using boundary measurements.
[Jari Kaipio, Univ. of Kuopio, Finland; by permission.|

To uniquely fix the solution w it is enough to give its value, f, on the
boundary. In the idealized case, one measures, for all voltage distributions
u|gn = f on the boundary the corresponding current fluxes, v- oVu, over the
entire boundary, where v is the exterior unit normal to 0€). Mathematically
this amounts to the knowledge of the Dirichlet-Neumann (DN) map, A,.
corresponding to o, i.e., the map taking the Dirichlet boundary values of the
solution to (1) to the corresponding Neumann boundary values,

AU . u|aQ = V- O'Vu|ag. (2)

Calderén’s inverse problem is then to reconstruct o from A,.

2.1 Conductivities that do not cloak

For what conductivities is there no cloaking? This is the question of unique-
ness of determination of the conductivity from the DN map. We first consider
the isotropic case. Kohn and Vogelius showed that piecewise analytic conduc-
tivities are uniquely determine by the DN map [57]. Sylvester and Uhlmann
proved that C'™° smooth conductivities can be uniquely determined by the
DN map in dimension n > 3. This was extended to conductivities having 3/2



derivatives [79, 14], which is the best currently known result for scalar con-
ductivities for n > 3. For conormal conductivities in C**¢, uniqueness was
shown in [37]. In the challenging two dimensional case, unique identifiability
of the conductivity from the DN map was shown for C? conductivities by
Nachman [74], for Lipschitz conductivities by Brown and Uhlmann [15], and
for the optimal class of merely L*> conductivities by Astala and Paivarinta
[2]. We are only briefly summarizing here the known uniqueness results for
isotropic conductivities since, as will be seen below, these are not directly
relevant to the subject of cloaking. For issues concerning stability, analytic
and numerical reconstruction in EIT see the surveys [8], [24], [99].

We now discuss the anisotropic case, that is when the conductivity depends
on direction. Physically realistic models must incorporate anisotropy. In the
human body, for example, muscle tissue is a highly anisotropic conductor,
e.g., cardiac muscle has a conductivity of 2.3 mho in the direction transversal
to the fibers and 6.3 mho in the longitudinal direction.

An anisotropic conductivity on a domain 2 C R"™ is defined by a symmet-
ric, positive semi-definite matrix-valued function, o = [0 (z)]};_;. In the
absence of sources or sinks, an electrical potential u satisfies

(V-oV)u = 9;07%(x)0u = 01in €, (3)
= f,
where f is the prescribed voltage on the boundary. (Above, and hereafter, we

use the Einstein summation convention when there is no danger of confusion.)
The resulting DN map (or voltage-to-current map) is then defined by

ulon

Ao (f) = Bulso, (4)
where

Bu = v;0’* 0y, (5)
u being the solution of (3) and v = (v, ..., ;) the unit normal vector of 0.

Applying the divergence theorem, we have

Qu(f) = /Q o () 2L O g~ [ AL (f) 1, (6)

k
81’3 8x 80

where u solves (3) and dS denotes surface measure on 9. Q,(f) represents
the power needed to maintain the potential f on 9. By (6), knowing Q,

8



is equivalent with knowing A,. If F : Q — Q, F = (F',...,F"), is a
diffeomorphism with F'|sq = Identity, then by making the change of variables
y = F(z) and setting u = vo F~! in the first integral in (6), we obtain

AF*O' = Ao’;
where
. 1 "L OFI  _QF*
(Feo)™(y) = ——m— B (&) gy (@)o™(2) (7)

det 5.7 (7)] P i)
is the push-forward of the conductivity o by F. Thus, there is a large
(infinite-dimensional) class of conductivities which give rise to the same elec-
trical measurements at the boundary. This was first observed in [58] following
a remark by Luc Tartar. The version of Calderén’s problem appropriate for
anisotropic conductivities is then the question of whether two conductivities
with the same DN map must be such push-forwards of each other.

It was observed by Lee and Uhlmann [64] that, in dimension n > 3, the
anisotropic problem can be reformulated in geometric terms. Let us assume
now that (M, g) is an n-dimensional Riemannian manifold with smooth boun-
dary OM. The metric g is assumed to be symmetric and positive definite.
The invariant object analogous to the operator in conductivity equation (3)
is the Laplace-Beltrami operator, given by

A u = Div,Gradyu = |g|~20;(|g|"*¢** Ou) (8)

where |g| = det (g;1.), [g;x] = [¢°F]*. The DN map is defined by solving the
Dirichlet problem

Agu=0 in M, uloy=Ff 9)
The operator analogous to A, is then
5 Ou
Ag(f) = !9!1/2ngjka—|aM7 (10)
Ty
with v = (1, ..., 1) the outward unit normal to M. In dimension three or

higher, the conductivity matrix and the Riemannian metric are related by

ok =1g|V2g*, or ¢* = det (o) "Dk, (11)



Moreover,

Ag=As; Arg=A,y, (12)

where F.g denotes the push-forward of the metric g by a diffeomorphism F
of M fixing OM [64]. We recall that in local coordinates

Fouw =Y T g - 09)

P,q=1 z=F~1(y)

In dimension two, (12) is not valid; in this case, the conductivity equation
can be reformulated as

Div, (6 Gradyu) =0 in M, (14)
ulom = f
where 3 is the scalar function 8 = |det 0|2, g = (g;x) is equal to (o),

and Div, and Grad, are the divergence and gradient operators with respect
to the Riemannian metric g. Thus we see that, in two dimensions, Laplace-
Beltrami operators correspond only to those conductivity equations for which
det (o) = 1.

For domains in two dimensions, Sylvester [95] showed, using isothermal coor-
dinates, that one can reduce the anisotropic problem to the isotropic one for
C? conductivities. This reduction was extended to Lipschitz conductivities
in [94] using the result of [15] and to bounded conductivities in [3], using the
result of [2]. The result of [3] is

Theorem 2.1 If o0 and o are two L anisotropic conductivities bounded
from below by a positive constant in a bounded set Q C R? for which A, = Az,
then there is a diffeomorphism F : Q — Q, F|aq = Id such that ¢ = F,o.

In dimensions three and higher, the uniqueness result is known for real ana-
lytic anisotropic conductivities or metrics (see [61], [62], and [64]):

Theorem 2.2 Ifn > 3 and (M,0M) is a C* manifold with a non-empty,
compact, C* boundary, and g,g are C¥ metrics on M such that A, = Ay,
then there exists a C* diffeomorphism F': M — M such that F|sp = Id and

§:F*g-

10



We also mention that the invariance of the Dirichlet-Neumann map under
changes of variables was used in [53] to find the unique isotropic conductivity
that is closest to an anisotropic one.

A problem related to Calderén’s problem is the Gel’fand problem, which uses
boundary measurements at all frequencies, rather than at a fixed one. For
this problem uniqueness results are available; see, e.g., [5, 44], with a detailed
exposition in [45].

2.2 Transformation Optics for Electrostatics

The fact that smooth diffeomorphisms that leave the boundary fixed give the
same boundary information (12) can already be considered as a weak form of
invisibility, with distinct conductivities being indistinguishable by external
observations; however, nothing has been hidden yet.

Using the invariance (12) examples of singular anisotropic conductivities in
R"™ n > 3, that are indistinguishable from a constant isotropic conductivity,
in that they have the same Dirichlet-to-Neumann map, are given in [38, 39].
This construction is based on degenerations of Riemannian metrics, whose
singular limits can be considered as coming from singular changes of variables.

Figure 2: A typical member of a family of manifolds developing a singularity
as the width of the neck connecting the two parts goes to zero.

If one considers Fig. 2, where the “neck” of the surface (or a manifold in
the higher dimensional cases) is pinched, the manifold contains in the limit a
pocket about which the boundary measurements do not give any information.

11



If the collapsing of the manifold is done in an appropriate way, in the limit
we have a (singular) Riemannian manifold which is indistinguishable from a
flat surface. This can be considered as a conductivity, singular at the pinched
points, that appears to all boundary measurements the same as a constant
conductivity.

To give a precise realization of this idea, let B(0, R) C R3 be an open ball
with center 0 and radius R. We use in the sequel the set N = B(0,2),
decomposed to two parts, Ny = B(0,2)\ B(0,1) and N, = B(0,1). Let
Y. = 0N, the the interface (or “cloaking surface”) between N; and Ns.

We use also a “copy” of the ball B(0,2), with the notation M; = B(0,2). Let
gjr = 0;i be the Euclidian metric in M; and let v = 1 be the corresponding
homogeneous conductivity. Define a singular transformation

2] x

Fis MO0} = N Fi@) = (5 + 1) 0< el <2 (15)

The push-forward g = (F}).g of the metric g by F} is the metric in N; given
by

=\ OFY OF{
(F)au )= 3 S 0@ S E@gla)| (16)

pa=t v=Fy ' (v)

We use it to define a singular conductivity

~11/2jk
~ { lg|"/#g?"  for x € Ny, (17)

R A for x € N,

in N. (The way to think of & on Ny is that it is the pushforward of 6% under

the identity map Fy : M, “I'p (0,1) — Ny, which could in fact be replaced
by any diffeomorphism “filling in the hole” left by F3.)

To consider the maps F; and Fy together, let M be the disjoint union of a
ball M; = B(0,2) and a ball My = B(0,1). These will correspond to sets
N, N1, N, after an appropriate changes of coordinates. We thus consider a
map F': M\ {0} = (M;\{0}) UMy — N\ X, where F maps M; \ {0} to N,
as the map F) defined by formula (15) and F' maps from M, to Ny as the
identity map Fy = Id. The combined map, F' = (F}, F,), “blows up a point”.
Using spherical coordinates, (r,¢,0) — (rsin 6 cos ¢, sin @ sin ¢, r cos ), we

12



have

2(r —1)?sinf 0 0
o= 0 2sind 0 , l<|z] <2, (18)
0 0  2(sing)™!

This means that in the Cartesian coordinates the conductivity & is given by
o(x) =2(I — P(x)) + 22| 2*(Jz| — 1)*P(z), 1< |z|<2,

where I is the identity matrix and P(x) = |z|~2zz! is the projection to the
radial direction. We note that the anisotropic conductivity o is singular on
>’ in the sense that it is not bounded from below by any positive multiple of
I. (See [55] for a similar calculation.)

Consider now the Cauchy data of all solutions in the Sobolev space H'(NV)
of the conductivity equation corresponding to o, that is,

C1(5) = {(u|on, v-5Vuloy) : u € HY(N), V-6Vu = 0},

where v is the Euclidian unit normal vector of ON.

Theorem 2.3 (/39]) The Cauchy data of all H'-solutions for the conduc-
tiities o and v on N coincide, that is, C1(a) = Cy(7).

This means that all boundary measurements for the homogeneous conduc-
tivity v = 1 and the degenerated conductivity ¢ are the same. The result
above was proven in [37, 38] for the case of dimension n > 3. The same basic
construction works in the two dimensional case [55]. For a further study of
the limits of visibility and invisibility in two dimensions, see [4].

Fig. 3 portrays an analytically obtained solution on a disc with conductivity
0. As seen in the figure, no currents appear near the center of the disc, so
that if the conductivity is changed near the center, the measurements on the
boundary ON do not change.

Remark 2.4 We now make a simple but crucial observation: In order for
the one-to-one correspondence between solutions of the conductivity equation
for v and those for o to hold, it is necessary to impose some regularity
assumption on the electrical potentials w for o. If, for example, we start
with the Newtonian potential K (z) = then this pushes forward to a

N
4r|z|?

13



Figure 3: Analytic solutions for the currents

(non-H') potential for & whose Cauchy data do not equal the Cauchy data
of any potential u for ~. Thus, it does not suffice to simply appeal to the
transformation law (7) in the exterior of the cloaked region. This comment
is equally valid when one considers cloaking for the Helmholtz and Maxwell’s
equations.

The invisibility result is valid for a more general class of singular cloaking
transformations. Quadratic singular transformations for Maxwell’s equations
were introduced first in [18]. A general class sufficing, at least for electro-
statics, is given by the following result from [38]:

Theorem 2.5 Let 0 C R", n > 3 be a bounded domain with a smooth
boundary, y € Q, and g = (g;;) a metric on . Let D C €2 be such that there
is a C®-diffeomorphism F : Q\ {y} — Q\ D satisfying F|sq = Id and that

dF(x) > col, det(dF(z)) > ¢, dist,, (v,y)"" (19)

where dF' 1s the Jacobian matriz in Fuclidean coordinates of R™ and cy, c; >
0. Let g = F.g and g be an extension of g into D such that it is positive
definite in D™ . Finally, let v and & be the conductivities corresponding to
g and g. Then,

Ci(0) = CL(7)-

14



The key to the proof of Theorem 2.5 is the following removable singularities
theorem that implies that solutions of the conductivity equation in the an-
nulus pull back by a singular transformation to solutions of the conductivity
equation in the whole ball.

Proposition 2.6 Let Q C R™, n > 3 be a bounded domain with a smooth
boundary, y € Q, and g = gi; a metric on Q. Let u satisfy

Agu(xz) =0 in €,
u|aQ = fo S C”(@Q)

Let D C Q be such that there is a diffeomorphism F : Q\ {y} — Q\ D
satisfying Floq = Id. Let g = F.g and v be a function satisfying

Agv(z) =0 inQ\ D,
vlaa = fo,
ve L™(Q\ D).
Then u and F*v coincide and have the same Cauchy data on 052,

8l,u|aM = 8,7F*v|3M (20)

where v is unit normal vector in metric g and v is unit normal vector in
metric g.

Quadratic singular transformations, such as
x
F(r) = (1+ W)m

were used in [18] to reduce exterior reflections. We note that a similar type
of theorem is valid also for a more general class of solutions. Consider an
unbounded quadratic form, A in L*(N),

Ag[u,v]:/ oVu-Voudx
N

defined for u,v € D(As) = C°(N). Let Az be the closure of this quadratic
form and say that

15



V-cgVu = 0 in N,

u|8N - f07

is satisfied in the finite energy sense if there is ug € H'(N) supported in Ny

such that uglony = fo, u — ug € D(Az) and

As[u — ug,v] = —/ oVug- Vudz, for all v € D(Az).
N
Then Cauchy data set of the finite energy solutions, denoted
Che(0) = {(U\aN, v-aVulgn) : uis finite energy solution of V-oVu = 0}

coincides with C. (7). Using the above more general class of solutions, one
can consider the non-zero frequency case,

V -oVu = Au,

and show that the Cauchy data set of the finite energy solutions to the above
equation coincides with the corresponding Cauchy data set for v, cf. [32].

All of the above were obtained in dimensions n > 3. Kohn, Shen, Vogelius
and Weinstein [55] have shown that the singular conductivity resulting from
the same transformation also cloaks for electrostatics in two dimensions. Us-
ing estimates for the effect of small inclusions on the Dirichlet-Neumann map
they gave precise estimates on how close one is to invisibility if the singular
transformation is approximated by appropiate non-singular transformations.

2.3 Quantum and Optical Shielding

The uniqueness result of [96] applies more generally to the Schrodinger equa-
tion —A + ¢(z) when the potential ¢(x) is assumed to be in L. In this case
the DN map is defined by

_8u

Aq(f)—g

(21)

where u solves the equation

16



(-A+qu=0, in€Q wulpo="/ (22)

We remark that the DN map is well defined only if 0 is not a Dirichlet
eigenvalue of the Schrodinger equation. In the more general case we can
define the set of Cauchy data

Cy= {(u!ag, %), u € H'(Q) solves (—A + ¢)u = 0 in Q} (23)
v

The result of [96] states that ¢ is determined uniquely from A,, or more gen-
erally Cy, in dimension three or larger. This was extended to L2 potentials
in [63] and for conormal potentials having any singularity weaker than the
delta function of a surface (see the precise result in [37]).

In particular case of this is the Helmholtz equation —A + k*n(z) with a
bounded isotropic index of refraction n.

In [37] we constructed a class of potentials or indices of refraction that shield
any information contained in the region D, in other words the boundary
information obtained outside the shielded region is the same as that the case
of the potential 0. These potentials behave like ¢(z) = —Cd(z, 0D)2~¢ where
d denotes the distance to 0D and C'is a positive constant. As pointed out in
[37], inside the region D Schrodinger’s cat could live for ever. From the point
of view of quantum mechanics, ¢ represents a potential barrier so steep that
no tunneling can occur. From the point of view of optics and acoustics, no
sound waves or electromagnetic waves will penetrate, or emanate from, D.
However, this construction should be thought of as shielding, not cloaking,
since the potential barrier that shields that part of the potential within D
from boundary observation is itself detectable.

3 Cloaking circa 2006

3.1 Developments in physics

This brings us to the transformation-optics based proposals of [65, 80] for
cloaking from observation by electromagnetic waves at positive frequency.
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One is interested in either scalar waves of the form U(z,t) = u(x)e™™, with
u satisfying the Helmholtz equation

(A + B n*(z))u(z) = p(x), (24)

where p(x) represents sources that might be present or for time-harmonic
electric and magnetic fields E(x,t) = E(x)e’™, H(z,t) = H(x)e*, with
E H satisfying Maxwell’s equations,

VxH=—ikeE+J, V xFE=ikuH, (25)
where J denotes any internal current present.

In three dimensions, if we start with the homogeneous, isotropic e, o on
B(0;2) and push them forward by the “blowing up a point” map Fj from
(15), then they become inhomogeneous and anisotropic, identical to the con-
ductivity tensor (18). Thus, they are nonsingular at each point of Ny :=
B(0;2) \ B(0;1), but as 7 = |z| — 1%, two of the eigenvalues, associated
to the angular directions, remain ~ 1, while the third, associated with the
radial direction, is ~ (r — 1), Since the image of F} is just N;, we chose
the medium in the region to be cloaked, Ny := B(0; 1), by allowing ¢, u to
be any smooth, nonsingular tensor there. This gives rise to what we call the
single coating cloaking construction, to be physically implemented by layers
of metamaterials on the exterior of the cloaking surface, ¥ = ON, = S%. We
refer to N := Ny U Ny, UX = B(0,2) as the cloaking device and the resulting
specification of the material parameters on N we denote by &, i. In spheri-
cal coordinates, the representation of € and s coincide with that of o given
in (18). Later, we will also describe the double coating construction, which
corresponds to appropriately matched layers of metamaterials on both the
outside and the inside of X..

Now, if one works exclusively on the open annulus Ny, the transformation
Fy is smooth and the chain rule, combined with (7), yields a one-to-one
correspondence between solutions (F, H) of Maxwell’s equations (25) on M \
{0} = B(0;2) \ 0 and solutions (E, H) of Maxwell’s equations on Nj, with
internal current J arising from J|y, by an analogous transformation law.
Thus, the boundary observations at 9N (or the scattering observations at
infinity) seem to be unable to distinguish between the cloaking device N,
with an object hidden from view in N,, and the empty space of M. This
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is the level of justification that is presented in [80] and its sequels, [81, 26],
where ray-tracing and numerical simulations on N; are given.

3.2 Full-wave analysis

Unfortunately, there is a serious problem with the above argument: it is
insufficient to consider the waves merely outside of the cloaked region, i.e.,
on Np; rather one needs to study the waves on all of N. Furthermore, a
careful analysis should not ignore the fact that, since € and ;1 are degenerate
at the cloaking surface Y, without further conditions being imposed, the
“waves” include some that are physically meaningless, even though of locally
finite energy. (It is this degeneracy which causes the associated rays to go
around the cloaked region, but its effect at the level of waves is what is
crucial.) In fact, due to the degeneracy of £ and i, the weighted L?* space
defined by the energy norm

12 7112 o
HE”LQ(Nm%dw) + ”HHL2(N,|§|%dx> -

/ (& B, By + 3 H, By de (26)
N

includes functions, which are not distributions, and for these the meaning of
Maxwell’s equations is problematic. Similar difficulties arise for the Helm-
holtz equation. To treat cloaking rigorously, one should consider the boun-
dary measurements (or scattering data) of finite energy waves which also
satisfy Maxwell’s equations in some reasonable weak sense, such as the sense
of distributions. This represents a strengthened version at positive frequency
of Remark 2.4.

Analysis of cloaking from this more rigorous point of view was carried out in
[32], which forms the basis for much of the discussion here. As it turns out,
the insights gained from a careful analysis of the mathematical ideal cloaking
construction arising from the singular transformation F}, where these issues
arise, leads to considerations that in fact improve the effectiveness of cloaking
in more physically realistic approximations to the ideal [34].

3.3 Physics on a Riemannian manifold

Let us start with the cases of scalar optics or acoustics, governed in the case
of isotropic media by the Helmholtz equation (24). In order to work with

19



anisotropic media, we convert this to the Helmholtz equation with respect
to a Riemannian metric g. Working in dimensions n > 3, we take advantage
of the one-to-one correspondence (11) between (positive definite) contravari-
ant 2-tensors of weight 1 and Riemannian metrics g. Let us consider the
Helmholtz equation

(Ag + E*)u = p, (27)

where A, is the Laplace-Beltrami operator associated with the Euclidian
metric g;; = 0;;. Under a smooth diffeomorphism F', the metric g pushes
forward to a metric g = F.g, and then, for u = o F, we have

(A, +EHu=p = (A;+K)u = p,

where p=po F.
Next we consider the case when F is not a smooth diffeomorphism, but
F = (Fy, Fy) as in §2.2.

Let f € L2(N,dz) be a function such that supp (f) NS = 0. We now give
the precise definition of a finite energy solution for the Helmholtz equation.
This definition applies for both the single and double coating constructions.

Definition 3.1 A measurable function uw on N is a finite energy solution of
the Dirichlet problem for the Helmholtz equation on N,

(A +k)Du=f onN, (28)
Ulon = h,
if
i€ LA(N, [g]"*dx); (29)
Uz € Hio(N\ 3, d); (30)
/ 19V257 8,101 dx < o0, (31)
N\Z
17|8N =n;

and, for all QZ € C®(N) with YZ‘ON =0,
/[—(Di’gﬂ)aﬂzﬂL ki) |32 d =/ F@)(x)[g) de (32)
N N
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where D§~ = (92" Ou is defined as a Borel measure defining a distribution
on N.

Note that the inhomogeneity fis allowed to have two components, ﬁ and
fo, supported in the interiors of Nj, Ny, resp. The latter corresponds to an
active object being rendered undetectable within the cloaked region. On the
other hand, the former corresponds to an active object embedded within the
metamaterial cloak itself, whose position apparently shifts in a predictable
manner according to the transformation Fj; this phenomenon, which also
holds for both spherical and cylindrical cloaking for Maxwell’s equations,
was later described and numerically modelled in the cylindrical setting, and
termed the “mirage effect” [111].

Next we consider the relation of Maxwell’s equations on M and N. Recall
that Fy : My \ {0} — Nj is singular and that F, : My — Ny is the identity
map and denote I' = 9((M; \ {0}) U OMs.

Theorem 3.2 ([32]) Let w = (uj,ug) : (My \ {0}) UMy — R and u :
N\ ¥ — R be measurable functions such that u =1wo F. Let f = (f1, fo) :
(M \ {0}) UMy — R and f: N\ X — R be L? functions, supported away
from T and X such that f = foF, and h : ON — R, h: OM; — R be such
that h = ho F}.

Then the following are equivalent:

1. The function u, considered as a measurable function on N, is a finite
energy solution to the Helmholtz equation (28) with inhomogeneity f

and Dirichlet data h in the sense of Definition 3.1.

2. The function u satisfies
(Ay+E)ur = fi  on My, wuilon, = h, (33)
and
(A, +kHuy = fo  on My, gjk’ujﬁkuﬂaMQ =0, (34)

with b = 0. Here uy denotes the continuous extension of uy from My \

{0} to M,

21



Moreover, if u solves (33) and (34) with b # 0, then the function @ = uoF ! :
N\ X — R, considered as a measurable function on N, is not a finite energy
solution to the Helmholtz equation.

As mentioned in §1, and detailed in [36], this result also describes a structure
cloaking both passive objects and active sources for acoustic waves. Equiv-
alent structures in the spherically symmetric case and with only cloaking of
passive objects verified was considered later in [22, 28].

We point out that the Neumann boundary condition that appeared in (34)
is a consequence of the fact that the coordinate transformation F'is singular
on the cloaking surface 3.

3.4 Maxwell’s equations

In what follows, we treat Maxwell’s equations in non-conducting and lossless
media, that is, for which ¢ = 0 and the components of ¢, i are real valued.
Although somewhat suspect (presently, metamaterials are quite lossy), these
are standard assumptions in the physical literature. We point out that Ola,
Péivérinta and Somersalo [78] have shown that cloaking is not possible for
Maxwell’s equations with non-degenerate isotropic electromagnetic parame-
ters.

We consider the electric and magnetic fields, E and H, as differential 1-forms,
given in some local coordinates by

E = Ej(z)dz’, H = Hj(z)da’.
For a smooth diffeomorphism F and for a 1-form F(z) = E(z)dx'+ FEy(z)dz?+

Es(z)dz® we define the push-forward of F in F, denoted £ = F,E, by

E@) = E\(Z)dT + Ey(3)di® + E5(7)d7®
3 3

= Y (oD@ B (P @), T = F(a).

j=1 k=1

A similar kind of transformation law is valid for 2-forms. We interpret the
curl operator for 1-forms in R? as being the exterior derivative, d. Maxwell’s
equations then have the form

curl H = —ikD + J, curl B =1kB
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where we consider the D and B fields and the external current J (if present)
as 2-forms. The constitutive relations are

D=cE, B=uH,

where the material parameters € and p are linear maps mapping 1-forms to
2-forms, i.e., are (1,2) tensor fields.

Let ¢ be a Riemannian metric in  C R3. Using the metric g, we define a
specific permittivity and permeability by setting

et = It = |g|'?g’".

This type of EM parameters were considered in [60] and have the same trans-
formation laws as the case of Helmholtz equation or the conductivity equa-
tion.

To introduce the material parameters £(z) and fi(z) that make cloaking pos-
sible, we consider the singular map Fj given by (15), the Euclidean metric
on Ny and g = F,g in N;. As before, and define the singular permittivity
and permeability by the formula analogous to (17),

Fh — b — { 9]'/?g7" for x € Ny,

) gk for x € Ns. (35)

We note that in Ny one could define £ and g to be arbitrary smooth non-
degenerate material parameters. For simplicity, we consider here only ho-
mogeneous material in the cloaked region N;. As in the case of Helmholtz
equations these material parameters, considered in Ny, are singular on ¥, re-
quiring that what it means for fields (E, H) to form a solution to Maxwell’s
equations must be defined carefully.

3.5 Definition of solutions of Maxwell equations

Since the material parameters € and g are again singular at the cloaking
surface >, and keeping Remark 2.4 in mind, we need a careful formulation
of the notion of a solution.

Definition 3.3 We say that (E, ﬁ) s a finite energy solution to Maxwell’s
equations on N,

V x E=ikji(x)H, V xH=—iké(x)E+J onN, (36)
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if E, H are one-forms and D :=ZE and B := ﬁﬁ two-forms in N with
LY (N, dz)-coefficients satisfying

||E”%2(N,‘§|1/2dvb(x)) - \/]'ngk Ej Ek d%(x) < 007 (37)
1oy = [ 7 Vi) < o (39

where dVy is the standard Euclidean volume,LE, I;T) 15 a classical solution of
Mazwell’s equations on a neighborhood U C N of ON :
V x E=ikji(x)H, VxH=—ike(x)E+J inU,

and finally,
IA«VXﬁyE—M%ﬂ@ﬁﬂMM@:Q
(A«an.ﬁ+gmmawﬁ—5nﬁu@:o

for all 1-forms 5,% on N having in the Fuclidian coordinates components in

CS(N).

Surprisingly, the finite energy solutions do not exist for generic currents.
Below, we denote M \ {0} = (M; \ {0}) U M.

Theorem 3.4 (/32]) Let E and H be 1-forms with measurable coefficients on
M\ {0} and E and H be 1-forms with measurable coefficients on N\ 2 such
that E = F.FE, H=F.H. Let J and J be 2-forms with smooth coefficients
on M\ {0} and N\ X, that are supported away from {0} and ¥ such that
J=F.J.

Then the following are equivalent:

1. The 1-forms E and H on N satisfy Maxwell’s equations

V x E=ikji(x)H, YV xH=—iké(x)E+J onN, (39)
VXE|3N:f

in the sense of Definition 3.3.
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2. The forms E and H satisfy Maxwell’s equations on M,

V x E=iku(z)H, V xH=—ike(x)E+J on M, (40)

vX El|oy, = f
and
V x E=iku(z)H, V x H=—ike(x)E+J on My (41)
with Cauchy data
v X Eloa, =0, v X Hlgy, = 0" (42)
that satisfies b¢ = b = 0.

Moreover, if E and H solve (40), (41), and (42) with non-zero b or b*, then
the fields E and H are not solutions of Mazwell equations on N in the sense
of Definition 3.3.

This can be interpreted as saying that the cloaking of active objects is difficult
since, with non-zero currents present within the region to be cloaked, the
idealized model leads to non-existence of finite energy solutions. The theorem
says that a finite energy solution must satisfy the hidden boundary conditions

vxE=0, vxH=0 ondNs. (43)

Unfortunately, these conditions, which correspond physically to the so-called
perfect electrical conductor (PEC) and perfect magnetic conductor (PMC)
conditions, constitute an overdetermined set of boundary conditions for Max-
well’s equations on Ny (or, equivalently, on Ms). For cloaking passive objects,
for which J = 0, they can be satisfied, by fields which are identically zero
in the cloaked region, but for generic J, including ones arbitrarily close to 0,
there is no solution.

The perfect, ideal cloaking devices in practice can only be approximated with
a medium which material parameters approximate the degenerate parameters
£ and p. For instance, one can consider metamaterials built up using periodic
structures whose effective material parameters approximate € and p. Thus
the question of when the solutions exists in a reasonable sense is directly
related to the question of which approximate cloaking devices can be built
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in practice. We note that if £ and H solve (40), (41), and (42) with non-
zero b° or b", then the fields £ and H can be considered as solutions of a
non-homogeneous Maxwell equations on N in the sense of Definition 3.3.

VxE= zk[l(x)ﬁ + [?SWf, V x H= —ik?(x)E +J+ :];Wf on N,

where I?SW ¢ and jsur ¢ are magnetic and surface currents supported on X. If
we include a PEC lining on the inner side of X, the solution for the given
boundary value f is the one where K, = 0 and Jy,,¢ is possibly non-zero
and in the case of PMC lining the solution is the one with jsm 5 =0. If we
are building an approximate cloaking device with metamaterials, effective
constructions could be done in such a way that the material approximates a
cloaking material with PEC or PMC lining. We will discuss this question in
detail in the next section in the context of cylindrical cloaking. In that case,
adding a special physical surface on ¥ improves significantly the behavior
of approximate cloaking devices; without this kind of lining the fields blow
up. This suggests that experimentalists building cloaking devices should
consider first what kind of cloak with well-defined solutions they would like
to approximate. Indeed, building a device where solutions behave nicely is
probably easier than building one with huge oscillations of the fields.

As an alternative, one can modify the basic construction by using a double
coating. Mathematically, this corresponds to using an F' = (Fy, Fy) with
both Fi, F, singular, which gives rise to a singular Riemannian metric which
degenerates in the same way as one approaches > from both sides. Physically,
the double coating construction corresponds to surrounding both the inner
and outer surfaces of X with appropriately matched metamaterials.

4 Cylindrical cloaking, approximate cloaking
and the SHS lining

In the following we change the geometrical situation where we do our con-
siderations, and redefine the meaning of the used notations.

We consider next an infinite cylindrical domain. Below, By(0,7) C R? is
Euclidian disc with center 0 and radius r. The cloaking device N is in
the cylindrical case the infinite cylinder N = B5(0,2) x R that contains the
subsets N = (B2(0,2)\B(0,1)) xR, and Ny = By(0,1) xR. We will consider
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observations on the surface ON. Moreover, let M be the disjoint union of
My = B5(0,2) xR and My = B5(0, 1) xR. Finally, in this section the cloaking
surface is ¥ = 0B5(0,1) xR, and we denote L = {(0,0)} xR C M;. Next, we
consider cylindrical coordinates, (r,0,z) — (rcosf,rsinf, z). The singular
coordinate transformation in these coordinates is the map F : M\ L — N\X,
given by

F(r,0,2)=(1+ g,@,z), on M\ L,
F(r,0,z)=(r,0,z), on M,.

Again, let g be the Euclidian metric on M, that is, on both components
M; and Ms, and € = 1 and p = 1 be homogeneous material parameters in
M. Using map F we define g = F,g in N \ ¥ and define the corresponding
material parameters € and g as in formula (35). By locally finite energy
solutions of Maxwell’s equations on N we will mean locally integrable one-
forms F and H satisfying in all bounded open sets N’ C NN the conditions
analogous to Definition 3.3. We recall that FE, H are finite energy solutions
in a bounded domain N’ means in particular that those are 1-forms and
D = ¢E, B = jiH are 2-forms with L'(N’, dx)-coefficients. We note that in
the cylindrical cloaking € and g are not any more bounded, and they have
in N7 in cylindrical coordinates the representation

(r—1) 0 0

E=[= 0 (r—1)71 0 , l<r<2.
0 0 4@r-—1)

Let us denote by ¢ = 0, the vertical vector field in R3.

We will consider 1-forms £ and H on M and E and H on N that satisfy
E=F.Eand H=F.Hon N \ 3. For simplicity, we will consider the case
when

E=0and H=0in N, or equivalently, (44)
E=0and H=0in M,.

This corresponds to the case when the cloaked region N, is dark. In this case
Theorem 7.1 in [32] yields the following result:
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Theorem 4.1 Let E and H be 1-forms on M and E and H be 1 -forms on
N such that E = F,E and H = F,H on N\ X. Assume that (44) is valid
and that E and H are locally finite energy solution of Maxwell’s equations on
N. Then the forms E and H are classical solutions to Mazwell’s equations
on M and the restrictions on the line L C M,

=CEl, b=CH} (45)
must satisfy b$ = 0 and b} = 0.

This results implies that if we impose on some boundary condition on the ex-
terior boundary of Ny, e.g., the electric boundary condition v x E|yp,(0,2)xr =
f, the locally finite energy solutions on N exists only if Maxwell’s equations

V x E =ikpu(z)H, V x H = —ike(x)E on M,
v X E’|(3)M1 = f

have a solution which restrictions (45) on the line L vanish. So, with generic
electric boundary value f the locally locally finite energy solution does not
exists.

Again, there is a remedy for this obstruction for cloaking. Using transfor-
mation rule (7) one can observe for the locally finite energy solutions that
in Euclidian coordinates on N; C R3 the -component of the fields H and E
vanish on ¥. Motivated by this we impose the soft-and-hard surface (SHS)
boundary condition on the cloaking surface. This can be considered by at-
taching a soft-and-hard surface on the inside of the cloaking material. In
classical terms, an SHS condition on a surface ¥ [40, 47] is

n-Els=0 and n-Hl|s =0,

where n = n(z) is some tangential vector field on X, that is, n-v = 0. In
other words, the part of the tangential component of the electric field E that
is parallel to n vanishes, and the same is true for the magnetic field H. This
was originally introduced in antenna design and can be physically realized
by having a surface with thin parallel gratings filled with dielectric material
[47, 48, 67, 40]. Here, we consider this boundary condition when 7 is the
vector field 7 = 0y, that is, the angular vector field that is tangential to X.

For simplicity, let us consider a case where the cloaked region Nj is re-
placed by an obstacle, and on the boundary of the obstacle we have the
SHS-boundary condition. Thus the field is defined only in the domain N;.
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Definition 4.2 We say that the 1-forms E and H are locally finite energy
solutions of Mazwell’s equations on Ny with soft-and-hard surface (SHS)
boundary conditions on X,

V x E=ikji(zx)H, V xH=—iké(x)E+J on Ny, (46)
n-Els=0, n-H|y=0, (47)

sz and H are 1-forms and £E and ﬁﬁ are 2-forms on Ny with coefficients
Zn Lloc(N17 dw) Sat,[’sfyzng ”EHiQ(S,|’§|1/2dVO) < OO; HHHiQ(S,|§|1/2dV0) < oo fOT a/ll
open and bounded subsets S C Ny, and

/ ((V x h)-E — ikh- fi(z)H) dVy(z) = 0,

/ (V x@)-H+¢ (ikEx)E — J))dVy(x) = 0,

for all ’ev,% that are 1-forms having coefficients in C>°(N,), supported in a
bounded set, vanishing near ON, and satisfying

n-es=0, n hly=0. (48)
The following invisibility result holds:

Theorem 4.3 ([32]) Let £ and H be 1-forms with measurable coefficients
on My and E and H be 1-forms with measurable coefficients on Ny such that
E = F*E H = F*H. Let J and J be 2-forms with smooth coefficients on
My and Ny, that are supported away from L and X such that J = F*J in
Ni. Then the following are equivalent:

1. On Ny, the I1-forms E and H satisfy Maxwell’s equations with SHS
boundary conditions in the sense of Definition 4.2.

2. On My, the forms E and H are classical solutions of Mazwell’s equa-
tions,

V x E =iku(x)H, in M (49)
V x H=—ike(x)E+ J, in M.
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This result implies that when the surface X is lined with a material imple-
menting the SHS boundary condition, the locally finite energy solutions exist
for all incoming waves.

How then the non-existence result can be interpreted? Let us consider the
situation when a metamaterial coating only approximates the ideal invisibil-
ity coating. More precisely, for 1 < R < 2, consider an infinite cylinder in
R? given, in cylindrical coordinates, by N& = {r < R}. On N we choose
the metric to be Euclidean, so that the corresponding permittivity and per-
meability, ¢ and g, are homogeneous and isotropic. In Nf = N\ N, we
take the Riemannian metric g and the corresponding permittivity and per-
meability & and g defined in (35) above. This yields that the approximate
coating has the finite anisotropy ratio,
L= Aj(@)

= ma su
1§j7k§3 zeN Ak (.I')

where \;(x),7 = 1,2,3, are the eigenvalues of £(x) or fi(x). Thus Maxwell’s
equation are defined in the approximate coating in the classical way. We
call the domain N with the approximate £ and p the approximate cloaking
device.

Using the approximate coating we considered the scattering problem where a
plane wave hits to approximate cloaking device when the cloaked region N[t
is filled with a homogenous isotropic material, € = p = 5k and 3 contains
no lining. Then the total fields E® and H? and the total fluxes D¥ and Bf
converge when R — 1, in the sense of distributions,

lim ER = Elz‘m, lim ﬁR - ﬁlz’nw

R—1+ R—1+
~ ~ 1 ~
lim Df =EE;, — —Jour,
et lim ik surf
. DR _ ~717 R %
Rh_,nllJrB - Mlem+ Z.kKsurfa

where Eim and ]:llim are measurable functions and J,, s and [N(SW 7 are delta-
distributions supported on ¥ multiplied with smooth 2-forms corresponding
to tangential currents on . Thus when the approximated coating approaches
the ideal, that is, R — 17, we obtain on the limit the equations

V x Elim = Z‘Wélim + }?surfa V X ﬁlim = _Z‘W5lim + jsurfa (50)
Elim = gElinﬂ Elim = ﬁﬁlim-
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The equations (50) were introduced in [32]. In numerical simulations in [33]
we considered scattering of a TE-polarized plane wave from a cylindrical
cloaking device with approximate coating in two cases: when the cloaked
region is filled with a homogeneous isotropic material, and when inside the
coating there is a soft-and-hard surface. See Fig. 4.

Figure 4: The real part of the y-component of the total B-field on the line
{(,0,0) : z € [0,3]} when a TE-plane wave scatters from an approximate
cloaking device. Blue solid curve is the field with no physical lining at {r =
R}. Red dashed curve is the field with SHS lining on {r = R}. In the left
figure, R = 1.05 and the maximal anisotropy ratio is Lz = 1600. In the right
figure, R = 1.01 and the maximal anisotropy ratio is Lr = 40, 000.

In Fig. 4, the development of the delta-distribution on the cloaking surface,
i.e., the blow up of the fields as the approximate cloak improves, can be
clearly observed. Very similar behavior in the absence of a lining was previ-
ously obtained by Ruan, Yan, Neff and Qiu [87] by scattering methods. They
showed that, in the case of cylindrical cloaking, with no internal currents and
no lining, the fields for the truncated cloak converges at best logarithmically
to the fields for the ideal cloak. Similar results for Helmholtz have now also
been reported by Kohn, et al., [54].

Since the metamaterials used to implement cloaking are based on effective
medium theory, the resulting large variation in D and B poses a challenge to
the suitability of field-averaged characterizations of € and p [92]. (We note
in passing that there still are many open questions in the mathematically
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rigorous effective medium theory for materials that might implement such
parameters. For recent results directly applicable to metamaterials used for
cloaking, see, e.g., [56], while closely related issues concerning negative index
materials are in [9, 10, 11, 12, 13].)

The approximate cloaking is also significantly improved by the SHS lining in
the sense that both the far field of the scattered wave is significantly reduced
and the blow up of D and B prevented. For instance, in the simulation
presented in figure 4 with R = 1.01 the L?-norm of the far field pattern with
the SHS lining was only 2% of the far field without the SHS lining, see [33].

5 Electromagnetic wormholes

We describe in this section another application of transformation optics which
consists in “blowing” up a line rather than a point. In [33, 35] a blueprint
is given for a device that would function as an invisible tunnel, allowing EM
waves to propagate from one region to another, with only the ends of the
tunnel being visible. Such a device, making solutions of Maxwell’s equations
behave as if the topology of R? has been modified by the attachment of a
handle, is analogous to an Einstein-Rosen wormhole [29], and so we refer to
this construction as an electromagnetic wormhole.

We first give a general description of the electromagnetic wormhole. Consider
first as in Fig. 5 a 3-dimensional wormhole manifold (or handlebody) M =
Mi# M, where the components

Ml \(B( 71)UB(P71>)a
x [0,1]

are glued together smoothly.

An optical device that acts as a wormhole for electromagnetic waves at a
given frequency k can be constructed by starting with a two-dimensional
finite cylinder

T=S"x[0,L]cR®

and taking its neighborhood K = {z € R?: dist(z,T) < p}, where p > 0 is
small enough and N = R3\ K. Let us put on 9K the SHS boundary condi-
tion and cover K with “invisibility cloaking material”, that in the boundary
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Figure 5: A two dimensional schematic figure of wormhole construction by
gluing surfaces. Note that the components of the artificial wormhole con-
struction are three dimensional.

normal coordinates around K has the same representation as € and g when
cloaking an infinite cylinder. Finally, let

U={zeR: dist(z,K) > 1}

and note that £, i are equal to 67 in U. The set U can be considered both a
subset of N C R? and a part of the abstract wormhole manifold M, U C M;.
Then, for currents supported in U, all measurements of the electromagnetic
fields in U C M and U C N coincide; that is, waves on the wormhole device
(N, &, 1) in R? behave as if they were propagating on the abstract handlebody
space M. This of course produces global effects on the waves passing through
the device, contrary to the claim in [85, §2] .

In Figures 6(a) and 6(b) we give ray-tracing simulations in and near the
wormhole. The obstacle in the figures is K, and the metamaterial corre-
sponding to € and g, through which the rays travel, is not shown.

We now give a more precise description of an electromagnetic wormhole. Let
us start by making two holes in R3, say by removing the open unit ball
By = B(0,1), and also the open ball By = B(P,1), where P = (0,0, L)
is a point on the z-axis with L > 3, so that B; N By = (. The region so
obtained, M; = R3\ (B, U By), equipped with the standard Euclidian metric
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Figure 6: (a) Rays travelling outside.

34

Figure 7: Ray tracing simulations of views through the bores of two worm-
holes. The distant ends are above an infinite chess board under a blue sky.
On left, L << 1; on right, L &~ 1. Note that blue is used for clarity; the

wormhole construction should be considered essentially monochromatic, for

physical rather than mathematical reasons.



go and with v = {(0,0,2) : 1 < z < L — 1}, is the first component M;
of the wormhole manifold. Note that M; is a 3-dimensional manifold with
boundary OM; = 0B, U dBs,. i.e., M, can be considered as S? U SZ, where
we will use S? to denote various copies of the two-dimensional unit sphere.

The second component of the wormhole manifold is a 3—dimensional cylin-
der, M, = §?* x [0, 1], with boundary M, = (S? x {0})U(S? x {1}) := S2US3.
We take 7o = {NP} x [0,1], where NP denotes an arbitrary point in S?, say
the North Pole. We initially equip M with the product metric, but sev-
eral variations on this basic design are possible, having somewhat different
possible applications which will be mentioned below.

One can form a handlebody by gluing together the component S? of the
boundary dM; with the lower end boundary component S2 of M, and the
component S3 of the boundary dM; with the upper end S?. In doing so
we glue the point (0,0,1) € 0B(0,1) with the point NP x {0} and the
point (0,0, L — 1) € OB(P,1) with the point NP x {1}. Note that in this
construction, 7, and v, correspond to two nonhomotopic rays connecting
(0,0,1) ~ NP x {0} to (0,0,L —1) ~ NP x {1}.

Let us denote in cylindrical coordinates Ny = {(r,0,z) : |r| < 1, z €
0,L]} N N and Ny = N\ N, and consider singular transformations Fj :
M;\ v, — R3 j = 1,2, whose images are Ny, Na, correspondingly, see
[35] for details. For instance, the map Fj can be chosen so that it keeps the
f-coordinate the same and maps (r, z) coordinates by f; : (r,z) — (r/,2'). In
the Figure 8 the map f; is visualized.

Possible applications of electromagnetic wormholes (with varying degrees of
likelihood of realization!), when the metamaterials technology has sufficiently
progressed, include invisible optical cables, 3D video displays, scopes for
MRI-assisted medical procedures, and beam collimation. For the last two,
one needs to modify the design by changing the metric g, on My = S? x [0, 1].
By flattening the metric on S? so that the antipodal point SP (the south
pole) to NP has a neighborhood on which the metric is Euclidian, the axis
of the tunnel Ny will have a tubular neighborhood on which ¢, u are constant
isotropic and hence can be allowed to be empty space, allowing for passage
of instruments. On the other hand, if we use a warped product metric on
M, corresponding to S? x {2} having the metric of the sphere of radius r(z)
for an appropriately chosen function r : [0,1] — R, only rays that travel
through N, almost parallel to the axis can pass all the way through, with

35



9 n
[E— .
C
5 8
B

A

Figure 8: Above: A schematic figure of fi, representing F}, in the (7, z) plane.
Its image P corresponds to Ny in (7, z) coordinates. Below: The sets () and
R correspond to Ny and N. In the figure, R = (Q U P which corresponds to
N:N1UN2 in R?’.

others being returned to the end from which they entered.

6 A general framework:
singular transformation optics

Having seen how cloaking based on blowing up a point or blowing up a
line can be rigorously analyzed, we now want to explore how more general
optical devices can be described using the transformation rules satisfied by
n, (p, A), € and p. This point of view has been advocated by J. Pendry and his
collaborators, and given the name transformation optics [101]. As discussed
earlier, under a nonsingular changes of variables F', there is a one-to-one
correspondence between solutions u of the relevant equations for the trans-
formed medium and solutions u = u o F' of the original medium. However,
when F'is singular at some points, as is the case for cloaking and the worm-
hole, we have shown how greater care needs to be taken, not just for the
sake of mathematical rigor, but to improve the cloaking effect for more phys-
ically realistic approximations to the ideal material parameters. Cloaking
and wormholes can be considered as merely starting points for what might
be termed singular transformation optics, which, combined with the rapidly
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developing technology of metamaterials, opens up entirely new possibilities
for designing devices having novel effects on acoustic or electromagnetic wave
propagation. Other singular transformation designs in 2D that rotate waves
within the cloak [20], concentrate waves [84] or act as beam splitters [85]
have been proposed. Analogies with phenomena in general relativity have
been proposed in [66] as a source of inspiration for designs.

We formulate a general approach to the precise description of the ideal mate-
rial parameters in a singular transformation optics device, N C R3, and state
a “metatheorem”, analogous to the results we have seen above, which should,
in considerable generality, give an exact description of the electromagnetic
waves propagating through such a device. However, we wish to stress that, as
for cloaking [32] and the wormhole [33, 35], actually proving this “result” in
particular cases of interest, and determining the hidden boundary conditions,
may be decidedly nontrivial.

A general framework for considering ideal mathematical descriptions of such
designs is as follows: Define a singular transformation optics (STO) design
as a triplet (M, N, F), consisting of:

(i)  An STO manifold, M = (M, g,7), where M = (M, ..., My), the dis-
joint union of n-dimensional Riemannian manifolds (1}, g;), with or without
boundary, and (possibly empty) submanifolds ; C int M;, with dim~v; =0
or 1;

(i)  An STO device, N' = (N, %), where N = J;_; N; C R" and & =
U?Zl ¥;, with ¥, a (possibly empty) hypersurface in N;; and

(iii) A singular transformation F = (Fi,...,Fy), with each
F; : M;\ v; — N; \ ¥, a diffeomorphism.

Note that N is then equipped with a singular Riemannian metric g, with
gln; = (F})«(g;), in general degenerate on X;. Reasonable conditions need
to be placed on the Jacobians DF} as one approached 7; so that the g; have
the appropriate degeneracy, cf. [39, Thm.3].

In the context of the conductivity or Helmholtz equations, we can then com-
pare solutions © on M and @ on N, while for Maxwell’s equations we can
compare fields (FE, H) on M (with e and p corresponding to g by the formula

of form (35)) and (E, H) on N. For notational convenience, we refer below
to the fields as just u.
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Metatheorem “A Metatheorem about Metamaterials”. If (M, N, F) is
an STO triplet, there is a 1-1 correspondence, given by u = wo F, i.e.,
uly;, = (Uln;) o Fy, between finite energy solutions u to the equation(s) on
N, with source terms f supported on N\ X, and finite energy solutions u

on M, with source terms f = f o F, satisfying certain “hidden” boundary
conditions on OM = Us_, OM;.

7 Further developments

The literature on metamaterials, cloaking and transformation optics has
grown enormously in the last few years. We briefly describe here only some
of the highlights.

(a)  Although the first descriptions of the cloaking phenomenon were in
the context of electrostatics, no proposals of electrostatic metamaterials that
might be physically implement the examples of [38, 39] have been made to
date. [106] does contain a proposal for metamaterials suitable for magneto-
statics (cloaking for which is of course mathematically identical to electro-
statics) and magnetism at very low nonzero frequencies.

(b)  There have been a number of papers in the physics literature theo-
retically analyzing spherical and cylindrical cloaking. As noted above, [87],
which preceded [34], also considered approximate cylindrical cloaking, using
it to verify the ideal cloak for a passive object but also exhibiting the instabil-
ity when no boundary condition is imposed. A scattering theory derivation of
the surface currents that arise in cylindrical cloaking was given in [109]. On
the other hand, [108] described the scattering characteristics of the simplified
“reduced cylindrical parameters”, which the experiment [88] was designed to
implement, and showed that in fact cloaking with the reduced parameters
(which do not arise from transformation optics, but were proposed to repli-
cate the ray behavior of the ideal cloak while using material parameters easier
to physically realize) fails even for passive objects. Spherical cloaking of a
passive object was analyzed in terms of Mie scattering in [23], and cloaking
of a specific active object (an electric dipole) in [110], which rederived (43).
A somewhat different treatment of some of these same issues is in [107].

(c)  Due to the non-existence of finite energy distributional solutions for
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generic internal currents J, , analyzing approximate cloaking in the 3D spher-
ical geometry would be important, to see if some of the fields £, H, D or B
blow up in the limit, as happens in the cylindrical case, see Fig. 4. The blow
up would indicate that the linings, e.g., adding very conductive materials at
the cloaking surface Y2, would be needed to regulate the behavior of the fields
to help a physical device function more effectively, possibly also improving
the function by reducing the far field of the scattered waves, as happens in
the cylindrical case.

(d)  Other boundary conditions at the cloaking surface, analyzed in the
time domain, based on Von Neumann’s theory of self-adjoint extensions and
using a different notion of solution than that considered here, have been
studied in [102, 103, 104]. See also [107].

(e)  We have considered singular transformations with range N;, where
the boundary measurements are being made at the outer boundary of Ny.
In situations where the measurements are made further from cloaked object,
[18] introduced, for spherical cloaking, transformations nonlinear in the radial
variable in order to give better impedance matching with the surrounding
media, and this was further explored for cylindrical cloaking in [108].

(f)  Two of the most important practical limitations on cloaking are the
narrow bandwidth and lossy nature of currently available metamaterials.
Some theoretical analysis of the former issue is in [21].

(g) There has been a drive to design and fabricate metamaterials which
function at higher frequencies, with the visible optical range a goal for ob-
vious reasons. Metamaterials with suitable permeability p are a particular
challenge [90]. [17] gives a proposal for a non-magnetic cloak at optical
frequencies; an experiment [93] based on a variant of this design has been re-
ported. More progress on metamaterials in the optical or near-optical range
has been obtained in [41] and [68, 91].

(h) Cloaking using media with negative index of refraction has been pro-
posed in [77]. Metamaterials and cloaking constructions have also been pro-
posed for other wave phenomena, such as acoustics. See [71, 27, 70], as well
as footnote (1) in §1.

(i) Negative index of refraction material (NIM) has also received a great
deal of publicity due to its role in the perfect lens, an idea introduced by
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Pendry [82], building on the earlier work of Veselago [105] where NIMs were
first discussed. The perfect lens is a proposal for beating the diffraction reso-
lution limit of one-half the wavelength, using a lens consisting of a flat slab of
NIM. That such superresolution might be possible had been suggested earlier
[16, 75, 76, 73], but the NIM proposal has been the focus of much theoretical
and experimental activity, see also [50, 86]. Although not without continuing
controversy [25], it is now generally accepted to be both theoretically valid
and experimentally verified, even for visible light [31].

(j)  Effective medium theory for metamaterials is in its early development,
and seems to be particularly difficult for materials assembled from periodic
or almost-periodic arrays of small cells whose properties are based on reso-
nance effects. A physical (although mathematically nonrigorous) analysis of
this kind of media is in [92], which makes implicit assumptions about the
smoothness of the fields which are violated when the fields experience the
blow up demonstrated in [87, 34]. Some recent work on homogenization in
this context is in [56].

(k) A number of papers have emphasized the use of singular transforma-
tion optics designs beyond cloaking. Besides [66], see [84, 85, 51] for designs
in two dimensions.

(1)  In §6 we considered transformation optics when the material param-
eters are blown up on submanifolds. Naturally, rigorous versions of the
Metatheorem, with the correct hidden boundary conditions determined, can
only be obtained once the details of the designs have been specified. New
singular transformation optics devices, with effects on wave propagation pre-
viously unknown, lie waiting to be invented!
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