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ABSTRACT. In this paper we provide a framework for constructing
general complex geometrical optics solutions for several systems of
two variables that can be reduced to a system with the Laplacian
as the leading order term. We apply these special solutions to the
problem of reconstructing inclusions inside of a domain filled with
known conductivity from local boundary measurements. Compu-
tational results demonstrate the versatility of these solutions to
determine electrical inclusions.

1. INTRODUCTION

Inverse boundary value problems are a class of inverse problems
where one attempts to determine the internal parameters of body by
making measurements only at the surface of the body. A prototypical
example that has received a lot of attention is Electrical Impedance To-
mography (EIT). In this inverse method one would like to determine the
conductivity distribution inside a body by making voltage and current
measurements at the boundary. This is also called Calderén problem
[2]. The boundary information is encoded in the Dirichlet to Neumann
map associated to the conductivity equation. Sylvester and Uhlmann
23] constructed complex geometrical optics (CGO) solutions for the
conductivity equation. The phase functions of these solutions are lin-
ear. CGO optics have been used in EIT and have been instrumental
in solving several inverse problems. We will not review these devel-
opments in detail here; see [25] and [24] for references; other reviews
in EIT are [1] and [3]. There are many applications of EIT ranging
from early breast cancer detection [27] to geophysical sensing for un-
derground objects, see [14, 19, 20, 22]. The article [23] and the ones
reviewed in [24] assumes that the measurements are made on the whole
boundary. However, it is often possible to make the measurements only
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on part of the boundary; this is the partial data problem. This is the
case for the applications in breast cancer detection and geophysical
sensing mentioned above. Recently, new CGO solutions that are useful
for the partial data problem were constructed in [16] for the conduc-
tivity equation and zeroth order perturbations of the Laplacian. The
real part of the phase of these solutions are limiting Carleman weights.
They have been generalized to first order perturbation of the Laplacian
for scalar equations or systems in [4], [6], [21], and [26]. Constructions
of CGO solutions for the conductivity equation and zeroth order per-
turbations of the Laplacian using hyperbolic geometry can be found in
[13]; these have been applied to determine electrical inclusions in [7].

In two dimensions, when the underlying equation has the Laplacian
as the leading part, due to the rich conformal structure, we have more
freedom of choosing the complex phases for the CGO solutions. In par-
ticular any harmonic function is a limiting Carleman weight and can
be the real part of a CGO solution. The aim of the paper is to pro-
vide a framework for constructing these solutions for several systems
of two variables that can be reduced to a system with the Laplacian as
the leading term. We apply these special solutions to the problem of
reconstructing inclusions inside of a domain filled with known conduc-
tivity from local boundary measurements. We also provide numerical
results to demonstrate the applicability and flexibility of these special
solutions.

Assume that  is an open bounded domain in R? with smooth bound-
ary. Let n € N and denote U(x) = (uy(21,22), -, un(71,22)) . We
consider the following system of equations:

PU := AU + A1(2)0,,U + As(2)0,U + Q(x)U =0 in Q, (1.1)

where A, = 02 + 02, and Ay, Ay, Q are n x n matrices whose regu-
larities will be specified later. The system (1.1) contains all scalar or
two-dimensional physical systems that can be reduced to a system with
the Laplacian as the leading part. Those systems include the conductiv-
ity equation, the magnetic Schrodinger equation, the two-dimensional
isotropic elasticity system, and the two-dimensional Stokes system, etc.
In this paper we first study CGO solutions with special phase functions
for (1.1).

In the papers [16] [4], [6], [7], [13], [21], and [26], the real part of
the phase functions are radial functions. These can be used to probe
the region with spherical fronts, the so-called complex spherical waves.
Even though these solutions are better suited for the local data problem
than the usual CGO solutions with linear phase functions, they are
still quite restrictive. Fortunately, in the two dimensional case, we
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have many more choices of phase functions. For example, let ¢(x) be a
harmonic function with nonvanishing gradient in {2, then ¢+ can the
phase function of the CGO solutions when 1) is a harmonic conjugate
of ¢. In other words, p(x) := ¢(x) + #)(x) is holomorphic in 2. Our
method in this paper is developed based on this idea.

Using the CGO solutions, we can consider the problem of finding
embedded inclusions in a known medium. This is object identifica-
tion problem. The method developed here shares the same spirit as
Ikehata’s enclosure method [8]. For the two-dimensional problem, we
would like to mention a very interesting result by Tkehata in [10] where
he introduced the Mittag-Leffler function in the object identification
problem. This has the property that its modulus grows exponentially
in some cone and decays to zero algebraically outside the same cone.
Using the Mittag-Leffler function and shrinking the opening angle of
the cone, one can reconstruct precisely the shapes of some embedded
objects such as star-shaped objects. The numerical implementation of
the Mittag-Leffler functions was carried out by Ikehata and Siltanen
in [11]. The main restriction of the method using the Mittag-Leffler
function is that it can be only applied to scalar equations with homo-
geneous background. That is, they probe the region with harmonic
functions.

The novelty of our method is its flexibility in treating scalar equa-
tions, or even two-dimensional systems, with inhomogeneous back-
ground. Furthermore, for the object identification problem in such
general systems, we are able to achieve for these general systems the
analogous results as those in [10] and [11] for the conductivity equation
with homogeneous background. We would also like to point out that
the Mittag-Lefller function is in the form of infinite series. Therefore,
to implement the Mittag-Leffler function numerically, one needs first to
do a suitable truncation. This clearly introduces a prior: errors in the
input (Dirichlet) data. On the other hand, our special CGO solutions
are in closed form. So we can prescribe the exact Dirichlet data in the
inverse problem using our method.

Before going further, we also would like to compare our method and
that in [7]. As we have pointed out above, the real parts of the phase
functions of CGO solutions in [7] are radially symmetric. So their prob-
ing fronts are circles or spheres. Moreover, the construction of CGO
solutions in [7] is based on the hyperbolic geometry. It has not been
developed to studying more general equations or systems. The advan-
tage of our method lies in the freedom of choosing the phase functions
of CGO solutions. One useful example is to take p(z) as a polynomial.
By increasing the degree of the polynomial, we can narrow our probing
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fronts. Consequently, we are able to determine more information in
the object identification problem in the two dimensional case than [7]
does. On the other hand, since the real parts of the phase functions
in our CGO solutions are not necessarily radially symmetric, we can
create different probing fronts by simply rotating the phase functions.

Like [7], we can also localize the measurements in an arbitrarily small
region on the boundary. Our construction of CGO solutions with more
general phases is rather elementary. The main idea is to transform
CGO solutions with linear phases by suitable conformal mappings. The
construction of CGO solutions with linear phases for (1.1) was first
given by Nakamura and Uhlmann in [17], [18] where they introduced
the intertwining technique in handling the first order terms (also see
[5] for similar results). Here we shall use Carleman’s technique to
construct CGO solutions with linear phases for (1.1).

This paper is organized a follows. In Section 2, we give concrete
examples of (1.1). In Section 3, we review of the construction of CGO
solutions with linear phases for (1.1). CGO solutions with more general
phases will be discussed in Section 4. For an application of CGO so-
lutions with general phases, we consider the problem of reconstructing
inclusions embedded in a domain with known conductivity by boundary
measurements. Numerical experiments of our method are presented in
Section 6.

2. PHYSICAL EXAMPLES OF (1.1)

2.1. Conductivity equation. Our first example is the well-known
conductivity equation. Let v(z) € C?(Q2) and y(z) > 0 for all x € Q.
We consider the equation:

V-(vVu)=0 in Q. (2.1)
Introducing the new variable v = y'/2u, (2.1) is equivalent to

(A+q@uv=0 in (2.2)
with ¢ = —AyY2 /412 € L®(Q). (2.2) is a Schrédinger-type equation.

We can also consider a more general Schrodinger-type equation with
convection term:

(A+a(z) - V+quv=0 in Q, (2.3)

where a = (ay, as).
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2.2. Isotropic elasticity. The domain ) is now modeled as an inho-
mogeneous, isotropic, elastic medium characterized by the Lamé pa-

rameters A(z) and p(x). Assume that A(z) € C%*(Q), u(z) € CHQ)
and the following inequalities hold

p(r) >0 and Az)+2u(z) >0 Va2 eQ (strong ellipticity).
(2.4)
We consider the static isotropic elasticity system without sources

V- MV -u)l+2uS(Vu)) =0 in Q. (2.5)

Here and below, S(A) = (A + AT)/2 denotes the symmetric part of
the matrix A € C?*2. Equivalently, if we denote o(u) = ANV - u)I +
21S(Vu) the stress tensor, then (2.5) becomes

V-o=0 in €.

On the other hand, since the Lamé parameters are differentiable, we
can also write (2.5) in the non-divergence form

pAu+ A+ ) V(V-u) + VAV - u+25(Vu)Vp =0 in Q. (2.6)

We will use the reduced system derived by Ikehata [9]. This reduction
was also mentioned in [24]. Let (Z;) satisfy

A (1;) + Ax) (VV_ w) + Q) (Z’) ~0, (2.7)

where
2w V2(=V2 4+ At —Vio
Az) = ( H ( 0 z s %/;)
/\+2,uu
and
Oz) = (—u‘li 22V Al 2u (VR = A Vu)
— s (V)T —pAp! ‘

Here V2f is the Hessian of the scalar function f. Then
wi=p w4 Vg — gVt

satisfies (2.6). A similar form was also used in [5] for studying the
inverse boundary value problem for the isotropic elasticity system.
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2.3. Stokes system. Let u(z) € C*(Q) and p(x) > 0 for all z € Q.
Here p is called the viscosity function. Suppose that u = (uq,us) and
p satisfy the Stokes system:

{V-(uS(Vu))—Vp:O n O

2.8
V-u=0 in €. (28)

Here u and p represent the velocity field and the pressure, respectively.
Motivated by the isotropic elasticity, we set ©v = pu~Y?w + p='Vg —
(Vit)g and

p=Vu? w4 p?V w4 289 = V - (1 w) + 2Ag, (2.9)

then (u,p) is a solution of (2.8) provided (l;) satisfies

A (Z’) + A(z) (vv. w) +Q(x) (l;) =0 (2.10)

) 1/2v2 -1 _ —1v
A(r) :< s 0 g ILI/Q ,u)

with

and

0= (—QM_1/2V2M1/2 Y NTIC I vl vINVE I YRVEL v (Vﬂ_l)) |

u(V )T —pAp!

3. CGO SOLUTIONS WITH LINEAR PHASES

In this section we review the method of constructing CGO solutions
with linear phases using Carleman estimates. We consider a slightly
different system here. Let € be an open bounded domain in R?. Let

V(y) = V(y1,y2) satisty

AV + A0,V +A0,V+QV =0 in Q. (3.1)
Assume that Ay, A, € C’Q(K:Z) and Q € L*(Q). Given w € R? with
lw| = 1, we look for V(y) of (3.1) having the form

V(y) = v @t/ 4 R), (3.2)
where L is independent of h and R satisfies
10° Rl 2cy < CR'™%, Vo <2, (3.3)

To construct V' having the form (3.2), (3.3), we follow the approach
in [6] and [26] which are based on [4] and [16]. Note that the real part
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of the phase function y - w is a limiting Carleman estimate. So if we
set the semiclassical operator

Py = B*A + hA,(hd,,) + hAy(hd,,) + h*Q,

then we can derive by combining a Carleman estimate and the Hahn-
Banach theorem that

Theorem 3.1. [6] [26] For h sufficiently small, for any F € L*(Q),

there exists W € H?(SQ)) such that
e vehp, (eveIMY) = F
and bWl gz < CllFll 2, where (WG ) = i< [(B0)* WL g,

is the semiclassical H* norm.
Finding V' of the form (3.2) is equivalent to solving
e vt/ p, (vt + R)) =0 in Q.
We can compute that

e—y~(w+iw¢)/hPhey'(‘”HwL)/h = hT, + P,

where T, = 2(w + iwh) -V 4 (w + iw") - (A1, Ay). Hence we want to
find L, independent of A, so that

T,L=0 in € (3.4)

The equation (3.4) is a system of the Cauchy-Riemann type. In fact,
introducing the new variable 2z = (21, 22) = (w + iw™) - y and setting
Aw,2) = (w+iwt) - (A1, Ay), (3.4) becomes

(40: + A)L =0 (3.5)
where 8; = (0., + i0.,)/2. Having found L, R is required to satisfy
e v/l p (v @t Ry = iyt /hp, T (3.6)
Note that Heiy'“L/hPhl?HLQ(Q) = O(h?). Thus Theorem 3.1 implies that
iy-wt/h B
e Rl sy < (3.7)
which leads to

10°R| 12y < ChYI for o] < 2. (3.8)
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4. CGO SOLUTIONS WITH GENERAL PHASES

In this section we will construct CGO solutions with more general
phases for (1.1) from CGO solutions with linear phases given in the
previous section. Without loss of generality, we choose w = (1,0) and
wt = (0,1), ie., y - (w+iwt) = y; +iyo. Denote y = y; + iys and
r = x1 + ixe. Let €y be an open subdomain of 2. Suppose that Ay,
Ay € C*(p) and Q € L®(Q). Let y = p(x) = yi(21, 2) + iya(21, 22)
be a conformal map in Qq, ie., p/(x) # 0 for all x € Qq. Define
Ulz) = V(y(x)) and Q = p(€). By straightforward computations, we
have

(o) v =ve (3)v

where
az U1 az Y2
J(w) = (Gmdr Cob2)
(:C) (aﬂﬂzyl ar2y2>

and AU = AV (2)?,

y=p(z)

Suppose that p~! exists on Q. Let A, (y) = (A10s,y1 + A204,11) ©
P~ (y), Aa(y) = (A10n, Y2 + A200,2) 0 p~ (), and Q(y) = (Qop~')(y
and g(y) = |(p' o p~H)(y)|*>. Now if we choose V (y) satisfying

AV +g(y) A1),V + 9(y) M As(9)D,,V + g(y) TQV =0 in

(4.1)
then U(z) satisfies (1.1) in 4. According to the construction given
previously, let V(y) be a solution of (4.1) having the form

V(y) = 6(y1+z‘yz)/h(j + R%
where
||aaR||L2(Q) S Chl—oz, Y ‘Oé| S 2.

Denote y;(z1,22) = p(x1,22) and yo(x1, 9) = ¥(x1,22). We then
obtain CGO solutions for (1.1) in Qy:

Ulz) = et/ + R)
with L= Lo p, R=Rop, and
|0%R|| 1200 < Ch™, Vo] < 2. (4.2)
Due to the conformality of p, ¢ and v are harmonic functions in €.
Conversely, given any ¢ harmonic in Qy with Vi # 0 in €y, we can
find a harmonic conjugate ¢ of ¢ in 2y so that p = ¢+ 141 is conformal
in y. The freedom of choosing ¢ plays a key role in our reconstruction

method for the object identification problem. Actually, we will mainly
focus on the level curves of . We give some concrete examples here.
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Pick a point zq ¢ Q). It is no restriction to assume zy = 0. We now
consider ¢ = Re(cya) for N > 2, where cy € C with |ey| = 1. In
the polar coordinates, @y (r,6) = r™¥ cos N(0 — 0y) for some 0y deter-
mined by cy. We observe that ¢ > 0 in some open cone I'y with an
opening angle 7/N. The freedom of choosing 0y (or, equivalently, cy)
allows us to "sweep” the domain ) by I'y without moving the point
xo. This is quite useful in practice. Now assume that I'y N Q # (.
The complex function py(x) = cyay = oy + @by is clearly conformal
in €. In order to apply to the inverse problem, we want to shrink the
opening angle of I'y by taking N — oo. However, there are two seri-
ous problems in doing so. On one hand, ¢y is periodic in the angular
variable, which means that it is positive in some other cones with the
same opening angle which also intersect 2 when N is large. Some level
curves of py for different N’s are shown in Figure 4.1. This property
of o prohibits us from using corresponding CGO solutions with large
N to the object identification problem. On the other hand, the com-
plex function py(x) fails to be injective in the whole domain Q when
N is large. To overcome those difficulties and construct useful CGO
solutions in the whole domain €2, we shall carry out the construction
described above in a suitable €}y and extend the constructed solutions
to 2 by cut-off functions.

N=4 N=6 N=8

N
y L«
U
A

FIGURE 4.1. Some level curves of ¢y.

We now set

QO = FN N €.
Then py is conformal in Qq and is bijective from €y onto py ().
Therefore, we can find CGO solutions for (1.1) in €y,

and the estimate (4.2) holds. So far we have only constructed special
solutions for (1.1) in some particular subdomain of Q2. To get solutions
in the whole domain 2, we use a cut-off technique. For s > 0, let
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l, ={z € Ty : px = s '}. This is the level curve of ¢y in I'y. Let
0 <t <ty such that

(Useoyls) NQ# 0
and choose a small £ > 0. Define a cut-off function ¢y ,(z) € C(R?)
so that ¢n(x) = 1 for @ € (Use(ot1e/2)0s) N2 and is zero for z €
O\ (Use(o,t4)ls). We now define

Unin(@) = dnge™ MUy = ppy o= H0mI(L 4 R)

for x € (Use(o,t4¢)0s) N2 So Unyp can be regarded as a function in €2
which is zero outside of Q. We now take fn,n = Untnloa. We remark
that fy:» can be used as the boundary data in the inverse problem.
An obvious reason of using fxn .5 is that they are local.

Now we define a function W := Wy, satisfying

AW 4+ A1(2)0p, W + Ag(2)0,W + Q(z)W =0 in €,
W = fN,t,h on OS2
We would like to compare Wy p, with Uy, . It turns out they differ

only by an exponentially small term under some minor condition. This
property play an essential role in our method for the inverse problem.

(4.3)

Lemma 4.1. Assume that the boundary value problem

PU=0 1in QQ, (4.4)
U=0 on 09

has only trivial solution. Then there exist C' > 0 and €’ > 0 such that
Wi — Unapllr20) < Ce==/h (4.5)
for h < 1.
Proof. By setting G := Wi, — Unytp, We get that
PG = P(Wun—Unun)
= —onee "PUy + [pne, Ple™ /Uy
= [ong, P]eft_l/hUN
= [owa Pl N (L4 R

since PUy = 0 in (Useg(o,)¢s) N 2. Now we observe that [¢n,, P] is a
first order differential operator with coefficients supported in

(Use(tre/2,040)ls) N Q.

So we have that
[ dws, Pl HUN (L 4 R)|| 2y < Cle=/" (4.6)
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for some C" > 0 and ¢’ > 0. Note that G = 0 on 0f). Combining the
regularity theorem, the triviality of (4.4), and (4.6) yields (4.5). O

Even though the solutions Wy ;5 of (1.1) is not exactly in the form
of complex geometrical optics, with the help of (4.1), they are expo-
nentially close to Uy,;,. Now we describe how to construct special
solutions for some concrete systems given in Section 2 from Wy, . For
the conductivity equation (2.1), (1.1) is reduced to (2.2). For (2.2), we
denote the corresponding Uy = unp and

UNth = ¢N,t€(<pN_til+wN)/h(1 +7),

where r satisfies (4.2). With uy;p, we can solve for wy, satisfying

{(A—l—q)w—o in Q,

4.7
w=unyn on O (4.7)

The problem (4.7) has a unique solution since the boundary value prob-
lem for the corresponding conductivity equation has a unique solution.
So Lemma 4.1 implies that

|wnen — unenll g o) < Ce<'/h, (4.8)

Returning to the conductivity equation, we see that 7~ /2wy,; are
solutions of (2.1).

For the isotropic elasticity and the Stokes system, we have n = 3
and (1.1) becomes respectively (2.7) and (2.10). We only discuss the
isotropic elasticity here. The Stokes system can be treated similarly.
Assume that the homogeneous boundary value problem (4.4) associated
with (2.7) has only trivial solution. Thus Lemma 4.1 yields

Wieh — Unipllm2) < Ce=='/h.

UN wN
We now express Uy, = ) and Wiy, = 1), where vy,
b 9gN,t,h

wWnt, are two-dimensional vectors and by n, g, are scalars. Hence,
we obtain that

-1/

2 -1 -1
UNgh = 1 "WNeh + 1 VAN — N VI

are solutions of (2.6) or (2.5) and uyp satisfies

HUN,t,h - (,u_1/2vN7t7h -+ :LL_lVbN,t,h _ bN,t,hV,u_1>||Hl(Q) < C«e—s//h_

5. INVERSE PROBLEMS

In this section we demonstrate how to use CGO solutions constructed
previously in the object identification problem. To simplify our pre-
sentation, we will only discuss the case of identifying inclusions inside
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of the domain 2 filled with known conductivity. This inverse problem
has been extensively studied both theoretically and numerically. We
refer to [7] for related references. Using our method, we can also treat
the object identification problem for other systems. We shall report
the results elsewhere.

Let D be an open bounded domain with C!' boundary such that
D C Qand Q\ D is connected. Assume v(z) € C?(Q) with v(z) > 0
for all x € Q. The conductivity 7(z) is a perturbation of v described
by 4(x) = v+ xp71, where xp is the characteristic function of D and
71 € C(D). We suppose

711 >0 on D. (5.1)

Then we have 4(z) > ¢ > 0 almost everywhere in 2. Let v be the
solution of

(5.2)

V-(AVv)=0 in £,
v=f on 0.

The meaning of the solution to (5.2) is understood in the following way.
Define

[w]op = triw — tr-w

the jump of the function across 9D, where tr* and tr~ denote re-
spectively the trace of w on D from inside and outside of D. For
f € H3?(0R), we define

V; ={w e H*(D)® H*(Q\ D) : w|aq = f, [w]ap = 0, Hg—zj]ap = 0}.

We say that v is the solution of (5.2) if v € Vy and V - (jv) = 0 in D
and Q \ D. The Dirichlet-to-Neumann map is given as

_Ov
Ap:f— 75|897

where v is the unit outer normal of J). The inverse problem is to
determine the inclusion D from Ap. Here we are interested in the
reconstruction question.

We begin with the following integral inequalities given in [15] (also
see [7] for a proof).

Lemma 5.1. Assume that (5.6) holds. Let f € H*?(0Q) and u be the
unique solution of

(5.3)

V-(7yVu)=0 in €,
u=f on ON.
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Define Ay : f — ’Y%bg. Then we have

/ (AD—AO)f-fdsg/%Wu\?dx (5.4)
[2)9] D
and
_ T Y1y 2
/{M(AD Ao)f fdsz/jj—7+71]Vu] dz. (5.5)

For the inverse problem, we assume that for every p € 0D, there
exists an € > (0 such that

y1>€ YaeDNB(p). (5.6)

Let x¢ ¢ Q) and define the open cone I'y with I'y N Q # () in terms of
on = Re(en(z — 20)N) (fy = ex(x — 20)Y) as in Section 4. Likewise,
we denote the level curve ¢y, = {x € Ty : pn = s~} for s > 0. For
e >0 and t > 0, we take

1/2

f=fnen = '7_1/2wN,t,h|BQ =7 unnlon

where wy ¢, and upy . j, are constructed previously. Note that 7—1/ 2w N.th
is the solution of (5.3). It should be noted that the Dirichlet condition
f is localized in I'y N OS2 and becomes narrower as N gets bigger. This
property is very useful in actual applications.

To construct the inclusion D, we rely on the quantity

E(N,t,h) = / (Ap — Ao) fnan - fnends.
o0

Clearly, this quantity is completely determined by the boundary data.
From (5.1) and (5.5) we see that

Y —1/2 2
E(N,t,h) > —\V dr >0
( ) /D t+ %| (v Fwnen)fde

for all N,t,h. We now prove the following important behavior of

E(N,t,h).

Theorem 5.2. Let the curve {; be defined as above. Then we have:
(i) if 6 N D = O then there exist C; > 0, &1 > 0, and hy > 0 such that
E(N,t h) < Cre~=/" for all h > hy;

(ii) if £, N D # O then there exist Cy > 0, e > 0, and hy > 0 such that
E(N,t, h) > Coe®2/" for all h > hs.

Proof. To prove (i), we use the inequality (5.4) to obtain

E(N,t,h) S/vllv(v‘”?wzv,t,h)!QdfcSCszv,t,hHip(D)- (5.7)
D
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With the help of (4.8), we can replace wy,p in (5.7) by un,, with an
error O(e™*'/"). Since £, N D = (), we have py —t~! < 0 for all x € D.
So by the form of uy ;) we immediately derive that

E(N,t,h) < Ce=1/h

for h > hy.
To establish (ii), we first observe that (Use(o.nls) N D # 0. So there
exist z € 0D and € > 0 such that the jump condition (5.6) holds and

oy —t 1 >e forall B.(z)ND. (5.8)

From (5.5) we get

MY —1/2 2
E(N,t,h) > — 1V w dz
( ) /D o V(v Noth)]

> C’e/ (IVwnenl® + |wyenl*)dz
DNBe(z)

> / (Vuwenl? + lunen)dz — C"e =1 (5.9)
DNBc(z)

Substituting the form of uy; j, with the estimate (5.8) into (5.9) implies
the statement of (ii). O
Furthermore, when ¢; touches the boundary of D, we can prove that

Theorem 5.3. If {, N 0D = {p} then liminf, o E(N,h,t) > 0.

Proof. In view of (5.6), we pick a sufficiently small ¢ > 0 such that
(5.6) is satisfied in Bc(p) N D and Bc(p) N D C (Use(tt1e/2)ls) N D. So
the cut-off function ¢y, = 1 on B.(p) N D. We now introduce a new
coordinate system ¥ (z) = (y1(z), y2(z)) near p with ys(z) = pn —t!
such that ¢, becomes y, = 0 near p and D, := U(B.(p) N D) lies in
{y» < 0}. We can choose a small cone C,, in D, with vertex p and the
length of the axis is . Denote J(y) the Jacobian of ¥~!(y). Therefore,
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using (5.9) we can estimate

E(N,t,h)

2 C// (|VUN7t’h|2 + ‘UN,t7h|2)d.1' — C”e_al/h
DNBc(p)
> C”/ (|V(6(WN—t’l+in)/h(1 + r))|2 + |6(wN—t*1+z‘¢N)/h(1 + r)|2)dx
DNBc(p)
_C«//e—a’/h
> é 2y2/h Jldusd C// —'/h
= 73 € | J|dyrdys — C"e
h c,
é«/ 0 .
> ﬁ/;g 22/ My dyy — C"e= /M

> 0 as h—0.

O

In view of Theorem 5.2 and 5.3, we are able to reconstruct some part

of OD by looking into the asymptotic behavior of E(N,t, h) for various
t’s. More precisely, let

tp.n :=sup{t € (0,00) : ;IE,%E(N’ h,t) =0}

then if ¢tp v = oo we have 'y N D = (). On the other hand, if tp y < o0
then there exists a pp n € £, , NOD.

By taking N arbitrarily large (the opening angle of I'y becomes
arbitrarily small), we can reconstruct even more information of 9D. A
point p on 0D is said to be detectable if there exists a semi-straight
line [ starting from p such that [ does not intersect 0D except p. For
example, if D is star-shaped, every point of 9D is detectable.

Corollary 5.4. Every detectable point of 0D can be reconstructed from
Ap.

Proof. Let p be a detectable point and [ is the corresponding semi-
straight line. We can choose that [ is not tangent to 0€2. Let L be the
straight line containing /. Pick a point z¢y € L with |§3:§\ = —ég:zl
and o ¢ Q). Let 'y be the cone with axis L and vertex z, whose
opening angle is 7/N. For any N € N, we construct wyn, Un,p, and
fnen as above. So we can determine E(N,t, h) from the measurement
Apfnin. Applying Theorem 5.2 and 5.3, we can determine tp y so
that ¢, , N 0D # (. Choosing N — oo and repeating the procedure
yields the corollary. O

To end this section, we give an algorithm of our reconstruction
method.
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Step 1. Pick a point 29 ¢ Q (but close to Q). Given N € N and choose
the cone I'y which intersects 2.

Step 2. Start with ¢ > 0 such that ¢, N Q # (. Construct uy,y and
determine the Dirichlet data fy,n = 7 ?uns4lo0-

Step 3. Compute E(N,t,h) = | (fN,t,h)(AD — No) fnen - faends.

supp

Step 4. If E(N,t, h) is arbitrarily small, then increase t and repeat Step
2 and 3; if E(N,t,h) is arbitrarily large, then decrease ¢t and
repeat Step 2 and 3.

Step 5. Repeat Step 4 to get a good approximation of 9D in I'y.

Step 6. Move the cone I'y around z( by taking a different ¢y in oy =
Re(eyz?). Repeat Step 2-5.

Step 7. Choose a larger N and a new cone I'y. Repeat Step 2—6.

Step 8. Pick a different xy and repeat Step 1-7.

6. NUMERICAL RESULTS

We demonstrate some numerical results of our method in this section.
Assume that the domain 2 is given by

Q={(x1,29) : =1 <y <1,-1.01 <25 < —0.1}.

We shall use the Dirichlet data localized on {(x1,—1.01) : =1 < x < 1}.
To set up py(x), we consider N = 4. In our numerical computations,
we use two sweeping schemes. In the first scheme, we fix the reference
point zp and rotate the ”probing cone” (the cone with the vertex at
xo and the opening angle 7/4). For the second one, we do not rotate
the probing cone but move the reference points along the x-axis. More
precisely, let the reference point xy = (x¢1,0) for —1 < zo; < 1.
In our first scheme, we fix oy = (0,0) and rotate the probing cone
determined by the shifted angle 6y; while, in the second scheme, we
consider different zy’s and choose 8y = 0. In other words, for both
schemes, we have

)N —iN@N(

pn(z,20) = en (21 — 201 + 122)" = 1 — Toa + ixg)N

Thus, the probing fronts are level curves of ¢n := Re(pn(x,x0)). Fig-
ure 6.1 shows some probing fronts of ¢ for N = 4.

We take the background conductivity v = 1 and the conductivity
inside the inclusion is 4, i.e, 7y = 3. For numerical experiments, we
ignore the cut-off function and take

o = epN(x,xo)/h, for (1, 23) € OQops,
9N, xo,h|0Q = O, o0 \ 8Qobs>
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FIGURE 6.1. Probing fronts of our numerical method.
In the first column, we consider the probing cone in
three different angles. In the second column, we move
the probing cone by taking three reference points. In
our numerical method, we use ten different probing

cones.

where 025 is determined by N, xy, and 6y. For example, for N = 4,
Ty = (070)7 GN = 07

0Qops = {(z1,22) : —1.01 xtan(%) <z < 1.01 xtan(g), e = —1.01}.
Then for ¢ > 0 the required Dirichlet data is given by f = fxihz =
64*1/th7$07}1‘ To get the synthetic data Agf and Ap f, we need to solve
the boundary value problems (5.2) and (5.3) with the Dirichlet condi-
tion f. To solve these forward problems, we use the pde toolbox with
the finite element method in Matlab 7.0. Since we need to collect data
on the bottom boundary of 2, we refine the mesh there, see Figure 6.2.

FiGurE 6.2. Example of our FEM meshes. The mesh
has 2™ + 1 nodes on the top boundary and 2" 4+ 1 nodes
on the lower boundary. This example is created with
m = 4, n = 6. In solving our forward problems, we
choose m = 6, n = 12.

To show the effect of noise to our method, we add appropriate noise
to the synthetic data. We consider the form of noise given in [7]. To
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be precise, let 1 : [—1,1] — C be a random function defined by

32

n(s) = > (a+ iby)e™™/?,

k=-32

where ay, b, ~ N (0,1) are normally distributed random numbers. The
number 32 in 7 is chosen to roughly model a collection of 32 electrodes
on the bottom boundary of {2. Measurement noise is modeled by Ap f
by Apf + ¢n with

Ao

Il
where A > 0.

Our strategy of reconstructing the inclusion is described as follows.
We take appropriate hy and hy with h; > hs and choose a suitable num-
ber of probing fronts determined by t; for j = 1,---,J with ¢; < t,44.
In each probing cone I',,,, we construct the Dirichlet data f supported
in the intersection of I',,, and the bottom boundary of 02 for every hy
and t;, 7 =1,---,J, k=12, and m = 1,--- , M. We now evaluate
E;j = E(N,t;, hy) and determine ¢, such that E, 412 > F,111. Then
the region Rr  defined by

Rr, ={z €D, on(x) <t,'}

is the largest region in I',, which does not intersect the inclusion. So
the region R := U,,Rr,, is the one with absence of inclusion. Our
numerical results for each sweeping scheme are shown in Figure 6.3
and Figure 6.4. To save computational time, we only show numerical
results obtained from probing the region from one side (the bottom
part of the boundary). Since our domain is rectangle, we can expect to
obtain similar results when we probe the region from other sides. We
believe that these numerical results are sufficient to demonstrate the
applicability of our method.

7. CONCLUSION

In this work we present a framework of constructing special complex
geometrical optics solutions for several systems of two variables that
can be reduced to a system with the Laplacian as the leading term.
Here we choose complex polynomials as phase functions. Using these
special solutions, we design a novel algorithm to identify embedded
objects with boundary measurements. One distinctive feature of our
method is that we can probe the region using cones with as small
opening angle as we wish. Theoretically, we are able to reconstruct the
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exact geometry of the embedded object whose boundary points are all
detectable. One typical example is the star-shaped object.

In the numerical experiments, we consider the case of inclusion em-
bedded in a domain with homogeneous conductivity. The numerical
results show that our method detects the location of inclusion quite
well and is stable under measurements with (small) noise. For compu-
tational reasons, we only consider N = 4 and use two sweeping schemes
separately. It is quite natural to consider higher N’s and also combine
two sweeping schemes into one. Of course, by doing so, we need to pay
the price of increasing computational time.

Our method can be applied to classes of equations or even systems in
two dimensions that can be reduced to the Laplacian on the top order
part. Its flexibility and effectiveness gives us another technique that
can potentially be used in real applications such as medical imaging or
nondestructive evaluation.
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FiGURE 6.3. Numerical results of the first sweeping
scheme. All black regions have the conductivity 4 and
all gray regions have conductivity 1. The first column
represents the actual location of inclusions. The sec-
ond column is the theoretical reconstruction. The third
column represents the reconstruction from noiseless syn-
thetic data. The fourth column is the reconstruction
from data with 0.01% noise.
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FIGURE 6.4. Numerical results of the second sweeping
scheme. All black regions have the conductivity 4 and
all gray regions have conductivity 1. The first column
represents the actual location of inclusions. The sec-
ond column is the theoretical reconstruction. The third
column represents the reconstruction from noiseless syn-
thetic data. The fourth column is the reconstruction
from data with 0.01% noise.



