INTEGRAL GEOMETRY OF TENSOR FIELDS ON A CLASS OF NON-SIMPLE
RIEMANNIAN MANIFOLDS

PLAMEN STEFANOV AND GUNTHER UHLMANN

ABSTRACT. We study the geodesic X-ray transforhg of tensor fields on a compact Riemannian manifold
M with non-necessarily convex boundary and with possible conjugate points. We assunig-timknown

for geodesics belonging to an open détwith endpoint on the boundary. We prove generic s-injectivity and
a stability estimate under some topological assumptions and under the condition that for, §nye 7* M,
there is a geodesic ifi' throughx normal to¢.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let (M, 3M) be a smooth compact manifold with boundary, andgdlet C* (M) be a Riemannian metric
on it. We can always assume th@¥/, oM ) is equipped with a real analytic atlas, whild/ andg may or
may not be analytic. We define the geodesic X-ray transférai symmetric 2-tensor fields by

Ly
) If(y) = /0 ). 72 0) .

where[0,/,] > t — y is any geodesic with endpoints ah/ parameterized by its arc-length. Above,
(f,02) is the action off on the vectord, that in local coordinates is given bfi;6?6/. The purpose of
this work is to study the injectivity, up to potential fields, and stability estimated fagstricted to certain
subsetd” (that we call/ 1), and for manifolds with possible conjugate points. We will impose below certain
conditions on the conjugate points of the geodesicdbthat would be fulfilled if there are no conjugate
points on them. We also require thitis an open sets of geodesics such that the collection of their conormal
bundles coverd™* M. This guarantees thdi- resolves the singularities. The main results are injectivity up
to a potential field and stability for generic metrics, and in particular for real analytic ones.

We are motivated here by the boundary rigidity problem: to recaveup to an isometry leavingM
fixed, from knowledge of the boundary distance functjeix, y) for a subset of pairéx, y) € M x IM,
seee.g., [Mi, Shl, CDS, SU4, PU]. In presence of conjugate points, one should study instead the lens rigidity
problem: a recovery of from its scattering relation restricted to a subset. Thens the linearization of
those problems for an appropriate Since we want to trace the dependencd pfon perturbations of the
metric, it is more convenient to work with opdiis that have dimension larger thanif » > 3, making the
linear inverse problem formally overdetermined. One can use the same method to study restricfiams of
n dimensional subvarieties but this is behind the scope of this work.

Any symmetric 2-tensor fieldf can be written as an orthogonal sum ofalenoidalpart f* and a
potentialonedv, wherev = 0 on dM, andd stands for the symmetric differential of the 1-fonm see
Section 2. Then(dv)(y) = 0 for any geodesig’ with endpoints oM . We say that/ i is s-injective
if Irf = 0implies f = dv with v = 0 on dM, or, equivalently,/ = f*. This problem has been
studied before fosimplemanifolds with boundary, i.e., under the assumption thit is strictly convex,
and there are no conjugate pointsMi (then M is diffeomorphic to a ball). The book [Sh1] contains the
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main results up to 1994 on the integral geometry problem considered in this paper. Some recent results
include [Sh2], [Ch], [SU3], [D], [Pe], [SSU], [ShU]. In the two dimensional case, following the method
used in [PU] to solve the boundary rigidity problem for simple 2D manifolds, injectivity of the solenoidal
part of the tensor field of order two was proven in [Sh3]. In [SU4], we considéred all geodesics and
proved that the set of simple metrics on a fixed (simple) manifold for wHigh s-injective is generic in
Ck(M), k > 1. Previous results include s-injectivity for simple manifolds with curvature satisfying some
explicit upper bounds [Sh1, Sh2, Pe]. A recent result by Dairbekov [D] proves s-injectivity for non-trapping
manifolds (not-necessarily convex) satisfying similar bounds, that in particular prevent the existence of
conjugate points.

Fix a manifold with boundary/; such thatM{nt DM, whereMlint stands for the interior od/;. Such
a manifold is easy to construct in local charts, then glued together.

Definition 1. We say that the”* (M) (or analytic) metricg on M is regular, if ¢ has aC* (or analytic,
respectively) extension alfy, such that for any(x, &) € T* M there exist®¥ € T, M \ 0 with (§,6) =0
such that there is a geodesic segmgpy through(x, 8) such that

(a) the endpoints of ¢ are in MM\ M.

(b) there are no points o, ¢ conjugate tox.
Any geodesic satisfying (a), (b) is calledsanple geodesic througkh.

Note that the property of being simple depends on the point One could impose the more restrictive
assumption that any € I' lacks conjugate points; then one could call such geodesics simple, without
referring to a specifia. The geodesics if” are allowed to self-intersect.

Since we do not assume thaf is convex, given(x, ) there might be two or more geodesic segments
y;j issued from(x, 6) such thaty; N M have different numbers of connected components. Some of them
might be simple, others might be not. For example for a kidney-shaped domain and & fixéyl we
may have such segments so that the intersection withhas only one, or two connected components.
Depending on which point iff"* M we target to recover the singularities, we may need the first, or the
second extension. So simple geodesic segments through sqithat we call simple geodesics through
are uniquely determined by an initial pointand a directior® and its endpoints. In case of simple manifolds,
the endpoints (of the only connected componeniin unless the geodesics does not intersktt are not
needed, they are a function ¢t, 6). Another way to determine a simple geodesic is by parametrizing it
with (x,n) € T(M™\ M), suchthat expn € M™\ M then

@ Yx = {€XP(10),0 <1 < 1},
This parametrization induces a topology on the Eetf simple geodesics through points af ™.

Definition 2. The setl” of geodesics is calledomplete, if
(@) V(x, &) € T*M there exists a simple geodesice I" throughx such thaty is normal to¢ at x.
(b) I" is open.

In other words, a regular metrig is a metric for which a complete set of geodesics exists. Another way
to express (a) is to say that
3) N*I:={N*y;:yel'}D>DT"M,
whereN *y stands for the conormal bundle pf
We always assume that all tensor fields defineddnare extended agto M; \ M. Notice that/ f/ does
not change if we replaca/ by another manifoldV/, ,, close enough ta\/ such thatM C M,,, C M,
but keepf supported inM . Therefore, assuming thaf has an analytic structure as before, we can always

extendM a bit to make the boundary analytic and this would k&ap, dM, g) regular. Then s-injectivity
in the extended/ would imply the same in the originalf, see [SU4, Prop. 4.3]. So from now on, we will
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assume thatM, 9M ) is analytic butg does not need to be analytic. To define correctly a norra fh(M),
respectivelyC* (M), we fix a finite analytic atlas.

The motivation behind Definitions 1, 2 is the following: gf is regular, and” is any complete set of
geodesics, we will show that; f = 0 implies thatf* € C/(M), wherel = (k) — oo, ask — oo, in
other words, the so restricted X-ray transform resolves the singularities.

The condition ofg being regular is an open one fgre C*(M), i.e., it defines an open set. Any simple
metric on M is regular but the class of regular metrics is substantially larger if dine> 3 and allows
manifolds not necessarily diffeomorphic to a ball. For regular metricdfnwe do not impose convexity
assumptions on the boundary; conjugate points are allowed as far as the metric is régudags not need
to be non-trapping. In two dimensions, a regular metric can not have conjugate poitftsomt the class is
still larger than that of simple metrics because we do not require strong convexity of

Example 1.To construct a manifold with a regular metricthat has conjugate points, let us start with a
manifold of dimension at least three with at least one pair of conjugate poiatslv on a geodesifz, b]

t = p(t). We assume that is non-selfintersecting. Then we will construef as a tubular neighborhood

of y. For anyxy € y, defineSy, = exp,,{v; (v,y(x0)) = 0, [v] < &}, andM = UyyeySx, With

¢ < 1. Then there are no conjugate points along the geodesics that can be loosely described as those
“almost perpendicular” tay but not necessarily intersecting, and the union of their conormal bundles
coversT*M . More precisely, fixx € M, thenx € Sy, for somex, € y. Let0 # & € Ty M. Then there

exists0 # v € Ty M that is both tangent t&,, and normal t&§. The geodesic throughx, v) is then a

simple one fore <« 1, and the latter can be chosen in a uniform way independent @i obtain a smooth
boundary, one can pertutkd so that the new manifold is still regular.

Example 2.This is similar to the example above but we consider a neighborhood of a periodic trajectory. Let
M = {(x1)? + (x2)? < 1} x S! be the interior of the torus iR?, with the flat metriddx')? + (dx?)? +

dh?, whered is the natural coordinate afi' with period2z. All geodesics perpendicular # = const. are
periodic. All geodesics perpendicular to them have lengths not exce@dind their conormal bundles cover

the entirel"* M (to cover the boundary points, we do need to extend the geodesicsin a neighborhedd of
ThenM is a regular manifold that is trapping, and one can easily show that a small enough perturbation of
M is also regular, and may still be trapping.

The examples above are partial cases of a more general ong.MetM’) be a simple compact Rie-
mannian manifold with boundary with did/’ > 2, and letA/” be a Riemannian compact manifold with
or without boundary. Lef/ be a small enough perturbation 8f’ x M”. ThenM is regular.

Let g be a fixed regular metric oM. The property ofy being simple through some is stable under
small perturbations. The parametrization @y n) as in (2) clearly has two more dimensions that what is
needed to determine uniquelys. Indeed, a parallel transport of, ) alongyx 5, close enough tor, will
not change/|as, similarly, we can replace by (1 + ¢)n, |¢] < 1.

We assume throughout this paper thdt satisfies the following.

Topological Condition: Any path in M connecting two boundary points is homotopic to a polygon
ci Uyt Ucy Uyy U---Uyg Ucgyq With the properties:

(i) ¢j are paths oM ;

(i) For any j, yj = yj|m for somey; € I'; y; lie in M ™ with the exception of its endpoints and is
transversal td M at both ends.

Theorem 1. Let g be an analytic, regular metric o/ . LetI” be a complete complex of geodesics. Then
I is s-injective.
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The proof is based on using analytic pseudo-differential calculus, see [Sj, Tre]. This has been used before
in integral geometry, see e.g., [BQ, Q], see also [SU4].

To formulate a stability estimate, we will parametrize the simple geodesics in a way that will remove the
extra two dimensions. Lel,, be a finite collection of smooth hypersurfacesi\mj”t. Let H,, be an open
subset of{(z,0) € SMy; z € Hy,0 € T, H,}, and Ietilnﬂ;(z, #) > 0 be two continuous functions. Let
I’ (Hm) be the set of geodesics

4) F'(Hm) = {y2,60(0); 1y(z.0) <t < 17(2.0), (z.60) € Hpn}

that, depending on the context, is considered either as a family of curves, or as a point set. We also assume
that eacty € I'(H,,) is a simple geodesic through

If g is simple, then one can take a singleé = dM; with [~ = 0 and an appropriaté*(z,0). If g
is regular only, and” is any complete set of geodesics, then any small enough neighborhood of a simple
geodesicin™ has the properties listed above and by a compactnessargument on can choose a finite complete
set of suchl"(H,,)’s, that is included in the original’, see Lemma 1.

Given'H = {H,} as above, we consider an open $¢t = {H,,}, such thatH), € H,, and let
I'(H,,) be the associated set of geodesics defined as in (4), with the sam&etI"(H) = U (Hpy),
I'(H') = UI'(H},).

The restrictiony € I'(H,,,) C I'(H») can be modeled by introducing a weight functiep in H,,, such
thata,, = 1 on'H,,, anda,, = 0 otherwise. More generally, we allowy, to be smooth but still supported
in H,,. We then writex = {o,,}, and we say that € C* (), if a,, € CK(H,), Ym.

We considetly,, = a1, or more precisely, in the coordinates 0) € H,,

Inm(z,0)
(5) I f = am(=.0) /0 (f(ep) 720) At (2,6) € Mo,
Next, we set
(6) I(X = {](xm}’ N‘xm = I(:{km]‘xm = ]*lam|2]’ N(X = ZN‘xm’

where the adjoint is taken w.r.t. the measuye &= |(v(z), 6)| dS; d6 on H,,, dS; dd being the induced
measure orb M, andv(z) being a unit normal td,,.

S-injectivity of N, is equivalent to s-injectivity forl,,, which in turn is equivalent to s-injectivity of
restricted to supp, see Lemma 2. The spadé? is defined in Section 2, see (8).

Theorem 2.
(@) Letg = go € Ck, k > 1 be regular, and let{’ € H be as above with"(H’) complete. Fix
o = {a,} € C* with H), C suppx,, C Hm,. Then ifl, is s-injective, we have

(7) 1/ 200 = ClNaf Nl 20,

(b) Assume that = a, in (a) depends o € C*, so thatC*(M;) > g — C!(H) > ay is continuous
with/ > 1,k > 1. Assume thafgo,ago is s-injective. Then estimate (7) remains true foin a small

enough neighborhood af, in C* (A4;) with a uniform constant > 0.

In particular, Theorem 2 proves a locally uniform stability estimate for the class of non-trapping manifolds
consideredin [D].

Theorems 1, 2 allow us to formulate generic uniqueness results. One of them is formulated below. Given
a family of metricsg c C* (M), andUg C T(M{nt \ M), depending on the metrig € G, we say that/,
depends continuously og, if for any go € G, and any compack C U™, we havek C UM for g in a
small enough neighborhood @f, in C*. In the next theorem, we také, = I, that is identified with the
corresponding set dfx, n) asin (2).
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Theorem 3. LetG c Ck(M;) be an open set of regular metrics oW, and let for eachg € G, I'; bea
complete set of geodesics relatedstand continuously depending gn Then fork > 0, there is an open
and dense subse}, of G, such that the corresponding X-ray transforfp, is s-injective.

Of course, the sdf; includes all real analytic metrics i@.

Corollary 1. Let R(M) be the set of all regulaC* metrics onM equipped with theCk (M) topology.
Then fork > 1, the subset of metrics for which the X-ray transfofrover all simple geodesics through all
points in M is s-injective, is open and denseR( M ).

The results above extend the generic results in [SU4], see also [SU3], in three directions: we allow
conjugate points but for any, we use only geodesics without points conjugatertahe boundary does not
need to be convex; and we use incomplete data, i.e., we use integrals over subsets of geodesics only.

In Section 6, we discuss versions of those results for the X-ray transform of vector fields and functions,
where the proofs can be simplified. Our results remain true for tensors of any mrdtdre necessary
modifications are addressed in the key points of our exposition. To keep the paper readable, we restrict
ourselvesto orders = 2, 1, 0.

2. PRELIMINARIES

We say thatf is analytic in some subséf of an analytic manifold, not necessarily open,fifcan be
extended analytically to some open set containingThen we writef € A(U). Letg € CK(M), k > 2
or g € A(M) be a Riemannian metric in/. We work with symmetric 2-tensorg = { f;;} and with
1-tenors/differential forms; (the notation here and below is in any local coordinates). We use freely the
Einstein summation convention and the convention for raising and lowering indices. We thifik ahd
fU = f.18* g% as different representations of the same tensdridfa covector at, then its components
are denoted by;, while £/ is defined ag’ = g'/&;. Next, we denoté£|?> = &£, similarly for vectors
that we usually denote b§. If 6;, 6, are two vectors, the(p, 6,) is their inner product. If is a covector,
andé is a vector, ther¢, 0) stands forg (0). This notation choice is partly justified by identifyirigwith a
vector, as above.

The geodesics of can be also viewed as the-projections of the bicharacteristics of the Hamiltonian
Eg(x.§) = 187 (x)&&;. The energy leveE, = 1/2 corresponds to parametrization with the arc-length
parameter. For any geodesicwe havef™/ (x)&:£ = f;;(y(x)y 1)y’ (), where(x, &) = (x(1),£(?)) is
the bicharacteristic withx-projection equal tg/.

2.1. Normal coordinates near a simple geodesic and boundary normal coordinates.et[/~, /"] 3 ¢
Yxo0.00 (1) b€ a simple geodesic throughy = yx,.¢,(0) € M; with 6y € Sy, M;. The map 6 — exp, (10)
is a local diffeomorphism fof close enoughtd, and: € [/, "] by our simplicity assumption but may not
be a global one, sincg,, ¢, may self-intersect. On the other hand, there can be finitely many intersections
only and we can assume that each subsequentintersection happens on a differentbpinafther words,
we think of yy as belonging to a new manifold that is a small enough neighborhogg,cdnd there are no
self-intersections there. The local charts of that manifold are defined through the exponential map above.
Therefore, when working neas,, o, we can assume that, | ¢, does not intersect itself. We will use this in
the proof of Proposition 2. Then one can choose a neighborlioad o and normal coordinates centered
atx, there, denoted by again, such thag,, g, is given byy,, g, = {(0,....0,2), I <t <[t} xo =0,
andg;;(0) = §;;. We may assumethét = U, = {|x/| <e, [7—e < x" <[ +¢} with some) < ¢ < 1.
If ¢ € Ck, then we lose two derivatives and the new metric is(ifi2; if ¢ is analytic neany,, then the
coordinate change can be chosen to be analytic, as well.

We will often use boundary normal (semi-geodesic) coordinétésx™) near a boundary point. If’ €
R"~! are local coordinates ol , andv(x’) is the interior unit normal, fop € M close enough téM,
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they are defined by exp, o) x"v = p. Thenx" = 0 definesdM, x" > 0in M, x" = dist(x,dM). The
metricg in those coordinates again satisfigg = 8;,, andl’}, = I/, =0, Vi. We also use the convention
that all Greek indices take values fronton — 1. Givenx € R", we writex” = (x!, ..., x"™1).

Finally, given a geodesigy(¢), 0 < ¢ < [ without conjugate points, one can choose coordinétésx”)
neary, so that the latter is given b0, ...,0,7), 0 <t <!}, gin = Sin, andF,,in =TI/ =0,Vi,seee.g.,
[SU3, sec. 9], In fact, those coordinates are boundary normal coordinates to a certain small hypersurface
perpendicular ta/y at yo(—¢), & < 1, wherey, is extended ta € [—e, /] so that there still no conjugate
points on it.

2.2. Integral representation of the normal operator. We define theL.? space of symmetric tensorg
with inner product

(fih) = /MUL i) (detg)"/? dx.

where, in local coordinates,f, 7) = f;;#/. Similarly, we define the.? space of 1-tensors (vector fields,
that we identify with 1-forms) and th&? space of functions im/. Also, we will work in SobolevH*
spaces of 2-tensors, 1-forms and functions. In order to keep the notation simple, we will use the same
notationL? (or H*) for all those spaces and it will be clear from the context which one we mean.

In the fixed finite atlas on/, extended tal/;, the norms| /|| -« and theH* norms below are correctly
defined. In the proof, we will work in finitely many coordinate charts because of the compactn@#s of
and this justifies the equivalence of the correspond&hiand #* norms.

We define the Hilbert spacB2(M;) used in Theorem 2 as in [SU3, SU4]. Let= (x’, x") be local
coordinates in a neighborhodd of a point ondM such thatx” = 0 definesdM . Then we set

n—1
1B =, ( D 000/ i 411 )
j:
This can be extended to a small enough neighborhbaaf 0M contained inA;. Then we set
n
(8) 1/ gzearyy = 2 M0 S gy + 1 Wy
j=1

The sp~acel-12(M1) has the property that for each € H'(M) (extended as zero outside ), we have
Nf e H?>(M,). This s not true if we replacé&l2(M,) by H>(M,).

Lemma 1. LetI; andG be as in Theorem 3. Then fér > 1, for any g, € G, there exist’ = {H,,,} €
H = {Hn} such thatl"(H) € I'g,, andH’, H satisfy the assumptions of Theorem 2. Moreo%£rand H

satisfy the assumptions of Theorem 2 foin a small enough neighborhood gf, in C¥.

Proof. Fix go € G first. Given(x,&) € T*M, there is a simple geodesjc : [/~,/1T] — M, in
I'¢, throughx, normal to§, at xo. Choose a small enough hypersurfablethroughx, transversal to
y € Ig,, and local coordinates neag as in Section 2.1 above, so the§ = 0, H is given byx" = 0,
y(0) = (0,...,0,1). Thenone can séftfy = {x; x" = 0; |[x'| <&} x {0; |0'| < &}, andH;, is defined in
the same way by replacingby /2. We definel" (H,) as in (4) with/*(z, §) = I*. Then the properties
required forHy, including the simplicity assumption are satisfied wier ¢ <« 1. Choose such an, and
replace it with a smaller one so that those properties are preserved under a small perturbati@nypoint
in SM close enough t@xo, &) still has a geodesic it (7)) normal to it. By a compactness argument, one
can find a finite number of{,,, so that the corresponding(*’) = UI'(H,,) is complete.

The continuity property ofl ; w.r.t. g guarantees that the construction above is stable under a small
perturbation ofg. O
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Similarly to [SU3], one can see that the még, : L*(M) — L*(H,. du) defined by (5) is bounded,
and therefore theormal operatorN,,, defined in (6) is a well defined bounded operator bA(M ). Ap-
plying the same argument t;, we see thatV,,, : M — M, is also bounded. By [SU3], at least wheh
is supported in the local chart neag = 0 above, andv is close enough tag,

9) [Namf]"’f’(x)zfo /SQ|aﬁ,(x,9)|29"/9j/f,-j(yx,g(z)))'/)’;,e(t))}){,e(t)d9dt,

wherelal, (x, 0)12 = |Gm(x, 0)2 + |@m(x, —0)|2, andd,y is the extension ofy, as constant along the
geodesic througlix, 8) € H,,; and equal td for all other points not covered by such geodesics. Formula
(9) has an invariant meaning and holds without the restriction on gup@n the other hand, if supp is
small enough (but not necessarily nea), y = exp, (¢6) defines a local diffeomorphisa® — y € suppf,
therefore after making the change of variables- exp, (¢6), see [SU3], this becomes

1 S7(y) dp dp dp dp . 9*(p?/2)
10 Ny - Am T TP det— L dy,
(10) m/ (¥) J/detg / ( ),o(x,y)”_1 ayt dy/ axk 9x! © dxdy Y
where
(11) Am(x. y) = |of, (x. grad, p(x. ) |,

y are any local coordinates near suppandp(x, y) = | exp,! y|. Formula (10) can be also understood
invariantly by considering do and d, p as tensors. For arbitrary € L?(M) we use a partition of unity in
TMIint to expressVy,, f(x) as a finite sum of integrals as above, fonear any fixedx,.

We get in particular thadVy,,, has the pseudolocal property, i.e., its Schwartz kernel is smooth outside the
diagonal. As we will show below, similarly to the analysis in [SU3, SU¥}, is awDO of order—1.

We always extend functions or tensors definedinas0 outsideM . ThenN, f is well defined neaM/
as well and remains unchanged¥f is extended such that it is still if/;, and 1 is kept fixed.

2.3. Decomposition of symmetric tensors.For more details about the decomposition below, we refer to
[Sh1]. Given a symmetric 2-tensgf = f;;, we define the 1-tensalf calleddivergenceof f by

811 = &”* Vi fij.
in any local coordinates, wheig, are the covariant derivatives of the tengarGiven an 1-tensor (a vector
field or an 1-form), we denote by/v the 2-tensor called symmetric differential af

1
[dU]jj = 5 (V,'Uj + Vjv,-).

Operators/ and—§ are formally adjoint to each other ih?(M). It is easy to see that for each smoath
with v = 0 on dM, we havel (dv)(y) = 0 for any geodesig’ with endpoints ordM . This follows from
the identity

d
(12) 4 P @).7(0) = {dv(y 0)). P2 ().
If « = {ax} is as in the Introduction, we get
(13) Iy(dv) =0, VYve Cy(M),

and this can be extended toc H, (M) by continuity.

It is known (see [Sh1] and (15) below) that fgrsmooth enough, each symmetric tengore L2(M)
admits unique orthogonal decompositigh= f* + dv into asolenoidaltensorS f := f* and apotential
tensorP f := dv, such that both terms aref? (M), f*issolenoidal,i.ed§f* = 0in M, andv € Ho1 (M)
(i.,e.,v = 0 ondM). In order to construct this decomposition, introduce the operAfore= §d acting on
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vector fields. This operator is elliptic i, and the Dirichlet problem satisfies the Lopatinskii condition.
Denote byA{, the Dirichlet realization oAA* in M. Then

(14) v= (A8 =S —d(A%) S
Therefore, we have

—1

P=d(Ay)'s S=1d-7P,

and for anyg € C!(M), the maps
(15) (A7 HTY (M) — Hf (M), P,S:L*(M)—> L*(M)

are bounded and depend continuouslygrsee [SU4, Lemma 1] that easily generalizes for manifolds. This
admits the following easy generalization: for= 0,1, ..., the resolvent above also continuously maps
H*"!into HSt! n H{, similarly, P andS are bounded in#*, if g € C*, k >> 1 (depending on).
Moreover those operators depend continuouslyon

Notice that even whery' is smooth andf" = 0 on dM, then f* does not need to vanish an/. In
particular, /%, extended a$ to M, may not be solenoidal anymore. To stress on the dependence on the
manifold, when needed, we will use the notatigp andf]f,l as well.

OperatorsS andP are orthogonal projectors. The problem about the s-injectivitfgahen can be posed
as follows: if I, f = 0, show thatf* = 0, in other words, show tha, is injective on the subspacelL? of
solenoidal tensors. Note that by (13) and (6),

(16) Ny = NyS = SNy, PNy = NyP = 0.

Lemma 2. Leta = {on} with o, € C5°(Hp) be as in the Introduction. The following statements are
equivalent:

(a) I is s-injective onL?(M);

(b) Ny : L2(M) — L?*(M) is s-injective;

(C) Ny : L>(M) — L?(M,) is s-injective; _

(d) If % is the set of geodesics issued frasuppo,,)™ as in (4), andl’'® = ULY, thenra is s-
injective.
Proof. Let I, be s-injective, and assume th&l, / = 0in M for somef € L*(M). Then

0=(Naf Nrzory = Y Nemlf 2y, g = /=0

This proves the implicatioriz) = (b). Next, () = (c) is immediate. Assume (c) and lgt € L?(M) be
suchthatl/, f = 0. ThenN, f = 0in My, thereforef* = 0. Therefore(c) = (a). Finally, (a) < (d)
follows directly form the definition of,. O

Remark. Lemma 2 above, and Lemma 4(a) in next section show tsappe,,, )™ in (d) can be replaced by
suppay, if I'* is a complete set of geodesics.

3. MICROLOCAL PARAMETRIX OF Ny

Proposition 1. Letg = go € C*(M) be aregular metric onM/, and letH’ € H be as in Theorem 2.

(a) Leta be as in Theorem 2(a). Then for any= 1,2, ..., there existsk > 0 and a bounded linear
operator y
Q: H*(M;) — SL*(M),
such that
17) ONof = [y + Kf. V[ eH (M),

whereK : H'(M) — SH'T(M) extendstaK : L2(M) — SH'(M). If t = oo, thenk = oo.
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(b) Lete = g be asin Theorem 2(b). Then, fgrin someC* neighborhood oy, (a) still holds andQ
can be constructed so tha would depend continuously gn

Proof. A brief sketch of our proof is the following: We construct first a parametrix that recovers microlocally
jx,ll from N, /. Next we will compose this parametrix with the operaj;t}f;;1 = fi asin [SU3, SU4].
Part (b) is based on a perturbation argument for the Fredholm equation (17). The need for such two step
construction is due to the fact that in the definition 6¥, a solution to a certain boundary value problem is
involved, therefore neatM , our construction is not just a parametrix of a certain elligtioO. This is the
reason for losing one derivative in (7). For tensors of orders 0 and 1, there is no such loss, see [SU3].

As in [SU4], we will work with wDOs with symbols of finite smoothne&s > 1. All operations we
are going to perform would require finitely many derivatives of the amplitude and finitely many seminorm
estimates. In turn, this would be achievedtife C*, k > 1 and the correspondingDOs will depends
continuously ong.

Recall [SU3, SU4] that for simple metrica] is a¥DO in M of order—1 with principal symbol that
is not elliptic butN + | D|~!P is elliptic. This is a consequence of the following. We will say that (and
any other#’DO acting on symmetric tensors) @liptic on solenoidal tensorsf o, (Ny )% (x,£) fir = 0
andg’ f;; = 0imply f = 0. Then is elliptic on solenoidal tensors, as shown in [SU3]. That definition is
motivated by the fact that the principal symbol&fs given by f;; + i€’ f;;, and s-injectivity is equivalent
to the statement thaV /' = 0 andéf = 0 in M imply f = 0. Note also that the principal symbol afis
given byv; — (&vj + &v;)/2, ando, (N ) vanishes on tensors represented by the r.h.s. of the latter. We
will establish similar properties a¥, below.

Let Ny, be as in Section 2.2 with: fixed.

Lemma 3. Ng,, is a classical#’ DO of order—1 in MI™. It is elliptic on solenoidal tensors atxo. £°) if

and only if there exist8, € Tx,M; \ 0 with (£9,6,) = 0 such thatx(xg, f9) # 0. The principal symbol
0p(Ny,,) vanishes on tensors of the kinl; = (§;v; + &v;)/2 and is non-negative on tensors satisfying

£ fij = 0.

Proof. We established the pseudolocal property already, and formulas (9), (10) together with the partition
of unity argument following them imply that it is enough to work within a small neighborhood of a fixed

Xg € M{”t, and with /* supported there as well. Then we work in local coordinates ngaiffo expressVy,,,

as a pseudo-differential operator, we proceed as in [SU3, SU4], with a starting point (10). Recall that for
close toy we have

P2(x. ) =GP (x. ) (x = p) (x — p)/,

902(x, ;
L) 26 e - ),
3%p%(x.y) 3)
“oxdapi 20 (D)

whereGl.(jl), Gl.(jz) Gl.(jt”) are smooth and on the diagonal. We have
2 3
G, x) =GP (x.x) = G (x. %) = gij (x).
ThenN,,, is a pseudo-differential operator with amplitude

i Lﬂ_z
Mijri(x, 9.8 = /é’_'g'z (G(I)Z'Z) P k(g6
(19) ~ ~ detG®
<[00 [60=] [602],[59:), S0

J Jdetg =
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where@i(jz)(x, y) = Gl.(jz)(y, x). As in [SU4], we note thai/;;«; is the Fourier transform of a positively
homogeneousdistribution in thevariable, of ordern—1. Therefore M; 4, itself is positively homogeneous
of order—1in &. Write

(19) M(x,p.8) = /e_iE'ZIZI_”HM(x,y, 0)dz, 6 =z/|z,

where
—n—+1

2

Mg (6,7, 0) = (GD0-0) 7 Jud (v g7 G0

(20) detG®

! Jdetg(x)’

and pass to polar coordinates= rf. Sincem is an even function of/, smooth w.r.t. all variables, we get
(see also [H, Theorem 7.1.24])

(22) M(x,y,8=mn /IOI—I m(x,y,0)5(0-&)do.

« [GP0)[G6],[G@0], [6]

This proves thatl/ is an amplitude of order1.
To obtain the principal symbol, we set= y above (see also [SU3, sec. 5] to get

(22) 0y (N ). 6) = M(rx.8) = [ (e, x.0)3(6 -6 8.
19]=1
where
—n+1__
(23) m K (x, x,0) = |aﬁ1(x, 9)|2\/detg(x) (gij(x)eiej) 2 007 gkg! .

To prove ellipticity of M (x, £) on solenoidal tensors af,, £°), notice that for any constant symmetric
real f;;, we have

) N == .2
(24)  m* (xq, x0,0) fij fr1 = |O‘£1(x0v9)|2\/m(g’7(x°)9191) 2 (ﬁjelej) =0

This, (22), and the assumptiogy, (xo, 6p) # 0 imply thatM 7k (xg, xo, £°) f3; fir = 0yields f;;0767 =0
for 0 perpendiculart¢®, and close enoughté. If in addition(£°)/ f;; = 0, then this impliesf;; 0’6/ = 0
for 8 € neighldy), and that easily implies that it vanishes for @ll Since /' is symmetric, this means that
f=0.

The last statement of the lemma follows directly from (22), (23), (24).

Finally, we note that (23), (24) and the proof above generalizes easily for tensors of any order. O

We continue with the proof of Proposition 1. Since (b) implies (a), we will prove (b) directly. Notice that
H' andH satisfy the properties listed in the Introduction, right before Theoremg = go,. On the other
hand, those properties are stable under sii&lperturbation ofz,. We will work here with metricg close
enough togg.

By Lemma 3, since”(H’) is complete, N, defined by (6) is elliptic on solenoidal tensors M. The
rest of the proof is identical to that of [SU4, Proposition 4]. We will give a brief sketch of it. To use the
ellipticity of N, on solenoidal tensors, we completg, to an elliptic’DO as in [SU4]. Set

(25) W = Ny + |D|"'Puy,,

where| D|~! is a properly supported parametrix 6fAg)!/? in neigh M;). The resolvent—Aj, ) !
involved in Py, andSyy, can be expressed a8, + R,, whereR; is any parametrix nead/;, andR; :
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LIy M) — Cl(My), Ry : H'(My) — H'T2(My), wherel = I(k) > 1,if k > 1. ThenW is an
elliptic DO insideM; of order—1 by Lemma 3.

Let P be a properly supported parametrix fi3f of finite order, i.e.,P is a classical?’DO in the interior
of M; of order1 with amplitude of finite smoothness, such that

(26) PW =Id + K,
andK : L, (M) — H'(M) with [ as above. Then

Py :=S8m, P
satisfies
(27) PNy = Sum, + K,

where K, has the same property &5;. To see this, it is enough to appl§p,, to the left and right of (26)
and to use (16).

Next step is to construct an operator that recovgfs, given fjf,ll, and to apply it toP1 N, — K5. In
order to do this, it is enough first to construct a m&p such that iffjf,l1 and vy, are the solenoidal
part and the potential, respectively, correspondingftocs L?(M) extended as zero tdf; \ M, then
P, fjf,ll = Up, |3M. This is done as in [SU3] and [SU4, Proposition 4]. We also have

Py Py H*(My) — HY?(OM).
Then we showed in [SU4, Proposition 4] that one can set
QO = (Id+ dRP,) Py,
whereR : i+ u is the Poisson operator for the Dirichlet problexiu = 0in M, u|yar = h.
As explained above, we work with finite asymptotic expansions that require finite number of derivatives

on the amplitudes of ouwDOs. On the other hand, these amplitudes depend continuousgy anC*,
k > 1. As aresult, all operators above depend continuously anC*, k > 1. O

The first part of next lemma generalizes similar results in [SU3, Thm 2], [Ch, SSU] to the present situa-
tion. The second part shows that /* = 0 implies that a certairy’, with the same solenoidal projection, is
flatatoM . This f is defined by the property (29) below.

Lemma 4. Letg € Ck(M) be a regular metric, and lef” be a complete set of geodesics. Then
(a)Ker I N SL?(M) is finite dimensional and included i@’ (M) with [ = I(k) — oo, ask — o.
(b) If Ir f = 0 with / € L2(M), then there exists a vector fielde C!(M), withv|yss = 0 and/ as

above, such that foy’ := f — dv we have

(28) 0% flame = 0. o] <1,
and in boundary normal coordinates near any point@® we have
(29) i =0, Vi

Proof. Part (a) follows directly from By Proposition 1.
Without loss of generality, we may assume tidt is defined as\f; = {x, dist(x, M) < €}, withe > 0
small enough. By Proposition 1, applied A4,

(30) o, € CL(My),

wherel > 1,if k > 1.
Letx = (x/, x™) be boundary normal coordinates in a neighborhood of some boundary point. We recall
how to construct defined in M so that (29) holds, see [SUZ2] for a similar argument for the non-linear
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boundary rigidity problem, and [E, Sh2, SU3, SU4] for the present one. The condifiehdv);, = 0 is
equivalentto
(31) Vuvi + Vivy = 2fin, V|lxn=0 =0, i=1,...,n.

Recall thatV;v; = 9;v; — I}¥v;, and that in those coordinatesy, = I}, = 0. If i = n, then (31) reduces
to Vv, = 0yvn = fan, vy = 0 for x™ = 0; we solve this by integration over < x" < ¢ < 1; this gives

usv,. Next, we solve the remaining linear systenmof 1 equationsfor = 1,...,n — 1 thatis of the form
Vuvi = 2 fin — Vivy, or, equivalently,

(32) anvi_zpno;v(xzzﬁn_aivna Vilxn=0 =0, i=1,...,n—1,

(recall thate = 1,...,n —1). Clearly, if g and f are smooth enough nedd, then so isv. If we set

f = f* above (they both belong to Kdi-), then by (a) we get the statement about the smoothness of
v. Since the condition (29) has an invariant meaning, this in fact defines a construction in some one-sided
neighborhood obM in M. One can cub outside that neighborhood in a smooth way to defirgdobally
in M. We also note that this can be done for tensors of any ordesee [Sh2], then we have to solve
consecutivelyn ODEs.

Let / = / — dv, wherev is as above. Therf satisfies (29), and let

(33) far, = —dou,

be the solenoidal projection of in M;. Recall thatf', according to our convention, is extended as zero
in M, \ M that in principle, could create jumps acras¥ . Clearly, jx,ll = jx,ll becausef — f = dv

in M with v as in the previous paragraph, and this is also trué#pn with f f andv extended as zero
(and therw = 0 on dM;). In (33), the I.h.s. is smooth iff; by (30), andf satisfies (29) even outsid¥ ,
where it is zero. Then one can g&jy, by solving (31) withM replaced byM;, and /' there replaced by
fx,,l e C!(M,). Therefore, one gets thaly, , and thereforef, is smooth enough acro$d/, if ¢ € C¥,
k > 1, which proves (28).

One can give the following alternative proof of (28): L&t be related td”, as in Theorem 2. One can
easily check thatV,, restricted to tensors satisfying (29), is elliptic fgr # 0. SinceNaf = 0 nearM,
with f extended as 0 outsidd/, as above, we get that this extension cannot have conormal singularities
acrossdM . This implies (28), at least whepne C°°. The case of of finite smoothness can be treated by
using parametrices of finite order in the conormal singularities calculus. O

4. SANJECTIVITY FOR ANALYTIC REGULAR METRICS

In this section, we prove Theorem 1. Letbe an analytic regular metrics ¥, and letd; D M be the
manifold whereg is extended analytically according to Definition 1. Recall that there is an analytic atlas in
M, anddM can be assumed to be analytic, too. In other words, in this sedtdngM, g) is a real analytic
manifold with boundary.

We will show first that/r f = 0 implies f° € A(M). We start with interior analytic regularity. Below,
WFa (f) stands for the analytic wave front set ¢f see [Sj, Tre].

Proposition 2. Let (x¢,£%) € T*M \ 0, and lety, be a fixed simple geodesic through normal to £°.
Let 7/ (y) = 0 for some 2-tensoyf’ € L?(M) and all y < neigh(y,). Letg be analytic inneigh(y,) and
8f = 0nearxg. Then

(34) (x0,£%) & WFA ().

Since the analytic wave front set is closefljs analytic in some neighborhood @f, £°) as well.
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Proof. As explained in Section 2.1, without loss of generality, we can assumegtddes not self-intersect.
Let U, be a tubular neighborhood ¢f with x = (x’, x™) analytic coordinates in it, as in the first paragraph
of Section 2.1. We will use the notation there. In particuley,= 0, andx’ = 0 on y,. Recall that
2ij(0) = &;;. Theng® = ((£°)’, 0) with £2 = 0. We need to show that

(35) (0,£°) & WFA (/).

We choose a local chart for the geodesics closggtoSet firstZ = {x" = 0; |x’| < 7¢/8}, and denote
the x’ variable onZ by z’. Thenz’, 8’ (with |6’| <« 1) are local coordinates in neigpy) determined by
(Z/,0") = ¥,0).0,1)- Each such geodesic is assumed to be defined.on ¢ < </ + ¢, the same
interval on whichy, is defined. Lety(z’) be a smooth cut-off function equal tbfor |z/| < 3¢/4 and
supported inZ. Setd = (¢, 1), |6'| < 1, and multiply

If (Vz/,00,6) =0
by x(z')e'*?"¢ wherer > 0, £ is in a complex neighborhood ¢£°)’, and integrate w.r.t’ to get

(36) I €01 (00000 F 007,00 80" =0,

If 6/ = 0, we havex = (z/,¢). By a perturbation argument, f&¥' fixed and small enoughy, z’) are
analytic local coordinates, depending analytically@n In particular,x = (z/ + t6’,t) + O(|6’|) but this
expansion is not enough for the analysis below. Performing a change of variables in (36), we get

(37) / M OE 4 (x 0" fi5(x)b  (x, 0")b (x, 6 dx = 0

for |0'| < 1, VA, V&, where, for|f’| « 1, the function(x, 6”) — « is analytic and positive fox in a
neighborhood ofyy, vanishing forx ¢ U,; and the vector field has the same analyticity properties, and
b(0,0") =6,a(0,0") = 1.

To clarify the arguments that follow, note thatgfis Euclidean in neigfyy), then (37) reduces to

/ METOME) Xy £ (x)0767 dx = 0,
wherey = x(x’ — x"8’). Thené = (&', -0’ - &) is perpendicular t® = (6, 1). This implies that
(38) / Ty fii ()BT ()67 (§)dx = 0

for any functiond(¢) defined nea&®, such that(£) - £ = 0. This has been noticed and used beforg if
is close to the Euclidean metric (with = 1), see e.g., [SU2]. We will assume th&gf) is analytic. A
simple argument (see e.g. [Sh1, SU2]) shows that a constant symmetric tgnseuniquely determined
by the numbersf;; 676/ for finitely many@’s (actually, for N’ = (n + 1)n/2 6’s); and in any open set on
the unit sphere, there are suéls. On the other handf is solenoidal neak,. To simplify the argument,
assume for a moment thgt vanishes ord M and is solenoidal everywhere. Thehﬁj (&) = 0. Therefore,
combining this with (38), we need to choose = n(n — 1)/2 vectorsf (£), perpendicular tg, that would
uniquely determine the tensgfr on the plane perpendicular o To this end, it is enough to know that this
choice can be made fdr = £, then it would be true fof e neigh®). This way,&’ /;;(§) = 0 and theN
equations (38) with the so chosép(§), p = 1, ..., N, form a system with a tensor-valued symbol elliptic
nearé = £°. TheC> DO calculus easily implies the statement of the lemma ind@iRe category, and the
complex stationary phase method below, or the analytO calculus in [Tre] with appropriate cut-offs in
&, implies the lemma in this special caselfgally Euclidean).

We proceed with the proof in the general case. Since we will localize eventuallysgear 0, whereg
is close to the Euclidean metric, the special case above serves as a useful guideline. On the other hand, we
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work near a “long geodesic” and the lack of points conjugatego= 0 along it will play a decisive role in
order to allow us to localize near = 0.
Let 8(£) be a vector analytically depending gmeart = £°, such that

(39) 0(§)-£=0, 0"E =1 6E) =en

Here and belowg; stand for the vector§/dx/. Replaced = (#’,1) in (37) by 6(¢) (the requirement
|0’| < 1is fulfilled for & close enough tg®), to get

(40) / MG (x, £) fi5(x)b (x, £)bY (x,£) dx = 0,

wherep, a, b are analytic in neigto, £°). In particular,

b= yeo.@@.nl), t=1t(x,0), 7 =(x0),
and
b(0.£) =6(), a(0.£) = 1.
The phase function is given by
(41) p(x.§) =z2'(x,0'(§) - £.

To verify thatg is a non-degenerate phase in neigi?), i.e., that dep,¢(0, £°) # 0, note first that” = x’
whenx” = 0, therefore(dz'/dx")(0, 6(£)) = Id. On the other hand, linearizing negf = 0, we easily get
(9z"/0x™)(0, 6(£)) = —0’(§). Therefore,

ex(0.6) = (¢, -0'(5) - &) =¢

by (39). So we gep,£(0, §) = Id, which proves the non-degeneracy claim above. In particular, we get that

x = gg(x, ) is a local diffeomorphism in neigh) for & € neigh(¢®), and therefore injective. We need
however a semiglobal version of this alopg as in the lemma below. For this reason we will make the
following special choice 08 (&). Without loss of generality we can assume that

EO — en—l'
Set
2 ... 2
“2) 006 = (51 gy LT T )
If n = 2, this reducestd (&) = (=&, /&1, 1). Clearly,6(§) satisfies (39). Moreover, we have
(43) a%@") =ey. v=1..n-2 a%(s") = —en1,

(and96/0g,—; = 0 at& = £°), in particular, the differential of the ma@g®)+ > (&;,.... £,.2,0,&)
— 0'(§) is invertible atf = £0 = ¢,,_;.

Lemmab5. Letf (&) be asin (42), and(x, &) be as in (41). Then there exists> 0 such that if
Pe(x,8) = @e(0. §)

for somex € U, |y| < 6, | — £°| < 8, theny = x.
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Proof. We will study first the casg = 0, £ = £°, x’ = 0. Sinceg(0,&) = 0, we need to show that
@g((o,x"),go) = 0for (0,x") e U, (i.e., for—e — [_ < x" <[4 4 &) impliesx" = 0.
To computepg (x, £9), we need first to knowdz’(x, #’)/36’ at§’ = 0. Differentiatey(’z,,o)’(e,,1)(z) =x’
w.r.t.6’, wherer = t(x, 0’), z/ = z/(x, 8’), to get
/

32
36,7 (z.0y.6r.1)®) T 92V (11 09 (6, 1)(1) + Vz.0).6", 1)(1) = 0.

Plug6’ = 0. Sincedt /00’ = 0 atd’ = 0, we get

a_Z/ _ _a / n —J n

90, 6y V(Z/,o),(o/,l)(x ) —0.x/=0 (x"),
where the prime denotes the first- 1 components, as usua!,, (x") is the Jacobi field along the geodesic
x" — yo(x™) with initial conditionsJ,(0) = 0, DJ,,(0) = e,; and D stands for the covariant derivative
alongyy. Sincez’((0, x"), 9’(50)) = 0, by (41) we then get

E((O x"),£%) = _E(E )u(x") - (%)
By (43), (recall that® = "7 1),
—Ir ey, =1, —2,
(44) ?«o x"),£% = 10, l=n—1,
Jrleny, I=n,

whereJ"~! is the (n — 1)-th component of/,. Now, assuming that the l.h.s. of (44) vanishes for some

fixed x" = 1y, we get that];’_l(zo) =0,v = 1,...,n— 1. On the other hand/, are orthogonal te@,
because the initial conditiong, (0) = 0, DJ,(0) = e, are orthogonal te,, too. Sinceg;, = §;,, this
means that/’ = 0. Therefore,J, (), v = 1,...,n — 1, form a linearly dependent system of vectors, thus

some non-trivial linear combinatiart J, (zy) vanishes. Then the solutiafy(¢) of the Jacobi equation along
yo With initial conditionsJy(0) = 0, DJy(0) = aVe, satisfies/(fy) = 0. SinceDJy(0) # 0, Jy is not
identically zero. Therefore, we get theg = 0 andx = (0, ¢y) are conjugate points. Singg is a simple
geodesic throughyy, we must havey, = 0 = x".

The same proof applies ¥’ # 0 by shifting thex’ coordinates.

Let now y, £ andx be as in the Lemma. The lemma is clearly true foin the ball B(0, ¢;) = {|x| <
1}, wheree; < 1, becausep(0, £%) is non-degenerate. On the other hagd(x,£) # (v, &) for
x € U\ B(0,gy), y =0, £ = £°. Hence, we still have (x, §) # gg(v. &) for a small perturbation of
andé¢. O

The arguments that follow are close to those in [KSU, Section 6]. We will apply the complex stationary
phase method [S]]. Far, y as in Lemma 5, and a complexe neigh€®), multiply (40) by

x1(& — n)eil(i(é—n)z/Z—w(y,E))’

wherey; is a smooth cut-off to a(§) complex neighborhood di, equal tol in a smaller neighborhood
of 0, and integrate w.r.€ to get

[ €20t 5y 0B (x, 518 (v, e =0,
whereq is another elliptic amplitude nead, £°), and

= —g(1.6) +9(x. ) + 56— 1)
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We study the critical points df — @. If y = x, there is a unique (real) non-degenerate critical ppist 1.
For y # x, there is no real critical point by Lemma 5. On the other hand, again by Lemma 5, there is a
unigue complex critical poing. only if |x — y| < §/C, otherwise, there is none. Set

V(x, y.n) = ¢|g:gc-

Note thaté; = —i(y —x) + 1+ O0(§), andy(x, y,n) =n-(x —p) + '§|x — |2 + 0(8). We will not
use this to study the properties ¢f, however. Instead, applying the implicit function theorem, we get that
aty = x we have

(45) Yy(x,x,n) = —py(y,n), ¥x(x,x,n) =¢y(y.,n), ¥(x,x,n)=0.
We also get that
(46) Sy (y,x,m) = |x - y?/C.

The stationary complex phase method [Sj] gives
47 /ei)“”(x’“)fij (x)BY (x, ;M) dx = O(e_)‘/c),

wherea = (y, 1), andB is a classical analytic symbol [Sj] with principal part equalio® b.
In preparation for applying the characterization of an analytic wave front set through a generalized FBI
transform [Sj], define the transform

o —> ,3 = (a)m vax(P(a)) ’

where, following [Sjl,a = (ax,ag). Itis a diffeomorphism frontU, x neigh£?) to its image, and denote
the inverse one by (). Note that this map and its inverse preserve the first (n-dimensional) component and
change only the second one. This is equivalent to setting (v, n), 8 = (. ¢), wherel = ¢, (y, ). Note
that; = n + O(§), and aty = 0, we havel = .
Plugae = a(B) in (47) to get

(48) /ei)“”(x’ﬂ)ﬁj(x)Bij(x,,B;X) dx = 0(e™/€),
whereyr, B are (different) functions having the same properties as above. Then
(49) YUyle,x, )= =8 Yx(x,x,0) =8 Px,x8)=0.
The symbols in (48) satisfy
(50) 0p(B)(0,0,8) = 0(5) ® 0(%),
and in particularg, (B)(0, 0, £ = ¢, ® e, whereo, stands for the principal symbol.
Let6; = en, 02,...,0n be N = n(n —1)/2 unit vectors atxy = 0, normal tog® = ¢”~! such that
any constant symmetric 2-tensgr such that/"~! = 0, Vi (i.e., f{ E}) = 0) is uniquely determined by
f,~j9"91, 6 =06, p=1,...,N. Existence of such vectors is easy to establish, as mentioned above, and

one can also see that such a set exists in any open g€ ). We can therefore assume titgt belong to
a small enough neighborhood 6f = ¢, such that the geodesig¢s/— — ¢, 14 + ¢] 2 1 > yy,4,(¢) are all
simple ones through, = 0. Thenwe can rotate a bit the coordinate system suchéthat ¢”~! again, and
8, = ey, and repeat the construction above. This gives\uphase functiong/(,), and as many symbols
B(p) in (48) suchthat (49) holds for all of them, i.e., in the coordinate system relat¢d<oe,, we have

(51) /ei)“”(l’)(x’ﬂ)ﬁj(x)Bé;)(x,,B;X) dx = 0(e™C), p=1,...,N,
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and by (50),
(52) 0p(B(5))(0,0,&% =0, ®0,, p=1,...,N.

Recall thats f = 0 nearxy = 0. Let x be a smooth cutoff close enough:to= 0, equal tol in neigh0).
Integrate% exp(i)u/f(l)(x, ﬂ))xéf = 0 w.r.t. x, and by (46), after an integration by parts, we get

(53) /ei)“”“)(x’ﬂ)x(x)ﬁj(x)Cj(x,,B;X) dx = 0(e™€), i=1,....n,

for Bx = y small enough, where, (C/)(0, 0, £%) = (£9)/.
Now, the system oV + n = (n + 1)n/2 equations (51), (53) can be viewed as a tensor-valued operator
applied to the tensoy". Its symbol, modulo elliptic factors &b, 0, £°), has “rows” given byg’6;, p =

I,....N;and8t (£°)7,k = 1,....n. ltis easy to see that it is elliptic; indeed, the latter is equivalent to the
statement that if for some (constant) symmetric 2-tenson Euclidean geometry (becaugg (0) = §;;),

we havef,-jGI’;GI{ =0,p=1...,N;and "' =0,i = 1,...,n, then f = 0. This however follows
from the way we chosé,. Therefore, (35) is a consequence of (51), (53), see [S], Definition 6.1]. Note that
in [Sj], it is required that/ must be replaced by in (51), (53). If / is complex-valued, we could use the
factthat/(N f)(y) = 0, andI(J f)(y) = 0 for y € 3, and then work with real-valued’s only.

Since the phase functionsin (51) dependmwe need to explain why the characterization of the analytic
wave front sets in [Sj] can be generalized to this vector-valued case. The needed modifications are as follows.
We defineh’(fp)(x,ﬂ;x) = B&), p=1,....N; andh’(§v+k)(x,ﬂ;x) =C/8,k=1,....n. Then{h’(’p)},
p=1,...,N +n,is an elliptic symbol neaf0, 0, £°). In the proof of [Sj, Prop. 6.2], under the conditions
(46), (49), the operatof given by

[01px2) = [[ XU DT 1, (320 (. B2 dy

is a¥DO in the complex domain with an elliptic matrix-valued symbol, where we vigvand Q f as
vectors inRN*". Therefore, it admits a parametrix My ., with a suitabley (see [Sj]). Hence, one can
find an analytic classical matrix-valued symbgk, 8, 1) defined near0, 0, £°), such that for any constant
symmetric /' we have

[Q (r(., ﬂvk)ei)‘w“)f)]p — M f v

The rest of the proof is identical to that of [Sj, Prop. 6.2] and allows us to show that (48) is preserved with a
different choice of the phase functions satisfying (46), (49), and elliptic amplitudes; in particular,

/eiw(l)(x,ﬂ)xz(x)ﬁj(x) dx = 0(c ™€), Vi, j

for B € neigh0, £°) and for some standard cut-off, nearx = 0. This proves (35), see [Sj, Definition 6.1].
This concludes the proof of Proposition 2. O

Lemma 6. Under the assumptions of Theorem 1, febe such that' i f = 0. Thenfs € A(M).

Proof. Proposition 2, combined with the completenesggfimply that ¢ is analytic in the interior of\f .
To prove analyticity up to the boundary, we do the following.
We can assume thaf; \ M is defined by—e; < x" < 0, wherex” is a boundary normal coordinate.
Define the manifold\/; ,, D M by x" > —&;/2, more preciselyM;,, = M U{—e/2 < x" <0} C M.
We will show first thatf]f,h/2 € A(M,,,). Let us first notice, that in\/;,, \ M, f]f,[l/z = —dupp, 5,
whereuvyy, , satisfiesA®vay, ,, = 0in My, \ M, vlypr,,, = 0. Thereforepyy, ,, is analytic up toddfy,
in M,,,\ M, see [MN, SU4]. Therefore, we only needto show tbfjé}l/z is analytic in some neighborhood
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of M. This however follows from Proposition 2, applied 44, ,,. Note that ife; <« 1, simple geodesics
through somex € M would have endpoints outsid&/;,, as well, and by a compactness argument, we
need finitely many such geodesics to show that Proposition 2 impliesfgf,;{;i/t2 is analytic in, sayM 4,
where the latter is defined similarly tf,,, by x" > —¢&;/4.

To comparef]f.,h/2 and /* = f3, see also [SU3, SuU4], wntg‘].\sll/2 = f - alle./2 in M,,,, and
Jig = J —dvyin M. Thendvyy, ,, = —f]f,ll/z in M,,, \ M, and is therefore analytic there, upds/ .
Givenx € 0M, integratg(dvyy, ,, » y?) along geodesics ind,,, \ M, close to ones normal to the boundary,

with initial pointx and endpoints 0dM/,. Then we get thabyy, , [aar € A(3M). Note thatvyy, , € H!
neardM , and taking the trace o/ is well defined, and moreover, if” is a boundary normal coordinate,
then neiglt0) > x" — vy, , (-, x") is continuous. Now,

(54) f]sw = f - dUM — f]SW1/2 + dw |n M, WheI’Ew = le/Z — UM-

The vector fieldw solves
ASw =0, w|3M :UM1/2|3M EA(aM)
Thereforew € A(M), and by (54),1;, € A(M).
This completes the proof of Lemma 6. O

Proof of Theorem 1Let I f = 0. We can assume first that = f*, and thenf € A(M) by Lemma 6.
By Lemma 4, there exists € S™!S f such thaiy®*h = 0 on dM for all «. The tensor field: satisfies (29),
i.e., hy; = 0, Vi, in boundary normal coordinates, which is achieved by setting f — dvg, whereuv
solves (31) neabM . Thenvy, and thereforel is analytic for smallk” > 0, up tox” = 0. Lemma 4 then
implies that: = 0 in neigh(dM). So we get that

(55) f=dvy, 0=<x"<egy Withvy|yneg =0,

wherex” is a global normal coordinate, aiid< g9 < 1. Note that the solutiom, to (55) (if exists, and in
this case we know it does) is unique, as can be easily seen by integfatifig) along paths close to normal
ones todM and using (12).

We show next thaby admits an analytic continuation from a neighborhood if anye dM along any
pathini .

Fixx € M. Letc(r),0 <t < 1 be apath inM such thatc(0) = xo € 0M andc(l) = x. Given
¢ > 0, one can find a polygomgx; ... x;x consisting of geodesic segments of length not exceedjrigat
is close enough and therefore homotopiatoOne can also assume that the first one is transversal£o
and if x € M, the last one is transversal 83/ as well; and all other points of the polygon are Mi™™.
We choose < 1 so that there are no conjugate points on each geodesic segment above. We also assume
thate < gg. Then f = dv nearxgx; with v = vy by (55). As in the last paragraph of Section 2.1, one
can choose semigeodesic coordinates x”) nearx; x,, and a small enough hypersurfagg throughx;
given locally byx” = 0. As in Lemma 4, one can find an analytic 1-fonm defined nearr;x,, so that
(f —dv)in = 0, vi|xn=9 = vo(x’,0). Close enough ta;, we havev; = v,y by the remark following
(55). Sincev; is analytic, we get that it is an analytic extensiorvgfalongx;x,. Since f andv; are both
analytic in neighix; x,), and /' = dv; nearxy, this is also true in neighr;x,). So we extended, along
XoX1X2, let us call this extension. Then we do the same thing neggx;, etc., until we reach neigl),
and thenf = dv there.

This definew in neigh(x), wherex € M was chosen arbitrary. It remains to show that this definition is
independent of the choice of the path. Choose another path that connectgsaméM andx. Combine
them both to get a path that conneats € dM and y; € dM. It suffices to prove that the analytic
continuation ofvy from x; to y; equalsvy again. Letc; U yy U ¢, Uy, U--- U yx U ¢k 4 be the polygon
homotopic to the path above. Analytic continuation alangcoincides withvy again by (55). Next, let
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Pp1, p> be the initial and the endpoint of;, respectively, where is also the endpoint of,. We continue
analyticallyvy from neigh(p) to neigh(p,) alongy,, let us call this continuation. By what we showed
above,f = dv neary,. Sincel f(y;) = 0, andv(p;) = 0, we get by (12), thatv(p,), y1(/)) = 0 as well,
wherel is suchy; () = p,. Using the assumption tha is transversal t@dM at both ends, one can perturb
the tangent vectoy, (/) and this will define a new geodesic through that hitsdM transversely again
nearp, wherev = vy = 0. Sincel  is open, integral off" over this geodesic vanishes again, therefore
(v(p2), &) = 0 for & in an open set. Hence(p,) = 0. Choosey, € dM close enough tg,, andn;
close enough td; (in a fixed chart). Then the geodesic throu@h, n,) will hit dM transversally close to
p1, and we can repeat the same arguments. We therefore showeadth@ton dM nearp,. On the other
hand,vy has the same property. Singe= dv = dvg there, by the remark after (55), we get that v
nearp,. We repeat this along all the legs of the polygon until we get that the analytic continuatibn,
along the polygon, fronx; to y;, equalsyy again.

As a consequence of this, we get that= dv in M withv = 0 ondM. Sincef = f¥, this implies
f=0.

This completes the proof of Theorem 1. O

5. PROOF OFTHEOREMS 2 AND 3

Proof of Theorem 2Theorem 2(b), that also implies (a), is a consequence of Proposition 1, as shown in
[SU4], see the proof of Theorem 2 and Proposition 4 there. Part (a) only follows more directly from [Tal,
Prop. V.3.1] and its generalization, see [SU3, Thm 2]. O

Proof of Theorem 3First, note that for any analytic metric &, I, is s-injective by Theorem 1. We build

Gs as a small enough neighborhood of the analytic metric§.inThend, is dense inG (in the C*k (M)
topology) since it includes the analytic metrics. To complete the definitigh ofix an analyticgy € G. By
Lemma 1, one can fin®{’ € H related tog = g¢ and Iy, satisfying the assumptions of Theorem 2, and
they have the properties required forclose enough t@y.

Leta be as in Theorem 2 with = 1 on’H’. Then, by Theorem 2], , is s-injective forg close enough
to go in CX(M,). By Lemma 2, for any such, I« is s-injective, wherd™® = I"(H%), H* = supp. If g
is close enought@,, I'* C I'y because wheg = go, I'* C I'(H) € Ig,, andly depends continuously
on g in the sense described before the formulation of Theorem 3. Those arguments show that there is a
neighborhood of each analytigy € G with an s-injective/,. Therefore, one can choose an open dense
subsey; of G with the same property. O

Proof of Corollary 1. It is enough to notice that the set of all simple geodesics relatgdboough all points
of M, depends continuously og in the sense of Theorem 3. Then the proof follows from the paragraph
above. O

6. X-RAY TRANSFORM OF FUNCTIONS AND1-FORMSVECTOR FIELDS

If f is a vector field onM, that we identify with an 1-form, then its X-ray transform is defined quite
similarly to (1) by

lV
(56) Irf(y) = /0 (0. OV d. yeT.

If f is afunction onM, then we set

Ly
(57) Irf(y) = /0 f@)d. yer.
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The latter case is a partial case of the X-ray transform of 2-tensors; indeédsitrg, wheref is a 2-tensor,

« is a function, ang is the metric, therd i f = Ira, where in the L.h.s.J is as in (?9, and on the right,

Ir is asin (57). The proofs for the X-ray transform of functions are simpler, however, and in particular,
there is no loss of derivatives in the estimate (7), as in [SU3]. This is also true for the X-ray transform of
vector fields and the proofs are more transparent than those for tensors of order 2 (or higher). Without going
into details (see [SU3] for the case of simple manifolds), we note that the main theorems in the Introduction
remain true. In case of 1-forms, estimate (7) can be improved to

(58) £ lL2ary/ € = INe f a0y = CUL lL2(anys
while in case of functions, we have
(59) I/ e2ary/ € = INa S v aryy = CUS L2y

If (M, dM) is simple, then the full X-ray transform (over all geodesics) s injective, respectively s-injective,
see [Mu2, MuR, BG, AR].
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