
THE CAUCHY DATA AND THE SCATTERING RELATION∗

GUNTHER UHLMANN†

1. Introduction. As mentioned in the preface to this volume a com-
bination of unique continuation results with the boundary control method
has led to the solution of the inverse problem of determining a metric of
a Riemannian manifold (with boundary) from the dynamic Dirichlet-to-
Neumann map associated with the wave equation. Although these results
are very satisfactory it requires too much information. By just looking at
the singularities of the dynamic Dirichlet-to-Neumann (DN) map one can
determine the boundary distance function (the minimal travel time along
geodesics connecting points on the boundary of a Riemannian manifold) in
the case that there are no conjugate points of the metric, i.e. no caustics.
This is shown in Section 3 of this article using geometrical optics expan-
sions. A natural question to ask if one can determine the metric from this
data alone; this question is at the center of the boundary rigidity problem
studied in Riemannian geometry which is one of the main topics of this
volume.

Microlocal analysis is also used in Section 4 of this paper to show that
from the DN map for the wave equation one can determine the scattering
relation (or lens map). This result does not assume that there are no
caustics. Roughly speaking this encodes the information of all travel times
not just the ones given by minimizing geodesics. An approach to solve
the inverse problem of finding the Riemannian metric from the scattering
relation proposed by Stefanov and the author is described in detail.

In Sections 5 and 6 of this paper we consider elliptic inverse boundary
value problems. We study the problem of determining an anisotropic or
isotropic conductivity from the corresponding DN map or set of Cauchy
data which encodes all the electrical measurements that can be made at the
boundary. We also survey a result of Bukhgeim and the author showing
that if one measures the set of Cauchy data for isotropic conductivites
on particular sets of the boundary then one can determine uniquely the
conductivity. The method of proof uses new Carleman estimates.

The author believes that there is a connection between the scattering
relation and the set of Cauchy data that remains to be unraveled. This
explains the title of this article.

2. The hyperbolic Dirichlet-to-Neumann map. Let Ω denote a
bounded domain on Rn, n ≥ 2 and let g be a Riemannian metric on Ω.
In local coordinates g is represented by g(x) = (gij(x)) a positive definite,
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symmetric matrix on Ω. We assume for simplicity that the Riemannian
metric g is smooth (several of the results are valid assuming finite smooth-
ness). The Euclidean metric is denoted by e = (δij).

We denote by ∆g the Laplace-Beltrami operator associated to the
metric g, i.e. in local coordinates

(1) ∆g = (det g)−
1
2

n∑

i,j=1

∂

∂xi
(det g)

1
2 gij

∂

∂xj

where (gij) = (gij)
−1, det g = det(gij).

We consider the solution of the initial-boundary value problem for the
wave equation associated to the Laplace-Beltrami operator:

(2)





(∂2
t − ∆g)u = 0 in (0, T ) × Ω,

u|t=0 = ∂tu|t=0 = 0 in Ω,
u|(0,T )×∂Ω = f,

where f ∈ H2
loc, f = 0 for t < 0. Denote by ν = ν(x) the outer normal to

∂Ω at x ∈ ∂Ω. We define the hyperbolic (dynamic) Dirichlet-to-Neumann
(HDN) map Λhg by

Λhgf := (det g)
1
2

3∑

i,j=1

νig
ij ∂u

∂xj

∣∣∣∣
(0,T )×∂Ω

.

The inverse problem is whether knowledge of the HDN map determines
the metric g uniquely. However, any metric isometric to g gives rise to the
same boundary measurements. More precisely let

ψ : Ω −→ Ω, ψ|∂Ω = Identity

be a diffeomorphism. Then

(3) Λhg = Λhψ∗g ,

where ψ∗g = (Dψ◦g◦ tDψ)◦ψ−1 denotes the pull back of the metric under
the diffeomorphism ψ.

This is in fact the only obstruction to unique identifiability of the
metric from the HDN map. This result is a consequence of the paper [6],
which uses the boundary control method (BC) pioneered by Belishev (see
[5] for a survey and [18] for a recent book). The article [19] in this volume
has further developments on the boundary control method and applications
to inverse problems. In turn the BC method depends on a Holmgren type
uniqueness theorem for hyperbolic equations. This breakthrough result was
proven by Tataru [43] (see also [33]), after the BC has been formulated,
using very novel Carleman type estimates. For more details see the article
by Tataru [44] in these proceedings.



THE CAUCHY DATA AND THE SCATTERING RELATION 3

The precise statement of the uniqueness result is:
Theorem 2.1. Let gk ∈ C∞(Ω̄), be two Riemannian metrics on Ω̄

and denote by Λhgk
, k = 1, 2 the corresponding HDN maps. Assume

Λhg1 = Λhg2 ,

then there exists, for T sufficiently large, a diffeomorphism ψ : Ω̄ → Ω̄ with
ψ|∂Ω = Id, such that ψ∗g1 = g2.

The result of [6] and [43] is valid for general compact Riemannian man-
ifolds with boundary. Some stability estimates are known in this problem
but these are in weak topology [20]. Hölder type stability estimates for the
case that the metrics are close to the Euclidean one were proven in [35].
It is an interesting open problem to find sharp stability estimates for the
inverse problem of determining a Riemannian metric from the hyperbolic
DN map.

3. The boundary distance function. The problem considered in
the previous section is highly overdetermined in dimensions n ≥ 2. The
Schwartz kernel of the HDN map depends on 2n − 1 variables and the
metric g depends on n variables.

We will show in this section that if (Ω, g) is simple that by looking
at the singularities of the HDN we can determine the boundary distance
function dg(x, y), x, y ∈ ∂Ω, that is, the travel times of geodesics going
through the domain. The boundary distance function is a function of
2n − 2 variables. Thus the inverse problem of determining the Rieman-
nian metric from the boundary distance function is formally determined in
two dimensions and formally overdetermined in dimensions n ≥ 3. Some
recent results on this problem are reviewed in this volume [10]. The lin-
earized problem consists of determining a tensor field from its integral along
geodesics. Sharafutdinov surveys recent developments on this problem in
the article [34] in this volume.

Under the assumptions of Theorem 2.1 we can assume that, after a
change of variables which is the identity at the boundary, the two metrics g1

and g2 have the same Taylor series at the boundary [39]. Therefore we can
extend both metrics smoothly to be equal outside outside Ω and Euclidean
outside a ball of radius R. We denote the extensions to Rn gj , j = 1, 2, as
before. Let uj(t, x, ω), be the solution of the continuation problem

(4)





∂2u

∂t2
− ∆gj

uj = 0, in Rn × R

uj(t, x) = δ(t− x · ω), t < −R,

where ω ∈ Sn−1 = {x ∈ Rn; |x| = 1}.
It was shown in [39] that under the hypotheses of Theorem 2.1 the two

solutions coincide outside Ω, namely

(5) u1(t, x, ω) = u2(t, x, ω), x ∈ R
n \ Ω.
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In the case that the manifold (Ω, gj), j = 1, 2 is simple, we will use
methods of geometrical optics to construct solutions of (4) to show if the
HDN map of g1 and g2 are the same then the boundary distance functions
of the metrics g1 and g2 coincide.

3.1. Real-geometrical optics. Let g denotes a smooth Riemannian
metric which is Euclidean outside a ball of radius R.

We will construct solutions to the continuation problem for the metric
g (which is either g1 or g2). We fix ω. Let us assume that there is a solution
to Equation (4) of the form

(6) u(t, x, ω) = a(x, ω)δ(t− φ(x, ω)) + v(t, x, ω), u = 0, t < −R,

where a, φ are functions to be determined and v ∈ L2
loc Notice that in

order to satisfy the initial conditions in (4), we require that

(7) a = 1, φ(x, ω) = x · ω for x · ω < −R.

By replacing Equation (6) in Equation (4), it follows that

(8)

∂2u

∂t2
− ∆gu = Aδ′′(t− φ(x, ω)) +Bδ′(t− φ(x, ω))

−(∆ga)δ(t− φ(x, ω)) +
∂2v

∂t2
− ∆gv,

where

A = a(x, ω)

(
1 −

n∑

i,j=1

gij
∂φ

∂xi
∂φ

∂xj

)
(9)

B = 2

n∑

j,k=1

gjk
∂a

∂xk
∂φ

∂xj
+ a∆gφ .(10)

We choose the functions φ, a in the expansion (6) to eliminate the singu-
larities δ′′ and δ′ and then construct v so that

(11)
∂2v

∂t2
− ∆gv = (∆ga)δ(t− φ(x, ω)), v = 0, t < −R.

3.1.1. The Eikonal equation. In order to solve the equation A = 0,
it is sufficient to solve the equation

(12)

n∑

i,j=1

gij
∂φ

∂xi
∂φ

∂xj
= 1, φ(x, ω) = x · ω, x · ω < −R.

Equation (12) is known as the Eikonal Equation. Here we will describe
a method, using symplectic geometry, to solve this equation.
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Let Hg(x, ξ) = 1
2 (
∑n

i,j=1 g
ij(x)ξiξj − 1) the Hamiltonian associated to

the metric g. Note that the metric induced by g in the cotangent space
T ∗

R
n is given by the principal symbol of the Laplace-Beltrami operator

g−1(x, ξ) =
∑n

i,j=1 g
ij(x)ξiξj . The equation (12) together with the initial

condition can be rewritten as

Hg(x, dφ) = 0, φ(x, ω) = x · ω, x · ω < −R

where dφ =
∑n

i=1
∂φ
∂xi dx

i is the differential of φ.
Let S = {(x, ξ) : Hg(x, ξ) = 0}, and let Mφ = {(x,∇φ(x)) : x ∈ Rn},

then solving Equation (12), is equivalent to finding φ such that

(13) Mφ ⊂ S, with Mφ = {(x, ω);x · ω < −R}.

In order to find φ so that (13) is valid we need to find a Lagrangian
submanifold L so that L ⊂ S, L = {(x, ω);x · ω < −R} and the projection
on L of T ∗Rn to Rn is a diffeomorphism [11]. We will construct such a La-
grangian manifold by flowing out from N = {(x, ω) : x ·ω = s and s < −R}
by the geodesic flow associated to the metric g. We recall the definition of
geodesic flow.

We define the Hamiltonian vector field associated to Hg

(14) Vg = (
∂Hg

∂ξ
,−

∂Hg

∂x
).

The bicharacteristics are the integral curves of Hg

(15)
d

ds
xm =

n∑

j=1

gmjξj ,
d

ds
ξm = −

1

2

n∑

i,j=1

∂gij

∂xm
ξiξj , m = 1, ..., n.

The projections of the bicharacteristics contained in Hg(x, ξ) = 0 in
the x variable are the geodesics of the metric g and the parameter s denotes
arc length. We denote the associated geodesic flow by

Xg(s) = (xg(s), ξg(s)).

If we impose the condition that the bicharacteristics are in S initially,
then they belong to S for all time, since the Hamiltonian vector field Vg
is tangent to S. The Hamiltonian vector field is transverse to N then the
resulting manifold obtained by flowing N along the integral curves of Vg
will be a Lagrangian manifold L contained in S. We shall write L = Xg(N).

Now the projection of N into the base space is a diffeomorphism so
that L = {(x, dxφ)} locally near a point of N. We can construct a global
solution of (13) near Ω if the manifold is simple. We recall:

Definition 3.1. Let Ω be a bounded domain of Euclidean space with
smooth boundary and g a Riemannian metric on Ω. We say that (Ω, g)
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is simple if given two points on the boundary there is a unique minimiz-
ing geodesic joining the two points on the boundary and, moreover, ∂Ω is
geodesically convex.

If (Ω, g) is simple then we extend the metric smoothly in a small neigh-
borhood so that the metric g is Euclidean in a small neighborhood of Ω
so that the metric is still simple. In this case we can solve the Eikonal
equation globally in a neighborhood of Ω.

3.1.2. The transport equation. The equation B = 0 is equivalent
to solving the following equation:

(16)
n∑

i,j=1

gij
∂φ

∂xj
∂a

∂xi
+
a

2
∆gφ = 0.

Equation 16 is called the transport equation. It is a vector field equation
for a(x, ω), which is solved by integrating along the integral curves of the
vector field v =

∑n
i,j=1 g

ij ∂φ
∂xj

∂
∂xi . It is an easy computation to prove that

v has length 1 and that the integral curves of v are the geodesics of the
metric g.

The solution of the transport equation (16) is then given by:

(17) a(x, ω) = exp

(
−

1

2

∫

γ

∆gφ

)
,

where γ is the unique geodesic such that γ(0) = y, γ̇(0) = ω, y · ω = −R
and γ passes through x. If (Ω, g) is a simple manifold then a ∈ C∞(Rn).

To end the construction of the real-geometrical optics solutions we
observe that the function v(t, x, ω) ∈ L2

loc by using standard regularity
results for hyperbolic equations.

Now we state the main result of this section:
Theorem 3.1. Let (Ω, gi), i = 1, 2 be simple metrics. Assume that

Λhg1 = Λhg2 . Then dg1 = dg2 .
Sketch of proof. Assume that we have two metrics g1, g2 with the

same HDN map. Then by (5) the solutions of (4) are the same outside Ω.
Therefore the main singularity of the solutions in the geometrical optics
expansion must be the same outside Ω. Thus we conclude that

(18) φ1(x, ω) = φ2(x, ω), x ∈ Rn \ Ω.

Now φj(x, ω) measures the geodesic distance to the hyperplane x ·ω =
−R in the metric g. From this we can easily conclude that the geodesic
distance between two points in the boundary for the two metrics is the
same, that is dg1 (x, y) = dg2(x, y), x, y ∈ ∂Ω.

This type of argument was used in [31] to study a similar inverse
problem for the more complicated system of elastodynamics. In particular
it is proven in [31] that from the HDN map associated to the equations
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of isotropic elastodynamics one can determine, under the assumption of
simplicity of the metrics, the lengths of geodesics of the metrics defined by

(19) ds2 = c2p(x)e, ds2 = c2s(x)e,

where cp(x) =
√

(λ+2µ)
ρ , cs(x) =

√
µ
ρ denote the speed of compressional

waves and shear waves respectively. Here λ, µ are the Lamé parameters
and ρ the density. The article by [10] in this book examines in detail the
inverse problem of determining the metric from the associated boundary
distance function, the so-called boundary rigidity problem in Riemannian
geometry.

Using Mukhometov’s result [27], [28] we can then recover both speeds
from the HDN map. This shows in particular that if we know the density
one can determine the Lamé parameters from the HDN map. By using the
transport equation of geometrical optics, similar to (16), and the results on
the ray transform (see for instance [34]), Rachele shows that under certain
a-priori conditions one can also determine the density ρ [32].

4. The scattering relation. In the presence of caustics (i.e. the
exponential map is not a diffeomorphism) the expansion (6) is not valid
since we cannot solve globally the Eikonal equation globally in Ω. The
solution of (4) is globally a Lagrangian distribution (see for instance [16]).
These distributions can locally be written in the form

(20) u(t, x, ω) =

∫
eiφ(t,x,ω,θ)a(t, x, ω, θ) dθ

where φ is a phase function and a(t, x, ω, θ) is a classical symbol.
Every Lagrangian distribution is determined (up to smoother terms)

by a Lagrangian manifold and its symbol. The Lagrangian manifold asso-
ciated to u(t, x, ω) is the flow out from t = x · ω, t < −R by the Hamilton
vector field of pg = τ2−g−1(x, ξ). Here (τ, ξ) are the dual variables to (t, x)
respectively. The projection in the (x, ξ) variables of the flow is given by
the flow out from N by geodesic flow, that is the Lagrangian submanifold
L described above.

The scattering relation (also called lens map), Cg ⊂
(
T ∗(R× ∂Ω) \

0
)
×
(
T ∗(R× ∂Ω) \ 0

)
of a metric g = (gij) on Ω with dual metric g−1 =

(gij) is defined as follows. Consider bicharacteristic curves, γ : [a, b] →
T ∗(Ω × R), of the Hamilton function pg(t, x, τ, ξ) = τ2 − g−1(x, ξ) which
satisfy the following: γ(]a, b[) lies in the interior, γ intersects the boundary
non-tangentially at γ(a) and γ(b), and time increases along γ. Then the
canonical projection from (T ∗

R×∂Ω

(
R×Ω) \ 0

)
× (T ∗

R×∂Ω

(
R×Ω) \ 0

)
onto(

T ∗(R×∂Ω)\0
)
×T ∗(R×∂Ω)\0

)
maps the endpoint pair (γ(b), γ(a)) to a

point in Cg . In other words Cg gives the geodesic distance between points
in the boundary and also the points and direction of exit of the geodesic if
we know the point and direction of entrance.
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It is well-known that Cg is a homogeneous canonical relation on(
T ∗(R × ∂Ω) \ 0

)
×
(
T ∗(R × ∂Ω) \ 0

)
. (See [14] for the concept of a

scattering relation.) Cg is, in fact, a diffeomorphism between open subsets
of T ∗(R× ∂Ω) \ 0.

In analogy with Theorem 3.1 we have
Theorem 4.1. Let gi, i = 1, 2 be Riemannian metrics on Ω satisfying

the assumptions of Theorem 2.1. Then

Cg1 = Cg2 .

Sketch of Proof. Since by (5) we know the solutions of (4) outside
Ω. Therefore the associated Lagrangian manifolds to the Lagrangian dis-
tributions uj must be the same outside Ω. By taking the projection of these
Lagrangians onto the boundary we get the desired claim.

In the case that (Ω, g) is simple then the scattering relation doesn’t
give any new information. In fact ((t1, x1, τ, ξ1), (t0, x0, τ, ξ0)) ∈ Cg if t1 −

t0 = dg(x1, x0) and ξj = −τ
∂dg(x1,x0)

∂xj
, j = 0, 1. In other words dg is the

generating function of the scattering relation.
This result was generalized in [15] to the case of the equations of

elastodynamics with residual stress. It is shown that knowing the HDN
map we can recover the scattering relations associated to P and S waves.
For this one uses Lagrangian distributions with appropriate polarization.

The scattering relation contains all travel time data; not just informa-
tion about minimizing geodesics as is the case of the boundary distance
function. The natural conjecture is that this is enough to determine the
metric up to isometry.

Conjecture 4.1. From the scattering relation we can determine the
metric up to isometry.

We have developed in [36] an approach to this conjecture and derive
the identity below. We will consider the case of subdomains of R3.

Let x(0) ∈ Γ, ξ(0) ∈ S2 such that ν(x(0)) · g−1ξ(0) < 0. Here g is either
g1 or g2, while the initial conditions are the same for both metrics. We
remark that if ξ(0) · g−1ξ(0) = 1, then s is the arc-length in (15).

Consider the Hamiltonian system (15) with the following initial
conditions

(21)





d

ds
xm =

n∑

j=1

gmjξj ,
d

ds
ξm = −

1

2

n∑

i,j=1

∂gij

∂xm
ξiξj , m = 1, ..., n,

x|s=−ρ = (−ρ, z), ξ|s=−ρ = (1, 0, 0).

Here z ∈ R2, ρ > 0 is such that g = e for |x| > ρ and the solution
x = x(s, z), ξ = ξ(s, z) depends on the parameter z. If g = e, then
x = (s, z) = (s, z1, z2).

Denote the solution of (15) by x = x(s, x(0), ξ(0)), ξ = ξ(s, x(0), ξ(0)).
Let us introduce new notation

X := (x, ξ).
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The solution to (15) related to g1 and g2, respectively, can therefore be
written down as Xgj

= Xgj
(s,X(0)) = Xgj

(s, x(0), ξ(0)).

Set F (s) := Xg2(t − s,Xg1(s,X
(0))). Here t = t(X(0)) is the length

of the geodesics issued from X (0) with endpoint on Γ and t is independent
of g = g1 or g = g2. We have F (0) = Xg2(t,X

(0)) = Xg1(t,X
(0)) = F (t).

Thus

(22)

∫ t

0

F ′(s) ds = 0.

A calculation gives

(23)
F ′(s) = −Vg2(Xg2(t− s,Xg1(s,X

(0))))

+
∂Xg2

∂X(0)
(t− s,Xg1(s,X

(0)))Vg1 (Xg1(s,X
(0))).

We claim that

(24)
Vg2 (Xg2(t− s,Xg1(s,X

(0))))

=
∂Xg2

∂X(0)
(t− s,Xg1(s,X

(0)))Vg2 (Xg1(s,X
(0))).

Indeed, (24) follows from

0 =
d

ds

∣∣∣∣
s=0

X(T − s,X(s,X(0)))

= −V (X(T,X(0))) +
∂X

∂X(0)
(T,X(0))V (X(0)), ∀T

after setting T = t − s. Therefore, (22), (23) and (24) combined together
imply

(25)

∫ t

0

∂Xg2

∂X(0)
(t− s,Xg1(s,X

(0))) (Vg1 − Vg2) (Xg1(s,X
(0))) ds = 0.

This identity is valid whenever the scattering relation of the two met-
rics is the same. Roughly speaking (25) is a non-linear integral equation
on the difference of the metrics (g1)

−1 and (g2)
−1.

Formula (25) is the main result used in [36] to prove that if two met-
rics have the same lengths of geodesics and they are a-priori close to the
Euclidean metric in an appropriate topology then they must be isomet-
ric. The idea is to linearize this identity at the Euclidean metric and use
perturbation arguments to derive the result.

As mentioned in [34] and [25] this has been extended to a semiglobal
result. Namely one of the metrics satisfies a curvature assumption and
the other one is sufficiently close to the Euclidean metric. The result is
that if the metrics have the same boundary distance function under these
conditions then they must be isometric.
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5. The elliptic Dirichlet-to-Neumann map. In this section we
consider the elliptic analog of the HDN map considered in Section 2. One
of the motivations for this problem comes from Electrical Impedance To-
mography (EIT). In this non-invasive inverse method one attempts to de-
termine the electrical conductivity of a body by making voltage and current
measurements at the boundary of the body. For anisotropic conductors the
electrical properties of the medium depend on direction. Muscle tissue is a
prime example of an anisotropic conductor. For instance for cardiac mus-
cle tissue the transverse conductivity is 2.3 mho while the longitudinal one
is 6.3 mho. An anisotropic conductivity is modeled as a positive definite
symmetric metric γ = (γij). Under the assumption of no sources or sinks
of currents the equation for the potential u, given a voltage potential f on
the boundary, is given by the solution of the Dirichlet problem

(26)
n∑

i,j=1

∂

∂xi

(
γij

∂u

∂xj

)
= 0 on Ω; u|∂Ω = f.

The DN map is defined by

(27) Λγ(f) =

n∑

i,j=1

γij
∂u

∂xj
νi

where νi denotes the ith component of ν.
It was observed by Luc Tartar (see [22] for an account) that if ψ : Ω →

Ω is a diffeomorphism with ψ|∂Ω = Identity then Λγ̃ = Λγ where

(28) γ̃ =

(
(Dψ)T ◦ γ ◦ (Dψ)

| detDψ|

)
◦ ψ−1 =: ψ∗γ.

Here Dψ denotes the (matrix) differential of ψ, (Dψ)T its transpose and
the composition in (28) is to be interpreted as composition of matrices.

Conjecture 5.1. Let γ, γ̃ be conductivities satisfying Λγ = Λγ̃ . Then
there exists a diffeomorphism ψ : Ω −→ Ω, with ψ|∂Ω = Identity so that
γ̃ = ψ∗γ.

In dimensions n ≥ 3 the problem can be reformulated as a geomet-
ric one. Given an anisotropic conductivity γ = (γij) we define gij =

(det γ)
2

n−2 γij . The Riemannian metric is given by (gij) = (gij)−1. The
conductivity equation is replaced by the Laplace–Beltrami operator. We
consider the solution of the elliptic boundary value problem

(29) ∆gu = 0 on Ω, u
∣∣∣
∂Ω

= f.

We define the EDN map by

(30) Λg(f) =

n∑

i,j=1

νigij
∂u

∂xj

√
det g

∣∣∣
∂Ω
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where (νi) = ν is the outer unit normal to ∂Ω. The inverse problem is to
recover g from Λg.

We note that under the correspondence between conductivities and
Riemannian metrics indicated above the corresponding EDN maps satisfy
Λg = Λγ . Similarly to (28) we have that for any diffeomorphism ψ : Ω −→
Ω, ψ|∂Ω = Identity

(31) Λψ∗g = Λg

where ψ∗g denotes the pull-back of the metric g.
The problem can be formulated for arbitrary compact Riemannian

manifolds with boundary. More specifically
Conjecture 5.2. Let (M, g) be a compact Riemannian manifold

with boundary of dimension n ≥ 3. The pair (∂M,Λg) determines (M, g)
uniquely. Of course uniquely means up to an isometric copy.

The more general result proven about this conjecture is the follow-
ing [24]

Theorem 5.1 (n ≥ 3). Let (M, g) be a real-analytic compact, con-
nected Riemannian manifold with boundary. Let Γ ⊆ ∂M be real-analytic
and assume that g is real-analytic up to Γ. Then (Λg, ∂M) determines
uniquely (M, g).

This result is also valid if we measure the EDN map in an open subset
of the boundary Γ (measured for functions supported on that subset) under
the a-priori assumption that g is real-analytic in the interior and up to Γ.

Notice that Theorem 5.1 doesn’t assume any condition on the topology
of the manifold except for connectedness. An earlier result of [26] assumed
that (M, g) was strongly convex and simply connected and Γ = ∂M .

In the two dimensional case there is an additional obstruction. Namely
the Laplace-Beltrami operator is conformally invariant. More precisely

∆αg =
1

α
∆g

for any function α, α 6= 0. Therefore we have that for n = 2

(32) Λα(ψ∗g) = Λg

for any smooth function α 6= 0 such that α|∂M = 1.
Therefore the best we can recover by knowing Λg is the conformal class

of the metric g. That this is in fact the case was shown by Lassas and the
author in [24]. We have:

Theorem 5.2. Let (M, g) be a compact Riemannian surface. Then the
pair (∂M,Λg) determines uniquely the conformal class of (M, g). Uniquely
means up to an isometric copy.

Also this result only requires local measurements of the EDN map on
an open subset of the boundary.
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A basic result which is used in all the results stated in this section is
the following Lemma proved in [26]:

Lemma 5.1. Let (M, g) be a compact Riemannian manifold with
boundary. Then Λg determines the C∞-jet of the metric at the boundary
in the following sense. If g′ is another Riemannian metric on M such that

Λg = Λg′ , then there exists a diffeomorphism ϕ : M →M , ϕ
∣∣∣
∂M

= Identity

such that g′ = ϕ∗g to infinite order at ∂M .

In other words Lemma 5.1 shows that the conjectures above are valid
at the boundary. The proof of this result is done by showing that Λg is a
pseudodifferential operator of order 1. Its full symbol, calculated in appro-
priate coordinates, determines the C∞-jet of the metric g at the boundary.

In the two dimensional case it was proven in [38], under some regu-
larity assumptions on the conductivity, that we can reduce the anisotropic
case to the isotropic one. This uses fundamentally isothermal coordinates,
which are not available in dimension n ≥ 3. An anisotropic conductivity
is a conductivity γij = α(x)δij where the function α is a strictly positive
function. The corresponding Riemannian metric in dimension n ≥ 3 is
then conformal to the Euclidean metric.

The following are the two basic results in the isotropic case:

Theorem 5.3. Let Ω ⊆ R2 be a bounded domain with smooth bound-
ary. Let γ(i), i = 1, 2 be two isotropic conductivities in C2(Ω). Then
Λγ1 = Λγ2 implies γ1 = γ2.

Theorem 5.4. Let Ω ⊆ Rn n ≥ 3 be a bounded domain with smooth
boundary. Let γ(i), i = 1, 2 be two C2 isotropic Riemannian metrics. Then
Λγ1 = Λγ2 implies γ1 = γ2.

The two dimensional case is due to Nachman [29] and the case of
dimension three or higher to Sylvester and Uhlmann [40].

In the next two sections we outline the proof of these last two results.

5.1. Complex-geometrical optics solutions. In this section we
outline the proof of Theorem 5.4. We actually prove a more recent result
of Bukhgeim and the author [8] that states that is enough to measure the
EDN map on particular subsets of the boundary. A crucial ingredient in
the proof is the construction of complex geometrical optics (CGO) solutions
of the Laplace-Beltrami operator when the Riemannian metric is isotropic.
Another important element is the use of Carleman estimates.

The main result of CGO solutions is given by

Lemma 5.2. Let g be an isotropic Riemannian metric g = αe with α a
scalar function satisfying α = 1 outside a large ball. Let ρ ∈ Cn, ρ · ρ = 0.
Then for |ρ| sufficiently large, there exist solutions of ∆gu = 0 of the form

(33) u = e〈x,ρ〉α− 1
2 (1 + ψg(x, ρ))

with ψg −→
|ρ|→∞

0 uniformly in compact sets.
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For more precise statements and a recent survey of other results using
CGO see [45]. We remark that this method started with the pioneering
work of Calderón [9].

One of the main difficulties in extending Theorem 5.4 to the general
anisotropic case even in the case when M is an open subset of Euclidean
space is to construct an analog of (33) in this case.

The proof of Theorem 5.4 proceeds by proving a more general result.
Namely one reduces the problem to consider the set of Cauchy data for
solutions of the Schrödinger equation (see [45] for more details).

Let n ≥ 3. Let q ∈ L∞(Ω). We define the set of Cauchy data for the
associated Schrödinger equation by

(34) Cq =

{(
u|∂Ω,

∂u

∂ν

∣∣∣
∂Ω

)
| (∆ − q)u = 0 on Ω, u ∈ H1(Ω)

}
.

Theorem 5.5. Let qi ∈ L∞(Ω), i = 1, 2. Assume

Cq1 = Cq2 .

Then q1 = q2.
The proof of this result uses complex geometrical optics solutions of

the Schrödinger equation. Let q ∈ L∞(Rn), n ≥ 2 have compact support.
Then for ρ ∈ Cn, ρ ·ρ = 0, |ρ| sufficiently large, one can construct solutions
to

(∆ − q)uρ = 0

of the form

(35) uρ = e〈x,ρ〉(1 + ψq(x, ρ))

with

(36) ‖ψq( · , ρ)‖Hs(Ω) ≤
C

|ρ|1−s
, 0 ≤ s ≤ 1,

for some C > 0 independent of ρ.
The function ψq(x, ρ) solves

(37) ∆ρψq = q(1 + ψq),

where

∆ρu = e−〈x,ρ〉∆(e〈x,ρ〉u).

The Schwartz kernel Gρ of ∆−1
ρ is the so-called Faddeev’s Green kernel

[12]. The following estimate was proved in [41] (n = 2), [40] (n ≥ 3) for
−1 < δ < 0 and ρ ∈ Cn − 0, ρ · ρ = 0:

(38) ‖Gρf‖Hs
δ
≤ C

‖f‖L2
δ+1

|ρ|1−s
.
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Here Hs
α denotes the Sobolev space associated to the weighted L2 space

with norm given by

‖f‖2
L2

α
=

∫
|f(x)|2(1 + |x|2)αdx.

A natural question is whether one can determine the potential by
measuring the Cauchy data on strict subsets of the boundary. The only
result known beyond the case of real-analytic potentials was proven in [8].
We describe the result below.

We first modify the set of Cauchy data to allow for more singular
distributions on the boundary. We define the function space

H∆(Ω) = {u ∈ D′(Ω) | u ∈ L2(Ω), ∆u ∈ L2(Ω)};

H∆(Ω) is a Hilbert space with the norm

‖u‖2
H∆(Ω) = ‖u‖2

L2(Ω) + ‖∆u‖2
L2(Ω).

For u ∈ H∆(Ω), we have u|∂Ω ∈ H− 1
2 (∂Ω) and ∂u

∂ν

∣∣
∂Ω

∈ H− 3
2 (∂Ω). We

define the set of modified Cauchy data for q ∈ L∞(Ω) by

Cq =

{(
u|∂Ω,

∂u

∂ν

∣∣∣
∂Ω

)
∈ H− 1

2 (∂Ω)

× H− 3
2 (∂Ω) | (∆ − q)u = 0 in Ω, u ∈ H∆(Ω)

}
.

If 0 is not a Dirichlet eigenvalue of ∆−q in Ω then Cq contains the graph
of the Dirichlet-to-Neumann map Λq conventionally defined on H1/2(∂Ω)
by the relation Λq(f) = ∂u

∂ν

∣∣
∂Ω

, where u ∈ H1(Ω) is a solution to the
problem

(∆ − q)u = 0 in Ω, u|∂Ω = f ;

i.e.,
{
(f,Λq(f)) | f ∈ H1/2(∂Ω)

}
⊂ Cq .

Fix ξ ∈ Sn−1 = {ξ ∈ Rn, |ξ| = 1}. We define

(39) ∂Ω+(ξ) = {x ∈ ∂Ω | 〈ν, ξ〉 > 0}, ∂Ω−(ξ) = {x ∈ ∂Ω | 〈ν, ξ〉 < 0}

and for ε > 0

(40) ∂Ω+,ε(ξ) = {x∈∂Ω | 〈ν, ξ〉>ε}, ∂Ω−,ε(ξ) = {x∈∂Ω | 〈ν, ξ〉<ε}.

We also define the set of restricted Cauchy data

Cq,ε =

{(
u|∂Ω,

∂u

∂ν

∣∣∣
∂Ω−,ε(ξ)

) ∣∣∣ (∆ − q)u = 0 in Ω, u ∈ H∆(Ω)

}
.
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The main result of [8] is

Theorem 5.6. Let n ≥ 3 and qi ∈ L∞(Ω), i = 1, 2. Given ξ ∈ Sn−1

and ε > 0, assume that Cq1,ε = Cq2,ε. Then q1 = q2.

Theorem 5.6 has an immediate consequence in Electrical Impedance
Tomography. We assume here now γ is an isotropic conductivity, i.e, γij =
γ(x)δij with γ ∈ C2(Ω) a strictly positive function on Ω.

As a direct consequence of Theorem 5.6 we prove

Corollary 5.1. Let γi ∈ C2(Ω), i = 1, 2, be strictly positive. Given
ξ ∈ Sn−1 and ε > 0, assume that γ1|∂Ω = γ2|∂Ω and

Λγ1(f)|∂Ω−,ε(ξ) = Λγ2(f)|∂Ω−,ε(ξ) ∀f ∈ H− 1
2 (∂Ω).

Then γ1 = γ2.

As far as we know, Theorem 5.6 (Corollary 5.1) is the first global
uniqueness result for the Schrödinger equation (conductivity equation) in
which the Cauchy data are given only on part of the boundary, beyond the
case of a real-analytic potential.

A natural way to attack the problem of finding a potential from partial
information of the Cauchy data is to construct solutions of the form (35)
with ψq = 0 on part of the boundary. As it is shown in [17] it is impossible
in general to solve the Dirichlet problem for (37) with ψρ decaying (or
even polynomially bounded in ρ.) In [8] it is shown that we can prescribe
Dirichlet conditions for ψρ on particular subsets of the boundary. More
precisely we have

Lemma 5.3. Let n ≥ 2. Let ρ ∈ Cn with 〈ρ, ρ〉 = 0 and ρ = τ(ξ + iη)
with ξ, η ∈ Sn−1. Suppose that f(·, ρ/|ρ|) ∈W 2,∞(Ω) satisfies ∂ξf = ∂ηf =
0, where ∂ξ denotes the directional derivative in the direction ξ. Then we
can find solutions to (∆ − q)u = 0 in Ω of the form

u(x, ρ) = e〈x,ρ〉
(
f
(
x,

ρ

|ρ|

)
+ ψ(x, ρ)

)
, ψ|∂Ω−(ξ) = 0,

with

‖ψ( · , ρ)‖L2(Ω) ≤
C

τ
, τ ≥ τ0,

for some C > 0 and τ0 > 0.

5.2. Carleman estimates. The proof of Theorem 5.6 and Lemma
5.3 uses Carleman estimates for the operator ∆ρ, which is not an elliptic
operator if we consider the dependence on the parameter ρ, to construct
the solutions and prove the main result. The use of a linear phase function
in these Carleman estimates gives rise to the restriction on measuring the
Cauchy data on particular subsets of the boundary.
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Theorem 5.7. For q ∈ L∞(Ω) there exist τ0 > 0 and C > 0 such that
for all u ∈ C2(Ω̄), u|∂Ω = 0, and τ ≥ τ0 we have the estimate

τ2

∫

Ω

|e−τ〈x,ξ〉u|2 dx+ τ

∫

∂Ω+

〈ξ, ν〉|e−τ〈x,ξ〉∂νu|
2 dS

≤ C

(∫

Ω

|e−τ〈x,ξ〉(∆−q)u|2 dx− τ

∫

∂Ω−

〈ξ, ν〉|e−τ〈x,ξ〉∂νu|
2 dS

)
.

Sketch of the Proof of Theorem 5.6. As before we let ξ ∈ Sn−1.
Fix k ∈ Rn such that 〈ξ, k〉 = 0. Using Lemma 5.2, we choose a solution
u2 ∈ H∆(Ω) to (∆ − q2)u2 = 0 in Ω of the form

u2 = e〈x,ρ2〉(1 + ψq2 (x, ρ2))

with

ρ2 = τξ − i
k + l

2
,

where 〈l, k〉 = 〈l, ξ〉 = 0 and |k+ l|2 = 4τ2 (with these conditions 〈ρ2, ρ2〉 =
0). In dimension n ≥ 3 we can always choose such a vector l. Since
Cq1,ε = Cq2 ,ε, there is a solution u1 ∈ H∆(Ω) to (∆ − q1)u1 = 0 in Ω such
that

u1|∂Ω = u2|∂Ω,
∂u1

∂ν

∣∣∣
∂Ω−,ε(ξ)

=
∂u2

∂ν

∣∣∣
∂Ω−,ε(ξ)

.

Let us denote u := u1 − u2 and q := q1 − q2. We have

(∆ − q1)u = qu2 in Ω, u|∂Ω = 0.

Now it is easy to see that u|∂Ω = 0 and u ∈ H∆(Ω) implies that u ∈ H2(Ω).
Also Green’s formula is valid for v ∈ H∆(Ω). Thus we obtain

(41)

∫

Ω

(∆ − q1)uv̄ dx =

∫

Ω

qu2v̄ dx =

∫

Ω

u(∆ − q1)v̄ dx+

∫

∂Ω

∂u

∂ν
v̄ dS;

Now, we choose

v̄ = e〈x,ρ1〉(1 + ψq1(x, ρ1))

as in (35) to be a solution to (∆ − q1)v̄ = 0, where

ρ1 = −τξ − i
k − l

2

with ξ, k, and l as before so that 〈ρ1, ρ1〉 = 0. Notice that with this choice
of ρj , j = 1, 2, we have

ρ1 + ρ2 = −ik.
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With these choices of u2 and v, the identity (41) now reads

(42)

∫

Ω

qu2v̄ =

∫

∂Ω

∂u

∂ν
v̄ dS.

The final step in the proof is to show that the right hand side of (42) goes
to 0 as τ → ∞.

By hypothesis,

∂νu|∂Ω−,ε(ξ) = 0.

Then we have
∫

∂Ω

∂u

∂ν
v̄ dS =

∫

∂Ω\∂Ω−,ε

∂u

∂ν
v̄ dS =

∫

∂Ω+,ε

∂u

∂ν
v̄ dS.

The Cauchy-Schwarz inequality and the estimate (38) yields

∣∣∣∣
∫

∂Ω

∂u

∂ν
v̄ dS

∣∣∣∣ =
∣∣∣∣∣

∫

∂Ω+,ε

∂u

∂ν
e〈x,ρ1〉(1 + ψq1(x, ρ1)) dS

∣∣∣∣∣(43)

≤

∫

〈ξ,ν〉≥ε

∣∣∣∣
∂u

∂ν
e−τ〈ξ,x〉(1 + ψq1( · , ρ1))

∣∣∣∣ dS(44)

≤

(∫

〈ξ,ν〉≥ε
|e−τ〈ξ,x〉∂νu|

2 dS

) 1
2

(45)

for some C > 0. Now we use the Carleman estimate of Theorem 5.7
to obtain

τε

∫

∂Ω+,ε

|e−τ〈ξ,x〉
∂νu|

2
dS ≤ τ

∫

∂Ω+

〈ξ, x〉|e−τ〈ξ,x〉
∂νu|

2
dS(46)

≤

∫

Ω

|e−τ〈ξ,x〉(∆−q1)u|
2
dx =

∫

Ω

|e−τ〈ξ,x〉
qu2|

2
dx(47)

≤ 2
(
‖q1‖L∞(Ω) + ‖q2‖L∞(Ω)

)2(
1 + ‖ψ2‖

2
L2(Ω)

)
.(48)

Hence, we have proved that
∣∣∣∣
∫

∂Ω

∂u

∂ν
v̄ dS

∣∣∣∣ ≤ Cτ−1 → 0, τ → ∞.

Now letting τ → ∞ gives
∫

Ω

e−i〈x,k〉q(x) dx = 0

for all k ⊥ ξ. Changing ξ ∈ Sn−1 in a small conic neighborhood and
using the fact that q̂(k) is analytic we get that q = 0 finishing the proof of
Theorem 5.6.
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Sketch of Proof of Corollary 5.1. It is well known that we can
reduce the problem to the case of the Schrödinger equation using the trans-
formation w = γ

1
2u. If u solves the conductivity equation div (γ∇u) = 0,

then w solves

(∆ − q)w = 0 in Ω

with q =
∆
√
γ√
γ . It is easy to see that

Λq(f) = γ−
1
2 |∂ΩΛγ

(
γ−

1
2 |∂Ωf

)
+

1

2

(
γ−1∂γ

∂ν

)∣∣∣∣
∂Ω

f.

Now Kohn and Vogelius showed in [23] that given any open subset Γ of ∂Ω,
if we know Λγ(f)|Γ for all f then we can determine γ|Γ and ∂γ

∂ν |Γ, reducing
therefore the proof of Corollary 5.1 to Theorem 5.6.

Conjecture 5.3. It is natural to expect that one needs to only mea-
sure the following subset of the Cauchy data to recover the potential. Let Γ
be an arbitrary open subset of the boundary. We define

(49) Cq,Γ =

{(
u|∂Ω,

∂u

∂ν

∣∣∣
Γ

) ∣∣∣ (∆ − q)u = 0 in Ω, u ∈ H∆(Ω)

}
.

The conjecture is that if we know Cq,Γ then we can recover the poten-
tial q. It would also be interesting to prove stability estimates and give a
reconstruction of the potential under the conditions of Theorem 5.6.

6. The ∂∂ system. In this section we describe an extension of Nach-
man’s result to C1(Ω) conductivities due to Brown and the author [7]. In-
stead of reducing the conductivity equation to the Schrödinger equation we
reduce it to a first order system (the ∂∂ system). We construct CGO solu-
tions for this system. We combine this with the inverse scattering method
developed for this system by Beals and Coifman [4] and L. Sung [37].

The main result of [7] is:
Theorem 6.1. Let n = 2. Let γ ∈ C1(Ω), γ strictly positive on Ω.

Assume Λγ1 = Λγ2 . Then γ1 = γ2 in Ω.
Theorem 6.1 was extended to complex conductivities with small imagi-

nary part in [13], using the ∂∂ method. Complex conductivities with small
imaginary part arise naturally when considering Maxwell’s equations for
time harmonic waves with small frequency.

Logarithmic type stability estimates were proven in [3] for C1+ε(Ω)
conductivities. A reconstruction method based on the uniqueness proof of
[7] was developed by Knudsen and Tamasan [21] for C1+ε(Ω) conductivities.

As mentioned earlier, the proof of theorem 6.1 first reduces the con-
ductivity equation to a first order system. We define

(50) q = −
1

2
∂ log γ
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and a matrix potential Q by

(51) Q =

(
0 q
q 0

)
.

Let also D be the operator

(52) D =

(
∂ 0
0 ∂

)
,

where ∂ = 1
2 (∂x1

− i∂x2
).

An easy calculation shows that, if u satisfies the conductivity equation
div(γ∇u) = 0, then

(53)

(
v
w

)
= γ

1
2

(
∂u

∂u

)

solves the system

(54) D

(
v
w

)
−Q

(
v
w

)
= 0.

In [7] Brown and Uhlmann construct matrix solutions of (54) of the
form

(55) ψ(z, k) = m(z, k)

(
eizk 0
0 e−izk

)
.

where z = x1 + ix2, k ∈ C with m → 1 as |z| → ∞ in a sense to be
described below. A simple calculation shows that m from (55) satisfies in
Ω the following equation

(56) Dkm−Qm = 0,

where Dk is the operator

Dk =

(
(∂ − ik) 0

0 (∂ + ik)

)
.

In order to explain the construction of m we need a few more definitions.
Let

Λk(z) =

(
e(z, k) 0

0 e(z,−k)

)
, e(z, k) = ei(zk+zk)

and for any matrix A, define the following operator

EkA = Ek

(
a11 a12

a21 a22

)
=

(
a11 e(z,−k)a12

a21e(z, k) a22

)
.
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Notice that

(57) Dk = E−1
k DEk.

Let D−1 be the operator

D−1 =

(
∂
−1

0
0 ∂−1

)
,

where

∂
−1
f(z) =

1

2πi

∫
f(w)

z − w
dw ∧ dw

and

∂−1f(z) =
1

2πi

∫
f(w)

z − w
dw ∧ dw.

We have from (57) that D−1
k = E−1

k D−1Ek. We look for solutions of (56)
among the solutions of the integral equation

(58) (I −D−1
k Q)m(z) = I,

where I is the 2×2 identity matrix. For a 2×2 matrix A, let Ad and Aoff

denote its diagonal respectively off-diagonal part. If

J =
1

2

(
−i 0
0 i

)

we define the operator J by

(59) JA = [J,A] = 2JAoff = −2AoffJ.

To end with the preliminary notation, we recall the definition of the weight-
ed Lp space

Lpα(R2) = {f ;

∫
(1 + |x|2)α|f(x)|pdx <∞}.

The next result gives the solvability of (56) in an appropriate space.
Theorem 6.2. Let Q ∈ L∞(R2) and compactly supported. Assume

that Q is a hermitian matrix. Choose r so that r < 2 and then β so that
βr > 2. Then the operator (I −D−1

k Q) is invertible in Lr−β. Moreover the
inverse is differentiable in k in the strong operator topology.

Theorem 6.2 implies the existence of solutions of the form (55) with
m− 1 ∈ Lr−β(R

2).
We remark that the proof of Theorem 6.2 consists in showing that the

integral equation (58) is of Fredholm type in Lr−β. The fact that it has
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been a trivial kernel follows by showing that if (I − D−1
k Q)n(z, k) = 0,

then n ∈ Lp, for all p > 2, satisfies a pseudoanalytic equation in the z-
variable. By the standard Liouville’s theorem for pseudoanalytic equations
with coefficients in Lp, p > 2 it follows that n = 0.

Next we compute ∂
∂k
m(z, k).

Theorem 6.3. Let m be the solution of (56) with m− 1 ∈ Lr−β(R
2).

Then

(60)
∂

∂k
m(z, k) −m(z, k)Λk(z)SQ(k) = 0

where the scattering data SQ is given by [4]

(61) SQ(k) = −
1

π
J

∫

R2

EkQmdµ,

where dµ denotes Lebesgue measure in R2.
A further calculation shows that

(62) SQ(k) =
i

π

∫

R2

(
0 e(z,−k)q(z)m22(z, k)

−e(z, k)q(z)m11(z, k) 0

)
dµ.

The behavior of m in the k variable is given by the following result:
Theorem 6.4. Let Q ∈ L∞(R2) and compactly supported. Then there

exists R = R(Q) so that for all q > 2

supz‖m(z, ·)− 1‖Lq{k;|k|>R} ≤ C‖Q‖2
L∞

where the constants depend on q and the diameter of the support of Q.
Outline of proof of Theorem 6.1 We know [2], [23], [30], [42] that if γi ∈

C1(Ω) and Λγ1 = Λγ2 , then ∂αγ1

∣∣∣
∂Ω

= ∂αγ2

∣∣∣
∂Ω

∀ |α| ≤ 1. Therefore we

can extend γi ∈ C1(R2), γ1 = γ2 in R2 \Ω and γi = 1 outside a large ball.
Thus Qi ∈ L∞(R2), i = 1, 2. The proof follows the following steps.

Step 1. Λγ1 = Λγ2 ⇒ SQ1
= SQ2

=: S. With these extensions,
we observe that for each j the scattering data SQj

(k), j = 1, 2, has the
representation

SQj
(k) = −2J

∫

R2

(
0 ∂̄ψ12

j e
−izk̄

∂ψ21
j e

iz̄k 0

)
dµ(z)

= −2J

[∫

R2\Ω

(
0 ∂̄ψ12

j e
−izk̄

∂ψ21
j e

iz̄k̄ 0

)
dµ(z)

+

∫

∂Ω

(
0 ν̄ψ12

j e
−izk̄

νψ21
j e

iz̄k̄ 0

)
dµ(z)

]
.

The formula for SQj
uses the complexified normal to the boundary

(63) ν(z) = ν1(z) + iν2(z), ν(z) = ν1(z) − iν2(z)
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with (ν1(z), ν2(z)) the unit outer normal at z ∈ ∂Ω.
From this expression for SQj

, j = 1, 2, we see that if we can show

(64) ψ1(z, k) = ψ2(z, k) in R2\Ω̄,

then SQ1
= SQ2

.
The last formula follows by using a very similar argument to Lemma

2.6 in [41].
Step 2. Let m̃ = m1 −m2. Using the ∂-equation (60) and Step 1 we

conclude that

(65)
∂

∂k
m̃(z, k) − m̃(z, k)Λk(z)S(k) = 0

With the elements of m̃ we form the following four functions

u±(k, z)) = m̃11(z, k) ± m̃12(z, k)

v±(k, z)) = m̃21(z, k) ± m̃22(z, k)

each of which lies in Lq(R2) in the k-variable and satisfies, for a fixed z,
a pseudoanalytic equation in the k-variable,

(66)
∂

∂k
w(z, k) = r(z, k)w(z, k).

where r(z, k) is some component of S multiplied by a complex coefficient
of norm 1.

Step 3. In [7] it was shown that, for Q ∈ L∞
c with Q∗ = Q, we

have that
∫
trSQS

∗
Q ≤

∫
trQQ∗.

This shows that SQ ∈ L2. Consequently, for each fixed z we have the map
k → r(z, k) is in L2(R2).

Step 4. Prove that u± = v± = 0, hence m̃ = 0 or m1 = m2. Then it
is easy to show Q1 = Q2 and therefore γ1 = γ2.

To do this we need the following generalization of Liouville Theorem
for pseudoanalytic functions proven in [7].

Lemma 6.1. Let f ∈ L2(R2) and w ∈ Lp(R2) for some finite p.

Assume that we∂
−1
f is analytic. Then w = 0. Let us define

(67)
ũ± = u±e∂

−1
r

ṽ± = v±e∂
−1
r.

It is easy to check that ũ± and ṽ± are analytic. By the lemma above we
conclude that u± = v± = 0 which in turn givesm1 = m2. It is easy to show
Q1 = Q2 and therefore γ1 = γ2, concluding the proof of the Theorem 6.1.
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The idea of the proof of Lemma 6.1 is the observation that since r ∈

L2(R2), f = ∂
−1
r is in VMO(R2) (the space of functions with vanishing

mean oscillation) and thus is O(log |z|) as |z| → ∞. Hence efw ∈ Lp̃ for
p̃ > p. By Liouville’s theorem it follows that efw = 0. The details can be
found in [7].

7. Final remarks. It was shown in Section 2 that from the hyperbolic
Dirichlet- to-Neumann map we can recover the boundary distance function,
assuming that the domain is geodesically convex. Is there any connection
between the elliptic Dirichlet to Neumann map and the boundary distance
function dg? To know the EDN map is the same as knowing the set of
Cauchy data

(68) Cg =
{(
u|∂Ω,Λg(u|∂Ω)

)}
.

This set is resemblant of the scattering relation defined in Section 4. The
scattering relation is a Lagrangian manifold in finite dimensions and the
set of Cauchy data a Lagrangian manifold in infinite dimensions. It would
be very interesting to find a more direct relationship between these two
sets without, of course, constructing the metric first.
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