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Abstract

We discuss how techniques from multiresolution analysis and phase space transforms can be exploited in solv-
ing a general class of evolution equations with limited smoothness. We have wave propagation in media of limited
smoothness in mind. The frame that appears naturally in this context belongs to the family of frames of curvelets. The
construction considered here implies a full-wave description on the one hand but reveals the geometrical properties
derived from the propagation of singularities on the other hand. The approach and analysis we present (i) aids in
the understanding of the notion of scale in the wavefield and how this interacts with the configuration or medium,
(ii) admits media of limited smoothness, viz. with Hölder regularity s ≥ 2, and (iii) suggests a novel computational
algorithm that requires solving for the mentioned geometry on the one hand and solving a matrix Volterra integral
equation of the second kind on the other hand. The Volterra equation can be solved by recursion – as in the com-
putation of certain multiple scattering series – revealing a curvelet-curvelet interaction. We give precise estimates
expressing the degree of concentration of curvelets following the propagation of singularities.

Keywords: pseudodifferential evolution equations; paradifferential decomposition; dyadic parabolic decomposition;
curvelets.

1 Introduction
We consider evolution equations of the type

[∂z − iP (z, x,Dx)]u = 0, (1)

subjected to the initial condition u(z0, .) = u0, where z is an evolution parameter restricted to an interval [z0, Z], and
x ∈ X ⊂ Rn. If P is a pseudodifferential operator, with real symbol of order 1, the solution operator to this equation
is a Fourier integral operator (FIO). The symbols of pseudodifferential operators are smooth. With a Fourier integral
operator is associated the notion of propagation of singularities, namely, the canonical relation of the solution operator
prescribes how the wavefront set of u(z, .) is related to the wavefront of u(z0, .) if Z > z > z0.

In this paper, we are concerned with the solution operators and their construction, if the smoothness of the symbol
of pseudodifferential operator P is limited. Our analysis applies to the cases P ∈ CsS1

1,0 with s ≥ 2. We follow
essentially a multi-scale approach to solving such evolution equations, derived from the approach of Smith [30], and
make use of solution representations based on wavepackets or curvelets [11, 9, 10]. The solution operator generalizes
the notion of Fourier integral operators the canonical relations of which are generated by canonical transformations.
The operator will be described in terms of actions on, and, explicitly, scattering between wavepackets or curvelets. It
appears that the multi-scale approach inherits an imprint of the classical propagation of singularities (per scale). A
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key property that emerges out of the operator construction is the phenomenon of concentration of packets or curvelets.
This concentration follows, basically, from a careful analysis of the operator kernel, and associated estimates, that
generates the scattering between wavepackets. The analysis we present is adapted to computation.

The scattering between wavepackets is described in terms of a Volterra equation of the second kind which admits
a series expansion. From a computational perspective, one needs to solve eikonal equations (that is, the associated
Hamilton systems) for each scale on the one hand, and the Volterra equation on the other hand. The computation
of, and the use of, the geometry from the Hamilton systems is reminiscent of the ‘high-frequency’ solution to the
evolution equation. The Volterra equation can be solved with a step-by-step method; this method has its counterpart in
the Trotter product representation (Kumano-go and Taniguchi [25]) of the Fourier integral operators appearing in the
smooth pseudodifferential evolution equation case. In each step, the Volterra equation can be solved by recursion – as
in the computation of certain multiple scattering series (De Hoop [15]), where wave constituents are replaced by wave
packets.

The approach followed here has its roots in the theory of coherent wave packets and Fourier integral operators
(Cordoba and Fefferman [13]) and combines elements of the dyadic parabolic decomposition of Fourier integral op-
erators (Stein [31]), of the technique of parabolic cutoffs in the treatment of Fourier integral operators (the class Ip,l)
with certain singular symbols (Greenleaf and Uhlmann [21]), of the parametrix construction for the wave equation
with C1,1 (essentially Hölder class C2) coefficients (Smith [29, 30]), and of paradifferential calculus (Bony [3], and
Coifman and Meyer [12]; see also Taylor [34]). The concept of the mentioned parabolic cutoffs goes back to Boutet
de Monvel [4]. Furthermore, the frame of curvelets and the associated curvelet transform used here can be related to
the Fourier-Bros-Iagolnitzer (FBI) transform (Bros and Iagolnitzer [5]) as well as with Gaussian beams and the over-
complete frame they form (for example, Shlivinski, Heyman, Boag and Letrou [28]). Geba and Tataru [20] adapted
the Bargmann transform to the wave equation in a manner related to curvelets to characterize the associated classes
of Fourier integral operators. Curvelets have been used in analyzing wave propagators and associated Fourier integral
operators by Candès and Demanet [6, 7].

The outline of the paper is as follows. In Section 2 we introduce the class of evolution equations considered, and
the relevant estimates derived from paradifferential techniques. In Section 3 we summarize the curvelet transform
in the context of the dyadic parabolic decomposition of phase space and its generalization in terms of frames and
co-frames. Using these frames and co-frames, in Section 4 we initiate the multi-scale approach by constructing
approximate solutions to the evolution equations. The full, weak solutions to the evolution equations are computed
by solving a system of coupled Volterra equations of the second kind, which is the subject of Section 5. In this
section, we furthermore develop a step-by-step approach, prove convergence of the solution of the system of Volterra
equations by recursion, and analyze the degree of concentration of curvelets near the flow associated with the canonical
transformation generated by the evolution equation, which depends on the Hölder class of the symbol, that is, the
medium. We discuss the sparsity of the matrix representation with respect to the frame of curvelets of the full solution
operator. In Section 6, we discuss how the frame developed in Section 3 can be discretized while preserving its
essential properties. Moreover, we design a numerical forward and inverse transform pair. We further demonstrate
how the approximate solution of Section 4, that is, the leading-order recursive solution to the Volterra equation, can
be numerically computed, while preserving estimates for the Volterra kernel in Section 5.

A key application of the approach developed here is a solution to the wave-equation imaging problem. We briefly
mention an example of the formulation based on ‘seismic data downward continuation’; for the detailed mathematical
framework of the downward continuation formulation, see Stolk and De Hoop [32, 33]. Then z ∈ R+ stands for depth
pointing towards the earth’s interior, z0 = 0 represents the earth’s surface, x stands for source, receiver coordinates
and time (s, r, t) ∈ Rm−1 × Rm−1 × R+ (n = 2m− 1 in the above, with m = 2, 3), u0 stands for seismic reflection
data, while

P (z, s, r,Ds, Dr, Dt) = B(z, s,Ds, Dt) +B(z, r,Dr, Dt),

B(z, y,Dy, Dt) = 1
2D

−1
t

m−1∑
j=1

Dyjc(z, y)Dyj , y = s, r,

known as the paraxial approximation, implying that the wavespeed c(z, .) ∈ Cs (Lipschitz in z is sufficient). The
image at depth z > z0 and position y ∈ Rm−1 is extracted from the solution as u(z, s = y, r = y, t = 0). (Here,
u is identified as the wavefield in a ‘comoving’ frame of reference, that is, the seismic wavefield w, say, is written
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as w(z, s, r, t) = (2π)−1
∫

exp[−iτ(t′ − t + T (z, s, r))]u(z, s, r, t′) dt′dτ , with T (z, s, r) =
∫ z

z0
dz′[c(z′, s)−1 +

c(z′, r)−1].) From a geophysical perspective, the approach and analysis presented here aids in the fundamental under-
standing of the notion of scale in the (initial) data (waves), how scales in the data interact with the medium (wavespeed),
and how scales in the data map to scales in the (solution) image (the above mentioned concentration). The spatial scale
of variation in wavespeed is tied to geodynamical processes in the earth’s interior. As an additional benefit, seismic
data and seismic images are candidates for sparse representations with respect to frames of curvelets. Processes such
as data regularization (correcting for missing data traces), correction for illumination of images, in combination with
denoising, can well be formulated and performed based on such sparse representations (see Herrmann, Moghaddam
and Kirlin [23]). In the quasi-constant coefficient case, the notion of approximate solutions (Section 4) has been tied
to FIOs generated by canonical transformations and applied to imaging of the type mentioned here in Douma and De
Hoop [17].

2 Hyperbolic evolution equations with limited smoothness

2.1 A paradifferential decomposition
Let Cs denote the Hölder class of order s. The Hölder classes {Cs} form a scale of spaces, that is Cr ⊂ Cs if s < r.
For integer s the class Cs is defined by continuity of derivatives of order up to s, while for s ∈ R+\Z+ the Hölder
classes Cs coincide with the Zygmund classes Cs

∗ , equipped with the norm

‖f‖s := sup
k

2k s‖ψk(D)f‖L∞ .

Here, ψk(ξ) is supported about 〈ξ〉 ∼ 2k with 〈ξ〉 = (1 + ‖ξ‖2)1/2, while
∑∞

k=0 ψk(ξ) = 1 forming a partition of
unity.

We consider pseudodifferential operators P with real symbol p ∈ CsS1
1,0 [34, Section 1.3], and we assume that the

symbol p of P is homogeneous of degree 1 in the phase variable ξ for ‖ξ‖ ≥ 1. Our operators are pseudodifferential
operators in x, parameterized by a variable z; we assume that z ∈ [z0, Z]. We write P = P (z, x,Dx). Symbols
p ∈ CsS1

1,0 satisfy the estimates:
‖∂α

ξ p(·, ξ)‖s ≤ Cα(1 + ‖ξ‖)1−|α|.

Following [34, Section 1.3] we consider a paradifferential decomposition P = P̄ ] + P̄ [ corresponding to the decom-
position of p, with frequency localization parameter δ = 1

2 ,

p̄](z, x, ξ) =
∞∑

k=0

p̄k(z, x, ξ)ψk(ξ), p̄k(z, x, ξ) := ϕ(2−k/2Dx) p(z, x, ξ). (2)

Here, ϕ̂(ξ) = 1 for ‖ξ‖ ≤ 1 and = 0 for ‖ξ‖ > 2; thus, p̄k can be obtained by low-pass filtering p in x for ‖ξ‖ < 2k/2

for each z. The summation for p̄] follows the Littlewood-Paley decomposition where each annulus in the ξ-space is
associated with a dyadic scale 2k.

With p ∈ CsS1
1,0 we have p̄] ∈ S1

1, 1
2

, that is, a symbol of order 1 and type (1, 1
2 ). Furthermore,

∂β
x p̄

] ∈

{
S1

1, 1
2

, |β| ≤ s

S
1+ 1

2 (|β|−s)

1, 1
2

, |β| ≥ s
.

On the other hand, p̄[ ∈ CsS
1− s

2
1, 1

2
, [34, Prop. 1.3.E]. This yields that P̄ [ is of order 0 provided that s ≥ 2, which we

will assume in all of our analysis. We collect some estimates that follow from [34, Lemma 1.3.C],

‖∂β
x p̄k(z, ·, ξ)‖L∞ ≤ Cβ 2k(|β|−s)/2〈ξ〉 , |β| ≥ s , (3)

‖p(z, ·, ξ)− p̄k(z, ·, ξ)‖L∞ ≤ C 2−ks/2〈ξ〉 . (4)
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By [34, Prop.2.1.E], it follows that P̄ [ : Hr(Rn) → Hr(Rn) is bounded for all z and − 1
2s < r < s; in case s = 2,

P̄ [ is bounded for−1 ≤ r ≤ 2 by [30, Theorem 4.5]. Thus, P̄ [ acts as an operator of order 0 onHr(Rn) for a suitable
range of r.

The dependence of the symbol p on z will be assumed to be Lipschitz (Hölder regularity 1). The smoothing
of the symbol with respect to z is carried out by convolution against dilates by 2−k of a compactly supported test
function. Applying this smoothing to p̄k we obtain the pseudodifferential operator symbol pk. With p](z, x, ξ) =∑∞

k=0 pk(z, x, ξ)ψk(ξ) we obtain the decomposition P = P ] + P [. With s ≥ 2, the estimate (3) generalizes to

‖∂m
z ∂

β
xpk‖L∞([z0,Z]×Rn) ≤ Cm,β 2k(2m+|β|−2)/2〈ξ〉 , 2m+ |β| ≥ 2 , (5)

while estimate (4) generalizes to

‖p(·, ·, ξ)− pk(·, ·, ξ)‖L∞([z0,Z]×Rn) ≤ C 2−k〈ξ〉 . (6)

Estimates (5)-(6) are used to prove Theorem 5.1.

In this paper, we study the hyperbolic evolution equation and the associated Cauchy initial value problem,

[∂z − iP (z, x,Dx)]u = 0 , u(z0, x) = u0(x) . (7)

We denote its solution operator by F (z, z0), so that u(z, ·) = F (z, z0)u0. Here, z0 ≤ z ≤ Z as before.

2.2 The smooth case: The Hamiltonian flow
If the symbol p of the pseudodifferential operator P is smooth and of order 1, the evolution operator F (z, z0) for
(7) propagates singularities along bicharacteristics. The principal symbol of P (which we also denote by p) defines a
Hamiltonian. The bicharacteristics then follow the Hamiltonian flow,

dx
dz

= −∂p
∂ξ

(z, x, ξ) ,
dξ
dz

=
∂p

∂x
(z, x, ξ) , (8)

subject to the initial conditions x = x0, ξ = ξ0 at z = z0. Solutions to (8) are denoted by x = x(z, z0, x0, ξ0) and
ξ = ξ(z, z0, x0, ξ0); we will also use the shorthand notation x(z, z0) and ξ(z, z0).

If P in (7) is a smooth pseudodifferential operator, the solution operator F (z, z0) of the evolution equation is a
family of Fourier integral operators, depending smoothly on parameters (z, z0), with their canonical relation Λ given
by the twisted graph

Λ = {(x(z, z0), ξ(z, z0);x0,−ξ0)} .
In the later analysis, we work with the Hamiltonian flows associated to pk. These flows do not correspond to physical
rays of P , but are approximations defined using an appropriate geometry.

To accommodate the implied scale decomposition, we view the norms of the covectors separately from their direc-
tions. Hence, we also consider the flow introduced above projected onto the cosphere bundle, S∗(Rn). Normalizing
the cotangent vector, introducing ν = ξ/‖ξ‖ , the Hamilton equations (8) result in the system

dx
dz

= −∂p
∂ξ
,

dν
dz

=
∂p

∂x
−

〈
ν,
∂p

∂x

〉
ν, (9)

To describe the rotation of the covector in the flow, we introduce the z-dependent family of orthogonal matrices
Θ ∈ O(n) that satisfy the equation

dΘ
dz

= Θ
[
ν ⊗ ∂p

∂x
− ∂p

∂x
⊗ ν

]
(10)

subject to the initial condition Θ = I at z = z0. For the solutions Θ(z, z0) and ν(z, z0) = ξ(z, z0)/‖ξ(z, z0)‖ of (10)
and (9), we have d

dz [Θ(z, z0) ν(z, z0)] = 0 so that

ν(z, z0) = Θ(z, z0)−1 ν0 ,

with ν0 = ν(z0, z0) = ξ0/‖ξ0‖.
To initiate the approach developed here, we construct approximate solutions to the evolution equation (Section 4).

These solutions are derived from the parametrix of the evolution equation in which the symbol of P has been replaced
by the smoothed symbol p].
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Figure 1: The partition of unity used in Section 6 (left), a window function χ̂ν,k (top), and the common tiling [31]
(right) consistent with dyadic parabolic decomposition.

3 Dyadic parabolic decomposition of phase space
We recall the second dyadic decomposition ([19], also [31, IX.4.4]) upon which the curvelet decomposition is based.
We introduce the frame of wave packets/curvelets which will be used to construct and analyze the propagator F (z, z0).
Our methods work equally well for tight frames, or for a more general frame/co-frame pair.

3.1 Frames and representations
We begin with an overlapping covering of the positive ξ1 axis by rectangles of the form

Bk =
[
ξ′k −

L′k
2
, ξ′k +

L′k
2

]
×

[
−L

′′
k

2
,
L′′k
2

]n−1

,

where the centers ξ′k, as well as the side lengths L′k and L′′k , satisfy the parabolic scaling condition

ξ′k ∼ 2k, L′k ∼ 2k, L′′k ∼ 2k/2, as k →∞ .

For k = 0, B0 is a cube centered at ξ0 = 0, with L′k = L′′k . See figure 1 1. In this figure (right) we show the usual
dyadic parabolic decomposition; figure 1 (left) illustrates a more flexible decomposition with essentially the same
scaling properties.

Next, for each k ≥ 1, let ν vary over a set of approximately 2k(n−1)/2 uniformly distributed unit vectors. (We can
index ν by ` = 0, . . . , Nk − 1, Nk = b2k(n−1)/2c: ν = ν(`) while we adhere to the convention that ν(0) = e1 aligns
with the ξ1-axis.) Let Θν,k denote a choice of rotation matrix which maps ν to e1, and

Bν,k = Θ−1
ν,kBk .

1It is computationally advantageous to depart from a pure dilation representation of Bk for relatively small sized k.
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The parameters ξ′k, L′k, L′′k , and ν are chosen so that the Bν,k amply cover Rn, in the sense that with L′k and L′′k
multiplied by some fixed r < 1, the interiors would still cover.

The final ingredient in the frame construction are two sequences of smooth functions χ̂ν,k and β̂ν,k on Rn, each
supported in Bν,k, so that

χ̂0(ξ) β̂0(ξ) +
∑
k≥1

∑
ν

χ̂ν,k(ξ) β̂ν,k(ξ) = 1,

yielding a co-partition of unity, and such that

|〈ν, ∂ξ〉j ∂α
ξ χ̂ν,k(ξ)|+ |〈ν, ∂ξ〉j ∂α

ξ β̂ν,k(ξ)| ≤ Cj,α 2−k(j+|α|/2), (11)

in which the constants are independent of ν, k. In figure 1 we show χ̂ν,k(ξ) β̂ν,k(ξ) for a typical choice of the above
mentioned sequences.

We define
ψ̂ν,k(ξ) = ρ

−1/2
k β̂ν,k(ξ) , ϕ̂ν,k(ξ) = ρ

−1/2
k χ̂ν,k(ξ) , (12)

with ρk = (2π)−n|Bk| = (2π)−nL′k(L′′k)n−1. Both functions satisfy estimates of the type

|ϕν,k(x)| ≤ CN2k(n+1)/4 ( 2k|〈ν, x〉|+ 2k/2|x| )−N . (13)

We obtain a frame / co-frame pair by subjecting ϕν,k and ψν,k to translations over xj , resulting in ϕν,k(x − xj)
and likewise for ψν,k. Let {xj} denote a set of points in Rn, depending on (ν, k). Introducing triplets γ = (xj , ν, k),
we get ϕγ(x) = ϕν,k(x− xj), or 2

ϕ̂γ(ξ) = ρ
−1/2
k χ̂ν,k(ξ) exp[−i〈xj , ξ〉], k ≥ 1. (14)

In the further analysis we will consistently filter out coarse-scale (k ≤ 0) contributions.
The translation factor exp[−i〈xj , ξ〉] is representative of a Fourier basis (with frequencies xj) for functions of ξ.

The (compact) support of χ̂ν,k admits an orthonormal basis defining a Fourier series. Thus, we introduce the lattice

Xj := (j1, . . . , jn) ∈ Zn,

and capture the scaling of Bk in the dilation matrix

Dk =
1
2π

(
L′k 01×n−1

0n−1×1 L′′kIn−1

)
.

Choosing xj = Θ−1
ν,kD

−1
k Xj yields an orthogonal basis, exp[−i〈xj , ξ〉], for functions supported in Bν,k.

LEMMA 3.1. Let γ = (xj , ν, k) with xj = Θ−1
ν,kD

−1
k Xj . Then the functions ϕγ and ψγ form a frame / co-frame pair

in L2(Rn), i.e., if

uγ = 〈u|ψγ〉 =
∫
u(x)ψγ(x) dx, (15)

then
u(x) =

∑
γ

uγϕγ(x). (16)

Furthermore, for each fixed wedge indexed by ν, k, it holds true that∑
γ′: k′=k, ν′=ν

uγ′ ϕ̂γ′(ξ) = û(ξ) β̂ν,k(ξ) χ̂ν,k(ξ) . (17)

2Our Fourier transform convention is bu(ξ) =
R

u(x) exp[−i〈x, ξ〉] dx, u(x) = (2π)−n
R bu(ξ) exp[i〈x, ξ〉] dξ.
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The left-hand side of (17) is a sum over j (xj) for given ν, k. It should be noted that the frame is not orthogonal.
In case βν,k = χν,k the frame is tight, and corresponds to the frame elements introduced by Smith [30], and also
curvelets [11, 9, 8]. In this case, we have a Plancherel formula

‖u‖2L2 =
∑

γ

|uγ |2 .

Proof. The functions ρ−1/2
k exp[−i〈xj , ξ〉] , j ∈ Zn form an orthonormal basis for L2(Bν,k). It is natural to express

(15) as a convolution, that is

uγ =
∫
u(x)ψγ(x)dx = ρ

−1/2
k

∫
u(x)βν,k(x− xj)dx = ρ

−1/2
k (u ∗ βν,k)(xj), (18)

where we have used (12) and (14), and that βν,k(x) = βν,k(−x), noting that β̂ν,k is real valued. We express (18) in
terms of an inverse Fourier transform,

uγ = 〈u|ψγ〉 = (2π)−nρ
−1/2
k

∫
û(ξ)β̂ν,k(ξ) exp[i〈xj , ξ〉] dξ. (19)

Then ∑
γ′: k′=k, ν′=ν

uγ′ ϕ̂γ′(ξ) = ρ
−1/2
k

∑
j′

uj′,ν,k exp [−i〈xj′ , ξ〉] χ̂ν,k(ξ) = β̂ν,k(ξ) χ̂ν,k(ξ) û(ξ) ,

writing uxj ,ν,k = uj,ν,k. This establishes (17). Summing over (ν, k) yields û(ξ), proving (16).

Equation (15) defines a mapping U : u(x) → (uγ), while equation (16) defines a mapping V : (uγ) → u(x); V
is the left inverse of U . Furthermore, the mapping

UV : uγ →
∫
ψγ′(x)

∑
γ

uγϕγ(x) dx

is the orthogonal projection onto ranU . We have

LEMMA 3.2. Let γ = (xj , ν, k) and {xj} denote the lattice derived from {Xj} for given ν, k, and likewise for γ′. Let
cγγ′ = 〈ϕγ |ψγ′〉. The following estimate holds: For each N = 1, 2, . . . there exists a constant CN such that

|cγγ′ | ≤ CN1{(ν′,k′)∈N (ν,k)}〈Dk(xj − xj′)〉−N , (20)

where (ν′, k′) ∈ N (ν, k) if the supports of ϕ̂γ and ψ̂γ′ overlap.

Proof. The factor 1{(ν′,k′)∈N (ν,k)} in the estimate follows immediately from the identity 〈f(. − a)|g(. − b)〉 =
F−1(f̂ ĝ)(b − a). The decay estimate follows from decay estimates of Fourier transforms of smooth functions sub-
jected to parabolic scaling (it should be noticed that {xj} and {xj′} are different lattices), and can be found, for
example, in [10, Section 5.2].

In the case of the tight frame of curvelets, c represents the Gram matrix. The co-frame is related to the frame
according to ψγ = (V V ∗)−1ϕγ ; V V ∗ = I in the case of the tight frame of curvelets.

There is a relation between the curvelet transform, the FBI transform and coherent wave packets. In the wave
packet approach the analyzing elements can be viewed as Gabor functions where the frequency and window size
are connected by the quadratic relation (window size)2 = spatial frequency. In this context, we mention the almost
diagonalization of pseudodifferential operators of type S0

0,0 by making use of Gabor frames [22], the underlying theory
of which differs from the decomposition followed here.
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4 Construction of approximate solutions
We discuss a construction of approximate solutions to (7). The construction is based on a decomposition of the action
of solution operator F into wave packets or curvelets. It involves a decomposition into scales, and is reminiscent of
high-frequency solutions to the evolution equation.

For each Pk, that is for each scale, we identify its principal symbol pk with a Hamiltonian as in (8). The associated
flows, however, do not correspond with physical rays, and are merely defining an appropriate geometry. Normalizing
the cotangent vectors, we obtain (9) with p replaced by pk.

4.1 ‘Rigid’ motion of wave packets
We approximate the action of F (z, z0) on frame elements ϕγ by considering rigid motions; the approximation follows
a description in terms of particles. We subject ϕγ to a rigid motion in accordance with the Hamiltonian flow defined
by pk for a given scale k. Let xγ(z, z0) stand for x(z, z0) evaluated with p = pk if γ = (x0, ν, k); we introduce
Θγ(z, z0) in a similar manner, satisfying equation (10) with p replaced by pk. We let ϕγ(z, z0, y) denote the function
obtained by rigid motion of ϕγ(y) with the flow out of (x0, ν) at scale k,

ϕγ(z, z0, y) = ϕγ(Θγ(z, z0)(y − xγ(z, z0)) + xγ) , xγ = x0; (21)

we assume x0 ∈ {xj} for the given ν, k. The motion is readily evaluated in the Fourier domain (cf. (14)), viz.

ϕ̂γ(z, z0, η) = ρ
−1/2
k χ̂ν,k(Θγ(z, z0)η) exp[−i〈η, xγ(z, z0)〉]. (22)

Equation (21) approximately solves (7) with initial condition u0 = ϕγ . The approximation can be motivated, from
the infinitesimal generator point of view, as follows. First, we observe that

∂zϕγ(z, z′, y) = Lk(z, xγ(z, z′), νγ(z, z′), y, ∂y)ϕγ(z, z′, y) ,

with Lk(z, x, ν, y, ∂y) given by

〈∂ξpk(z, x, ν), ∂y〉+ 〈y − x, ∂xpk(z, x, ν)〉〈ν, ∂y〉 − 〈ν, y − x〉〈∂xpk(z, x, ν), ∂y〉 (23)

in which ∂ξpk and ∂xpk arise from the Hamilton system that determines xγ and Θγ , and Θγ(z, z′)νγ(z, z′) = ν. We
can view Lk as a pseudodifferential operator (in y) with (elementary) symbol Lk(z, xγ(z, z′), νγ(z, z′), y, iη). The
question is up to which order the operator Lk cancels the action of operator iPk ([30, (3.5)]).

The action of Pk(z, y,Dy) on ϕγ(z, z′, ·) attains the form (cf. (22))

Pk(z, y,Dy)ϕγ(z, z′, ·) = (2π)−n

∫
pk(z, y, η) exp[i〈η, y〉] ϕ̂γ′(z, z′, η) dη

= (2π)−nρ
−1/2
k

∫
pk(z, y, η) χ̂ν,k(Θγ(z, z′)η) exp[i〈η, y − xγ(z, z′)〉] dη . (24)

We expand pk in (y, η) about (x1, ξ1) ≡ (xγ(z, z′),Θγ(z, z′)−1ξ0),

pk(z, y, η) = pk(z, x1, ξ1) + 〈η − ξ1, ∂ηpk(z, x1, ξ1)〉
+ 〈y − x1, ∂ypk(z, x1, ξ1)〉+ 〈y − x1, ∂y〉〈η − ξ1), ∂η〉pk(z, x1, ξ1)〉

+ 1
2 (y − x1)2∂2

ypk(z, x1, ξ1) + 1
2 (η − ξ1)2∂2

ηpk(z, x1, ξ1) + l.o.t.

where l.o.t. denotes symbols that will lead to terms of order 0 or lower.
Let ν1 denote the direction of ξ1. Then 〈ν1, ∂η〉∂ηj

pk(z, x1, ξ1) = 0, by homogeneity of ∂ηj
pk of order 0.

Consequently, the symbol (η − ξ1)2∂2
ηpk only involves the component of (η − ξ1) perpendicular to ν1, which is

bounded by 2k/2. Since ∂2
ηpk ≈ 2−k, this symbol leads to a bounded term.

Similarly, when applied to ϕγ(z, z′, ·), the factor (y − x1) is of size 2−k/2, and since ∂2
ypk ≈ 2k, the symbol

(y − x1)2∂2
ypk also leads to bounded terms.
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By homogeneity, again, the other terms simplify to

〈∂ηpk(z, x1, ν1), η〉+ 〈y − x1, ∂y〉〈∂ηpk(z, x1, ν1), η〉 .

In the second term we may replace η by 〈ν1, η〉ν1, since the difference is≈ 2k/2 which with (y−x1) leads to bounded
terms, as ∂y∂ηpk ≈ 1. With this replacement we have the symbol

〈∂ηpk(z, x1, ν1), η〉+ 〈y − x1, ∂ypk(z, x1, ν1)〉〈ν1, η〉 .

This differs from the symbol of iLk by the term

〈ν1, y − x1〉〈∂ypk(z, x1, ν1), η〉

which leads to bounded terms since 〈ν1, y − x1〉 ≈ 2−k when acting on ϕγ(z, z′, ·).

REMARK 4.1. In the development of a numerical approach, while solving the system (9)-(10) for xγ′(z, z′) and
Θγ′(z, z′), the quantities ϕγ′(z, z′, y) and ∂zϕγ′(z, z′, y) − iP (z, y,Dy)ϕγ′(z, z′, ·) are to be computed in parallel
using (23) and (24), see Section 5.

4.2 Superposition of scales
We reconsider the parametrix F (z, z0) (cf. (7)). Here, we are concerned with developing its action up to leading order,
described by decomposing u0 into wave packets and subjecting, per scale, these packet constituents to the rigid motion
elaborated in the previous subsection,

DEFINITION 4.2. If uγ′ =
∫
ψγ′(x)u(x) dx, we define Tk(z, z′)u as

(Tk(z, z′)u)(y) =
∑

γ′: k′=k

uγ′ϕγ′(z, z′, y), z′ ∈ [z0, z], (25)

using the Hamiltonian pk. Furthermore, T(z, z′)u =
∑∞

k=0 Tk(z, z′)u.

Note that T(z, z) = I, the identity operator. We observe that Tk(z, z′) is localized to wavenumbers of size
‖ξ‖ ≈ 2k. The higher order contributions to the parametrix are described by ‘packet-packet’ interaction developed in
the next section.

In preparation of the further analysis, we consider the matrix representations of T(z, z′) with respect to the frame
of curvelets. We introduce the elements

T (z, z′)γγ′ =
∫
ψγ(y)ϕγ′(z, z′, y) dy .

To characterize the matrices, we recall the pseudodistance function on S∗(Rn) introduced in [29, Definition 2.1],
which is given by

d(x, ν;x′, ν′) = |〈ν, x− x′〉|+ |〈ν′, x− x′〉|+ min{‖x− x′‖, ‖x− x′‖2}+ ‖ν − ν′‖2.

If γ = (x, ν, k) and γ′ = (x′, ν′, k′), let D(γ, γ′) =
(

1 +
d(x, ν;x′, ν′)
2−k + 2−k′

)
. A weight function µδ(γ, γ′) is then

introduced as
µδ(γ, γ′) = (1 + |k′ − k|2)−12−(δ+

1
2n)|k′−k|D(γ, γ′)−n−δ. (26)

We use the following matrix spaces [30, Definitions 2.6-2.8]. Let χ be a mapping on S∗(Rn), and χ(γ′) = (χ(x′, ν′), k′).
The matrix Aγγ′ belongs to the class Mr

δ(χ) if

|Aγγ′ | ≤ CA2rk′µδ(γ, χ(γ′)). (27)

9



Furthermore, Mr(χ) = ∩δ>0Mr
δ(χ). An operator A belongs to the class Ir(χ), if its matrix

Aγγ′ =
∫
ψγ(y)(Aϕγ′)(y) dy belongs to Mr(χ).

There is a natural assignation of an operator to each matrix, but different matrices can lead to the same operator
due to the redundancy of the curvelet frame. In particular, the matrix of the identity operator is not the identity matrix,
but is easily seen (e.g. [30, Lemma 2.9]) to belong to the class M0(I). As a result, any matrix in Mr(χ) determines
an operator in Ir(χ). In this context, we note that according to Definition 4.2, T(z, z′) = V T (z, z′)U . On the other
hand, the elements T(z, z′)γγ′ = 〈T(z, z′)ϕγ′ |ψγ〉, are obtained by

U T(z, z′)V = UV T (z, z′)UV ;

but UV ∈M0(I) in view of Lemma 3.2.
By [30, Theorem 2.7], Mr1(χ1) ◦Mr2(χ1) ⊆ Mr1+r2(χ1χ2), where ◦ denotes matrix composition, and the χj

are assumed to (approximately) preserve the distance function. Consequently, Ir1(χ1) ◦ Ir2(χ2) ⊆ Ir1+r2(χ1χ2).
The assumption holds for χ = χz,z′ , defined by the Hamiltonian flow of a C2 symbol [30, Lemma 2.2], see (9) with
initial conditions at z′ derived from γ′. We note that χz,z′′χz′′,z′ = χz,z′ .

By [30, Theorem 3.2],
T(z, z′) ∈ I0(χz,z′) . (28)

The results of the previous section yield that also (see [30, Theorem 3.2])

∞∑
k=0

[∂z − iPk(z, x,Dx)]Tk(z, z′) ∈ I0(χz,z′) . (29)

Both (28) and (29) are true whether we define χz,z′ at scale k using the Hamiltonian p or its smooth approximation
pk, since by [30, Lemma 3.6],

d(χz,z′(x, ν); (χk)z,z′(x, ν)) ≤ C 2−k ,

uniformly for x, ν, k, and z0 ≤ z, z′ ≤ Z.
If we set

d(γ; γ′) = 2−min(k,k′) + d(x, ν;x′, ν′) , (30)

where d(γ; γ′) is obtained by averaging d over the supports of ϕγ and ϕγ′ , the decay estimates for T(z, z′)γγ′ attain
the form ∣∣T(z, z′)γγ′

∣∣ ≤ CN 2−N |k−k′| (2min(k,k′)d(γ;χz,z′(γ′))
)−N

(31)

for all N > 0. This implies that the matrix `p norm of T(z, z′)γγ′ is bounded for each p > 0. Also, (31) implies
the concentration of wave packets under the approximate solution operator. Using the microlocal properties of the
curvelet transform, one can select coefficients u0,γ′ with indices γ′ close to the wavefront set of u0; with appropriate
thresholding one can obtain a sparse representation of u0 in terms of curvelets. The sparseness in representation is
preserved under T(z, z0) in accordance with (31).

5 Multi-scale approach to solving the evolution equation

5.1 A Volterra equation and scattering series
First let us assume that T(z, z′) denotes a family of operators Hr(Rn) → Hr(Rn) that are bounded for a given r,
such that [∂z − iP (z, x,Dx)]T(z, z′) is a bounded operator, and T(z, z) = I for all z. Then the solution u to the
Cauchy initial value problem (7) can be posed in the form

u(z, x) = (T(z, z0)u0)(x) +R(z, x), (32)

where

R(z, x) =
∫ z

z0

(T(z, z′)G(z′, ·))(x) dz′, (33)
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with G denoting a ‘residual’ forcing term (volume source density) yet to be determined. Here, R can be viewed as a
scattering contribution to u that satisfies

[∂z − iP (z, x,Dx)]R(z, x)

= G(z, x) +
∫ z

z0

[∂z − iP (z, x,Dx)](T(z, z′)G(z′, ·))(x) dz′. (34)

The representation for u posed in (32) is a weak solution to the Cauchy initial value problem (7), provided that

G(z, x) +
∫ z

z0

[∂z − iP (z, x,Dx)](T(z, z′)G(z′, ·))(x) dz′ = −[∂z − iP (z, x,Dx)](T(z, z0)u0)(x). (35)

This equation has the form of a Volterra equation of the second kind, and determines G 3. Let us set

T(z, z′)′ = −[∂z − iP (z, x,Dx)]T(z, z′) .

Following the symbol smoothing of the pseudodifferential operator, we decompose T(z, z′)′ into a sum of two terms

−
∞∑

k=0

[∂z − iPk(z, x,Dx)]Tk(z, z′) + i
∞∑

k=0

[P (z, x,Dx)− Pk(z, x,Dx)]Tk(z, z′) . (36)

In Subsection 4.2 we observed that T(z, z′) is bounded as an operator Hr(Rn) → Hr(Rn) for any r. Also, as
noted in (29), the first sum in (36) defines an operator of the class I0(χz,z′), and in particular is a bounded operator
Hr(Rn) → Hr(Rn) for any r.

As regards the second sum in (36), the operator
∑∞

k=0[P (z, x,Dx)− Pk(z, x,Dx)]ψk(Dx) acts as an operator of
order 0 on Hr(Rn) for −1 ≤ r ≤ 2 provided s ≥ 2 (see Subsection 2.1). It follows easily that the second sum in (36)
is bounded as an operator Hr(Rn) → Hr(Rn) for −1 ≤ r ≤ 2. Thus,

THEOREM 5.1. The operator T(z, z′)′ is a bounded operator Hr(Rn) → Hr(Rn) for −1 ≤ r ≤ 2.

The norm of T(z, z′)′ is bounded by a constant C(Z) if z0 ≤ z′ ≤ z ≤ Z. But then the Volterra equation (35) can
be solved by recursion,

G(z, x) =
∞∑

p=0

Gp(z, x), (37)

in which

Gp(zp+1, x) =
∫ zp+1

z0

(T(zp+1, zp)′Gp−1(zp, ·))(x) dzp , p = 1, 2, . . . ,

G0(z1, x) = (T(z1, z0)′u0)(x) . (38)

The series converges inL∞([z0, Z];Hr(Rn)) for−1 ≤ r ≤ 2, with norm dominated byC(Z) exp[ZC(Z)] ‖u0‖Hr(Rn).
With z0 ≤ z′ ≤ z ≤ Z, the map (z, z′) 7→ T(z, z′) is strongly continuous. Furthermore, the map (z, z′) 7→

T(z, z′)′v is continuous for any particular v ∈ L2(Rn). We notice that T(z, z′) does not satisfy the semi-group
property. Still the solution to the Volterra equation admits a step-by-step approach, namely

G(z + ∆, x)−
∫ z+∆

z

(T(z + ∆, z′)′G(z′, ·))(x) dz′ = (T(z + ∆, z)′u(z, ·))(x) (39)

followed by

u(z + ∆, x) = (T(z + ∆, z)u(z, ·))(x) +
∫ z+∆

z

(T(z + ∆, z′)G(z′, ·))(x) dz′. (40)

3With reference to imaging mentioned as an application in the introduction, T(z, z0) replaces the notion of ‘parsimoneous migration’ [2], or
local ‘plane-wave migration’ [27].
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Figure 2: Recursion for the residual force in the step-by-step approach. The dotted lines indicate discretization (sam-
pling) in z.

Having evaluated u(z, x), solving (39) for G in the interval (z, z + ∆] by recursion (38), we evaluate (40) to obtain
u(z + ∆, x), etc. The recursion (38) applied to (39) is illustrated in figure 2. The step-by-step approach can be
exploited in a way similar to the use of Trotter products in solving the evolution equation in the smooth symbol case
[16, 26] 4.

Equation (35) can be directly compared with the integral equation defining the generalized Bremmer coupling
series [15]: The wave matrix in the Bremmer series becomes G, and the propagator becomes T(z, z0)′. The Bremmer
series describes the scattering between ‘up’ and ‘down’ going wave constituents; here, the wave constituents become
wave packets or curvelets. We elaborate this aspect in Subsection 6.3.

5.2 Sparsity of Volterra kernel matrix and concentration of wave packets
As mentioned above Theorem 5.1, the term

∑∞
l=0[∂z−iPl(z, x,Dx)]Tl(z, z′), cf. (36), belongs to the class I0(χz,z′),

which yields rapidly decreasing decay estimates on its matrix coefficients,∣∣∣( ∞∑
l=0

[
∂z − iPl(z, x,Dx)

]
Tl(z, z′)

)
γγ′

∣∣∣ ≤ CN 2−N |k−k′| (2min(k,k′)d(γ; γ′)
)−N

(41)

for all N > 0.
The matrix coefficients of the second term, i

∑∞
l=0[P (z, x,Dx)− Pl(z, x,Dx)]Tl(z, z′), satisfy only a finite rate

of decay condition. For s small (including s = 2), this term-wise decay rate is not sufficiently fast to yield good bounds
on the operator. We instead state the decay estimates on this operator in terms of its mapping properties on function
spaces defined by a weighted `2 condition on curvelet coefficients. These will directly yield sparsity conditions on the
matrix, i.e. `p bounds on the columns and rows with p < 2.

DEFINITION 5.2. Let γ0 = (x0, ν0, k0) be a triple. We define the space Hσ,α
γ0

by the norm

‖f‖2Hσ,α
γ0

=
∑

γ

∣∣ 2kσ 2|k−k0|α
(
2min(k,k0) d(γ; γ0)

)α
fγ

∣∣2 ,
4The exploitation of the step-by-step method is in part motivated by the so-called wavefront construction method applied to solving the Hamilton

system for bicharacteristics such as (8).
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where γ = (x, ν, k), and

fγ =
∫
ψγ(y) f(y) dy .

REMARK 5.3. The choice of a particular curvelet frame in the definition ofHσ,α
γ0

changes the norm only by a bounded
factor. In particular, Hσ,α

γ0
is independent of the particular curvelet frame chosen. This can be seen, for example, using

condition (42) below.

LEMMA 5.4. Suppose that fγ′ vanishes unless |k′ − k| ≤ 4 and ‖ν′ − ν0‖ ≈ θ, where θ ≥ 2−
1
2 min(k,k0). Then

‖f‖2Hσ,α
γ0

≈ 22kσ+2 max(k,k0)α

∫ (
|〈ν0, y − x0〉|+ min(‖y − x0‖, ‖y − x0‖2) + θ2

)2α |f(y)|2 dy . (42)

Under the condition fγ′ = 0 unless |k′ − k| ≤ 4, we have

‖f‖2Hσ,α
γ0

. 22kσ+2 max(k,k0)α

∫ (
1 + ‖y − x0‖

)2α |f(y)|2 dy (43)

and
‖f‖2Hσ,α

γ0
& 22kσ+2|k−k0|α

∫ (
1 + ‖y − x0‖

)2α |f(y)|2 dy . (44)

Proof. The sum over k′ is finite, so we consider terms γ′ with k′ = k. Then

‖f‖2Hσ,α
γ0

≈ 4kσ+max(k,k0)α
∑
ν′

∑
x′

(
|〈ν0, x′ − x0〉|+ min(‖x′ − x0‖, ‖x′ − x0‖2) + θ2

)2α |fγ′ |2 .

By the spatial localization of curvelets, this in turn is comparable to

4kσ+max(k,k0)α
∑
ν′

∫ (
|〈ν0, y − x0〉|+ min(‖y − x0‖, ‖y − x0‖2) + θ2

)2α|χ̂ν′,k(Dy)f(y)|2dy .

For ‖ν′−ν‖ ≈ θ, the convolution kernel χν′,k(y) is rapidly decreasing at a rate on which the weight function is slowly
varying in y, hence this in turn is comparable to

4kσ+max(k,k0)α

∫ (
|〈ν0, y − x0〉|+ min(‖y − x0‖, ‖y − x0‖2) + θ2

)2α|f(y)|2dy .

The inequalities (44) and (43) follow by adding the above bound over dyadic values of θ.

THEOREM 5.5. Let P ∈ CsS1
1,0, where s ≥ 2. Then for 0 ≤ α < s

2 , |σ| ≤ s
2 − 1, and all γ0, we have

∥∥ ∞∑
l=0

[P (z, x,Dx)− Pl(z, x,Dx)]Tl(z, z′)f
∥∥

Hσ,α
χ

z,z′ (γ0)
≤ C‖f‖Hσ,α

γ0
.

Proof. The action of T`(z, z′) is essentially a one-to-one map of γ′ to χz,z′(γ′), and since χz,z′ respects the distance
function (and preserves k′) it suffices to consider the case z = z′, in which case we denote ∆l = Tl(z, z), the operator
which selects the coefficients fγ′ at k′ = l. We are thus considering boundedness in Hσ,α

γ0
of the operator

P [ =
∞∑

l=0

[
P (z, x,Dx)− Pl(z, x,Dx)

]
∆l .

As in the proof of Lemma 2.1.G of Taylor [34] we may write P (z, y, ξ) as a rapidly converging sum of terms of
the form a(z, y)b(ξ), where a(z, ·) ∈ Cs(Rn) and b(ξ) is a symbol of type S1

1 . We can thus reduce to the case that P

13



is an elementary symbol of the form a(z, y)b(Dy), and since z is a harmless parameter we ignore it. Against ∆l, the
action of b(Dy) is essentially multiplication by 2l, and it suffices to consider

∞∑
k=0

∞∑
l=0

2l∆k

(
a(y)− al(y)

)
∆l .

We consider the various (k, l) terms separately.
Case 1: l ≥ k + 4. By frequency separation, we have

∆k

(
a(y)− al(y)

)
∆l = ∆k

(
a(y)− a2l(y)

)
∆l .

Note that |a(y)− a2l(y)| . 2−ls. By (43) and (44), then

‖2l∆k

(
a(y)− a2l(y)

)
∆lf‖2Hσ,α

γ0
. 4kσ+max(k,k0)α+l(1−s)

∫ (
1 + ‖y − x0‖

)2α |∆lf(y)|2 dy

. 4kσ+max(k,k0)α+l(1−s)−lσ−|l−k0|α‖f‖2Hσ,α
γ0

. 4−l( s
2−α)‖f‖2Hσ,α

γ0
.

The exponent is strictly negative, so we may sum over (k, l) with k ≤ l.
Case 2: k ≥ l + 4. We similarly derive the bound

‖2l∆k

(
a(y)− a2k(y)

)
∆lf‖2Hσ,α

γ0
. 4kσ+max(k,k0)α+l−ks−lσ−|l−k0|α‖f‖2Hσ,α

γ0

. 4−(k−l)−k( s
2−α)‖f‖2Hσ,α

γ0

which is summable over (k, l) with k ≥ l.
Case 3: |k − l| ≤ 4. As representative, we consider k = l. Let

θj = 2j− 1
2 min(k,k0) , 0 ≤ j ≤ 1

2
min(k, k0) .

Let ∆k,j denote the projection onto coefficients γ′ for which k′ = k and ‖ν′ − ν0‖ ∈ [θj , 2θj); in case of ∆k,0 we
consider ‖ν′ − ν0‖ ≤ 2θ0 .

By orthogonality of the ∆k,i

‖2k∆k

(
a(y)− ak(y)

)
∆kf‖2Hσ,α

γ0
=

∑
i

(∑
j

2k‖∆k,i

(
a(y)− ak(y)

)
∆k,jf‖Hσ,α

γ0

)2

. (45)

For i 6= j, the ranges of ∆k,i and ∆k,j are separated in frequency space by distance

2k max(θi, θj) ≥ 2|i−j|+ 1
2 k .

Consequently,

2k‖∆k,i

(
a(y)− ak(y)

)
∆k,jf‖2Hσ,α

γ0
= 2k‖∆k,i

(
a(y)− ak+2|i−j|(y)

)
∆k,jf‖2Hσ,α

γ0
. (46)

Note that
|a(y)− ak+2|i−j|(y)| . 2−

s
2 k−s|i−j| ≤ 2−k−s|i−j| .

Using this and (42), the term (46) is bounded by

2kσ+max(k,k0)α−s|i−j|∥∥(
|〈ν0, y − x0〉|+ min(‖y − x0‖, ‖y − x0‖2) + θ2i

)α∆k,jf‖L2

which, since θi ≤ 2|i−j|θj , is bounded by

2kσ+max(k,k0)α−(s−α)|i−j|∥∥(
|〈ν0, y − x0〉|+ min(‖y − x0‖, ‖y − x0‖2) + θ2j

)α∆k,jf‖L2

≈ 2−(s−α)|i−j|‖∆k,jf‖Hσ,α
γ0

.

Since α < s, we may sum over i and j in (45) and use orthogonality of the ∆k,j to finish the proof.
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REMARK 5.6. The result of Theorem 5.5 also holds for the transposed operator. Indeed, only the proofs of cases 1
and 2 are affected by transposing the operator.

Combined with the estimates (41), this yields that

‖T(z, z′)′f‖Hσ,α

χ
z,z′ (γ′)

≤ C(Z) ‖f‖Hσ,α

γ′
, (47)

with constant C(Z) uniform over z and z′ in [z0, Z]. It follows that the recursion formula (37)–(38) converges,
uniformly for each z′, in Hσ,α

χz′,z0
(γ0)

, and that

‖G‖L∞([z0,Z];Hσ,α
χz,z0 (γ0))

≤ C(Z) exp[ZC(Z)] ‖u0‖Hσ,α
γ0

. (48)

This also yields

COROLLARY 5.7. The exact evolution operator F (z, z0) is a bounded map,

‖F (z, z0)u0‖Hσ,α
χz,z0 (γ0)

≤ C ‖u0‖Hσ,α
γ0

.

Taking σ = 0, γ0 = γ′, and u0 = ϕγ′ , we obtain that

‖F (z, z0)ϕγ′‖H0,α

χz,z0 (γ′)
≤ C ,

or equivalently, for all α < s,

sup
γ′

∑
γ

22|k−k′|α (
2min(k,k′) d(γ;χz,z0(γ

′))
)2α|F (z, z0)γγ′ |2 ≤ C . (49)

This shows that the curvelet coefficients of the exact evolution of ϕγ′ are concentrated near the flow of γ′ along the
Hamiltonian.

THEOREM 5.8. The evolution matrix F (z, z0)γγ′ satisfies the `p sparsity condition,

sup
γ′

∑
γ

|F (z, z0)γγ′ |p ≤ Cp , sup
γ

∑
γ′

|F (z, z0)γγ′ |p ≤ Cp , p >
2n
s+ n

.

Proof. We note that, by [30, (2.3)],

∞∑
k′=0

∑
ν′

∑
x′

2−q|k−k′| (2min(k,k′) d(γ; γ′)
)−q ≤ Cq ; q > n .

Since (49) holds for all α < s
2 , it follows by Hölder’s inequality that

sup
γ′

∑
γ

|F (z, z0)γγ′ |p ≤ Cp , p >
2n
s+ n

.

The same bound also holds with γ and γ′ interchanged.

6 Discretization
In this section, we address the issue whether the analysis developed, and estimates proved, in the earlier sections can
be used and exploited in numerical computation. Indeed, the analysis has an immediate counterpart in computation.
We consider n = 2 for simplicity of presentation. Furthermore, we restrict ourselves to functions u = u(z, x) which
are compactly supported in x (in particular, we assume that u(z0, .) is compactly supported); again, for simplicity of
presentation, we assume that u(z, .) is supported on the disc D = {x ∈ R2 | ‖x‖ < π} for all z ∈ [z0, Z].
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6.1 Frame, co-frame, transforms
We begin by studying the operator U : u(x) → (uγ) defined by (15). As a point of departure, we take (19). A
discretization of the relevant integration is obtained by introducing the approximation

ũγ =
1

(2π)2
√
ρkσ′kσ

′′
k

∑
l

û(ξl)β̂ν,k(ξl) exp[i〈xj , ξl〉], (50)

where the points ξl = ξν,k
l are chosen on a lattice. Specifically, we let

Ξk =

{
(l1, l2) ∈ Z2

∣∣∣∣∣ − N ′
k

2
≤ l1 <

N ′
k

2
,−N

′′
k

2
≤ l2 <

N ′′
k

2

}
.

Points in this set are denoted by Ξk
l (in analogy with the notation Xj). We choose ξl (associated with the box Bν,k) as

ξl = Θ−1
ν,kS

−1
k Ξk

l .

Here, the parameters Nk = (N ′
k, N

′′
k ) are even natural numbers with N ′

k > L′k and N ′′
k > L′′k , while σ′k = N ′

k/L
′
k

and σ′′k = N ′′
k /L

′′
k are the oversampling factors. The matrix Sk is defined as

Sk =
(
σ′k 0
0 σ′′k

)
=


N ′

k

L′k
0

0
N ′′

k

L′′k

 .

The dot product in the phase of the exponential in (50) then becomes

〈xj , ξl〉 = (Ξk
l )tS−1

k D−1
k Xj = 2π

(
j1l1
N ′

k

+
j2l2
N ′′

k

)
.

This specific choice of points ξl allows for a fast evaluation of ũγ = ũj,ν,k for j ∈ Ξk by means of a two-dimensional
fast Fourier transform (FFT).

We discuss the discrete approximation uγ ≈ ũγ in more detail. According to Shannon’s sampling theorem, we can
represent a function with compact support by means of sampling its Fourier transform on a properly chosen equally
spaced grid. If supp(u) ⊂ D, it is sufficient to sample û at integer points ξj = j ∈ Z2 to be able to reconstruct u(x).
While, in this case, u(x) in (19) has support in D, the convolution u ∗ βν,k no longer has compact support. However,
the fast decay of βν,k is inherited by u ∗ βν,k. Hence, uγ will be very small for large xj’s, and in practice it will be
sufficient to keep and use only the lattice points located in a neighborhood of D for representation (16) to be accurate.

The error in the approximation uγ ≈ ũγ can be estimated by the numerical integration error associated with the
trapezoidal rule [14]. We obtain: Given ν, k, for every p there exists a constant Cp such that

|uγ − ũγ | < CpN
−p, N = min(N ′

k, N
′′
k ).

Hence, the approximation error made in (50) decays fast subject to the condition that N ′
k > L′k and N ′′

k > L′′k . The
oversampling factors will need to be comparatively large for small k but decay as k grows due to the parabolic scaling
property of the support of β̂ν,k. Note that the oversampling factors are related to the number of points (xj) where uγ

is evaluated, but not to their density.
Next, we consider the inverse transform, V : uγ → u, defined by (16). Fourier transforming (16) yields

û(ξ) =
∑

γ

1
√
ρk
uγχ̂ν,k(ξ) exp[−i〈xj , ξ〉] =

∑
ν,k

1
√
ρk
χ̂ν,k(ξ)

∑
j

uj,ν,k exp[−i〈xj , ξ〉]. (51)

Thus

u(x) =
∑
ν,k

1
(2π)2

√
ρk

∫
χ̂ν,k(ξ)

∑
j

uj,ν,k exp[−i〈xj , ξ〉]

 exp[i〈x, ξ〉] dξ

≈
∑
ν,k

1
(2π)2

√
ρk

∫
χ̂ν,k(ξ)

 ∑
j∈Ξk

ũj,ν,k exp[−i〈xj , ξ〉]

 exp[i〈x, ξ〉] dξ, (52)
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yielding a finite sum on an equally spaced grid. We discretize the integral using the same arguments as before:

u(x) ≈
∑
ν,k

1
(2π)2

√
ρkσ′kσ

′′
k

∑
l∈Ξk

χ̂ν,k(ξν,k
l )

 ∑
j∈Ξk

ũj,ν,k exp[−i〈xj , ξ
ν,k
l 〉]

 exp[i〈x, ξν,k
l 〉].

Using (50) in combination with the fact that the sum in between the parenthesis above forms a discrete Fourier trans-
form, we obtain

u(x) ≈
∑
ν,k

N ′
kN

′′
k

(2π)4ρk(σ′kσ
′′
k )2

∑
l∈Ξk

û(ξν,k
l ) χ̂ν,k(ξν,k

l )β̂ν,k(ξν,k
l ) exp[i〈x, ξν,k

l 〉]

=
1

(2π)2
∑
ν,k

∑
l∈Ξk

û(ξν,k
l )

χ̂ν,k(ξν,k
l )β̂ν,k(ξν,k

l )
σ′kσ

′′
k

exp[i〈x, ξν,k
l 〉], (53)

which can be viewed as a quadrature rule for computing inverse Fourier transforms. As before, for sufficiently regular
functions û, the approximation can be made arbitrarily accurate.

The quadrature rule referred to above, requires the evaluation of û at unequally spaced points ξν,k
l . It is thus natural

to invoke algorithms for unequally spaced Fourier transforms (USFFT) [18, 1]. These USFFT algorithms allow for
freedom (not limited to, for example, a polar-coordinate grid) in the choice of discretization points ξν,k

l .

6.2 Construction of window functions
We discuss how one numerically constructs window functions that define a proper frame/co-frame pair. We make use
of certain components of the construction of discrete curvelets [8]. We assume that the frame is tight so that β̂ν,k =
χ̂ν,k (k = 0, 1, 2, . . .). We consider n = 2, and adopt polar coordinates (r, φ), whence χ̂ν,k(ξ) = w(2−kr) vk(r, φ−ν),
where w and vk are specified below.

For w(r) we follow the construction of Meyer wavelets:

w(r) =

 sin(π
2 an(2r − 1)), if 1

2 ≤ r < 1 ;
cos(π

2 an( r − 1)), if 1 ≤ r ≤ 2 ;
0, otherwise .

Here, an(r) is defined as

an(r) =

 0, r < 0;
pn(r), 0 ≤ r ≤ 1;
1, r > 1,

where pn is the polynomial of degree 2n+ 1 that satisfies

pn(0) = p′n(0) = · · · = p(n)
n (0) = 0,

pn(1) = 1, p′n(1) = · · · = p(n)
n (1) = 0.

It is readily verified that w ∈ Cn+1
0 . For the illustrations in this paper we take n = 10, when

p10(t) = t11
(
184756t10 − 1939938t9 + 9189180t8 − 25865840t7

+ 47927880t6 − 61108047t5 + 54318264t4 − 33256080t3

+ 13430340t2 − 3233230t+ 352716
)
.

This degree appears to be sufficient to display the appropriate decay properties within computational precision.
Accompanying w is the coarsest scale (k = 0) function w0, given by

w0(r) = cos
( π

2
an(2r − 1)

)
,
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which is used to define χ̂0(ξ) = β̂0(ξ) = w0(r).
Furthermore, let Nν denote the number of orientations, ν, at the scale k = 1, and let

κk(r, φ) = cos
( π

2
an

( r

2k+1

Nν |φ|b2(k−1)/2c
2π

) )
.

We define

vk(r, φ) =
κk(r, φ)√∑

ν′ κk(r, φ− ν′)2
.

We note the particular r dependence in κk(r, φ). This dependence is designed to make the supports of χ̂ν,k and β̂ν,k

‘fill out’ the boxes Bν,k. As a consequence, the decay in estimate (13) is modified from (2k|〈ν, x〉| + 2k/2|x|)−N to
(2k|〈ν, x〉|+4 ·2k/2|x|)−N . This effect, in practice, is significant in as much as it decreases the required oversampling
factors σ′′k . However, the angular overlap between the windows (but not the total number of discretization points)
increases. It is readily verified that vk ∈ Cn+1

0 , and that the resulting χ̂ν,k satisfy (11) for j, |α| ≤ n+ 1.
The rectangles Bk associated with the construction outlined here are given by

Bk =
[
2k−1 cos

(
8π

Nνb2(k−1)/2c

)
, 2k+1

]
×

[
−2k+1 sin

(
2π

Nνb2(k−1)/2c

)
, 2k+1 sin

(
2π

Nνb2(k−1)/2c

)]
,

which satisfy the parabolic scaling conditions. Due to its construction in polar coordinates, the support of vk(r, φ) in
the ξ′-direction will be slightly larger than the interval [2k−1, 2k+1].

In figure 3 we show ϕ0(x), while in figure 4 we show ϕν,k(x) (cf. (12)) for k = 2, 4, as well as part of the
associated lattices {xj} (red dots). For the purpose of comparison, we have chosen σ′k and σ′′k to be the same for all
k considered. Indeed, numerically, we obtain estimates of the type (13). We zoom into the white boxes and follow
the coordinate axes: Inserts A and B show (the absolute value of) ϕν,k(x) along the horizontal and vertical axis,
respectively. Inserts C and D show the decays (logarithmically) along the horizontal and vertical axis, respectively;
the decays are near linear as they should. (The decays are super-algebraic.) We note that the change in slopes between
inserts C follows the scaling 2k, while the change in slopes between inserts D follows the scaling 2k/2 as it should.

In the above, we summarized the way a faithful discretization of the flexible frame/co-frame pair (15) and (16) can
be constructed. As we mentioned, this construction is clearly inspired by the construction of curvelets in [8], but there
are some subtle differences between the constructions also. Given a decomposition of a function u of the form (15), it
is not possible to recover u by using a discrete version of (16), which was indicated in [8]. Indeed, the reconstruction
developed in [8], in which a relation of the type (16) is avoided, is based on the usage of an iterative solver (their
Section 4.4). The numerical approach presented here, however, can be interpreted as a direct discretization of the
frame/co-frame pair (avoiding the ‘Cartesian coronae’ or ‘pseudopolar grid’ in [8]), which is made possible by an
alternative realization of the USFFT [18, 1]. Moreover, by using window functions that ‘fill out’ the boxes Bν,k in
frequency, we can reduce (as compared with the polar windows used in, for example, [10]) the extent as measured by
decay estimates of the functions ϕν,k in space.

6.3 Approximate solutions and preparation of the kernel of the Volterra equation
To illustrate the approximate solution Tk(z, z′) in (25), we consider the following choice of evolution equation:

[∂t − iP (x,Dx)]u = 0, P (x,Dx) =

√√√√ 2∑
i=1

Dxi
c(x)2Dxi

.

Thus z becomes time t and we consider the case t′ = t0 = 0. We include the formation of a caustic by constructing a
model for c(x) with a low wavespeed lens, see figure 5.

In figure 5 we illustrate solutions to the Hamilton system (8) reduced to (9). We choose k = 4. We take 100 values
for (x0, ν0) corresponding with the decomposition into curvelets of the local plane wave used as initial condition u0
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A

B

C

D{xj}

Figure 3: The coarsest scale curvelet, ϕ0. Its real part is plotted in gray scale. Panels A and B display ϕ0 (its real
part, in blue), and |ϕ0|, along the coordinate axes within the white box: A along the ‘horizontal’ axis, and B along
the ‘vertical’ axis. Panels C and D display log10 |ϕ0| along the coordinate axes in the entire image: C along the
‘horizontal’ axis, and D along the ‘vertical’ axis.

in figure 6 (top, left); we show 3 values of t to illustrate how the canonical relation can be built. The bicharacteristic
indicated by a vertical arrow corresponds with the flow (and location and orientation of the curvelet) used in figure 7.

The initial condition, u0, is built around one scale only, viz. k = 4. The decomposition into curvelets (16) used,
only involves this scale. We then use (22) to compute (25). As mentioned before, we set t′ = t0 = 0 and plot the
outcome (as a function of y) in figure 6, for 4 different values of t (including t = t0 = 0 in the top, left), using the
Hamilton flow depicted in figure 5. We ensured that for the final time, the curvelets sufficiently (in the sense of the
lattices) sample the wavefield. The computation involved 100 curvelets.

Finally, we verify numerically how well Tk(z, z′) solves the evolution equation, that is, we compute the matrix

Mγγ′ =
([
∂t − iPl(x,Dx)

]
Tl(t, t′)

)
γγ′

appearing in (41). (This matrix plays an integral part in setting up the kernel of the Volterra equation.) We use (24) to
compute the action of Pl and (23) to compute ∂t, as in a pseudospectral method. (In (41) we only need to account for
terms satisfying |k′ − l| ≤ 2.) We restrict ourselves here to the case l = k′, k′ denoting the scale in γ′, that is, k′ = 4.

We take for γ′ the index associated with the curvelet centered at the vertical arrow in figure 5, and consider the
case t′ being the initial time (t0 = 0) and t being the second time used in figures 5 and 6. We write γ = (xj , ν, k). We
illustrate the absolute values of matrix elements, Mγγ′ , in log10-scale, in figure 7: The ‘horizontal’ planes are spanned
by the xj ; ν changes in the ‘vertical’ direction. We show two values of k: k = 4 (top) and k = 5 (bottom). We
recover, numerically, the decay estimates (near linear in logarithmic scale) in (41).
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A

B

C

D{xj}

A

B

C

D{xj}

Figure 4: Functions ϕν,k for k = 2 (top) and k = 4 (bottom). Their real part are plotted in gray scale. Panels A
and B display the real parts of ϕν,k (in blue), and |ϕν,k|, along the coordinate axes within the white box: A along the
‘horizontal’ axis, and B along the ‘vertical’ axis. Panels C and D display log10 |ϕν,k| along the coordinate axes in the
entire image: C along the ‘horizontal’ axis, and D along the ‘vertical’ axis.
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Figure 5: Model c(x) (including a circular lens) and Hamilton flow. The rays are generated by initial conditions
corresponding with the curvelets appearing in the decomposition of the initial condition used in the example shown in
figure 6. The red dots show positions along the rays at 4 time instances (including the initial time t0 = 0). The white
ray corresponds with the flow used to compute figure 7.
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Figure 6: Snapshots of the approximate solution Tk(t, t0 = 0)u0. Top, left: Initial condition u0. The approximate
solutions in the 4 panels correspond to the 4 times defining the dotted fronts in figure 5.
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(xj)1
(xj)2

(xj)1
(xj)2

Figure 7: Illustration of a column of the matrixMγγ′ , for k′ = 4 and (xj′ , ν
′) corresponding with the initial conditions

of the white ray in figure 5. Plotted is log10 |Mγγ′ |. Top: k = 4; bottom: k = 5. The ‘horizontal’ planes are spanned
by the xj ; ν changes in the ‘vertical’ direction (the ones shown contain an element greater than 10−7). The diagrams
on the left are cross sections along the coordinate axes of each plane; red curves are along the (xj)2-axes and the black
curves are along the (xj)1-axes.
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