THE GEODESIC X-RAY TRANSFORM WITH FOLD CAUSTICS

PLAMEN STEFANOV AND GUNTHER UHLMANN

ABSTRACT. We give a detailed microlocal study of X-ray transforms over geodesics-like families of curves with conjugate
points of fold type. We show that the normal operator is the sum of a pseudodifferential operator and a Fourier integral
operator. We compute the principal symbol of both operators and the canonical relation associated to the Fourier integral
operator. In two dimensions, for the geodesic transform, we show that there is always a cancellation of singularities to some
order, and we give an example where that order is infinite; therefore the normal operator is not microlocally invertible in
that case. In the case of three dimensions or higher if the canonical relation is a local canonical graph we show microlocal
invertibility of the normal operator. Several examples are also studied.

1. INTRODUCTION

The purpose of this paper is to study X-ray type of transforms over geodesics-like families of curves with caustics
(conjugate points). We concentrate on the most common type of caustics — those of fold typg. bieea fixed
geodesic segment on a Riemannian manifold, and le¢ a function which support does not contain the endpoints of
yo. The question that we are trying to answer is the following: what information about the wave front 6¢) \bfF
/ can be obtained from the assumption that (possibly weighted) integrals

(1.1) X/(y) = [ /s
Y

of f along all geodesicg close enough tg, vanish (or depend smoothly gn? SinceX has a Schwartz kernel with
singularities of conormal typeX'/ could only provide information for WEf) near the conormal bundl§™y, of ys.

If there are no conjugate points alopg then we know that WEf) N N*y, = @. This has been shown, among the
other results, in [6, 17] in this context. It also follows from the microlocal approach to Radon transforms initiated by
Guillemin [5] when the Bolker condition (in our case that means no conjugate points) is satisfied. Then the localized
normal operatodV, := X *xX, wherey is a standard cut-off nea is a pseudo-differential operata? DO), elliptic

at conormal directions tgy. If there are conjugate points along, then N, is no longer a#DO. One of the goals

of this work is first to study the microlocal structure &f, in presence of fold conjugate points, and then use it to see
what singularities can be recovered. That would also allow us to tell whether the problem of invéiisrigredholm

or not, and would help us to determine the size of the kernel, and to analyze the stability and the possible instability of
this problem.

Geodesic X-ray transforms have a long history, generalizing the Radon type X-ray transform in the Euclidean space,
see, e.g., [7]. When the weight is constant, ahfl g) is a simple manifold with boundary, uniqueness and non-sharp
stability estimates have been proven in [13, 14, 2], using the energy method. Simple manifolds are compact manifolds
diffeomorphic to a ball with convex boundary and no conjugate points. The uniqueness result has been extended to not
necessarily convex manifolds under the no-conjugate points assumption in [4]. The authors used microlocal methods
to prove a sharp stability estimate in [16] for simple manifolds and uniqueness and stability estimates for more general
weighted geodesic-like transforms without conjugate points in [6]. The X-ray transform over magnetic geodesics with
the simplicity assumption was studied in [3]. Many of those and other works study integrals of tensors as well and the
results for tensors of order two or higher are less complete.

The authors considered in [17] the X-ray transform of functions and tensors on manifolds with possible conjugate
points. Using the overdeterminacy of the problem in dimensions 3, we showed that if there exists a family of
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geodesics without conjugate points with a conormal bundle cové&tiny , then we still have generic uniqueness and
stability. In dimension two however that family has to be the set of all geodesics, and even in higher dimensions, [17]
does not answer the question what is the contribution of the conjugate poiXifs to

2. FORMULATION OF THE PROBLEM

Let (M, g) be anm-dimensional Riemannian manifold. Let exp), where(p,v) € TM, be a regular exponential
map, see section 3, where we recall the definition given by Warner in [20]. The main example is the exponential map
of g or that of another metric oM or other geodesic-like curves, for example magnetic geodesics, see also [3]. Let
k be a smooth function oM \ 0. We define the weighted X-ray transfotkly’ by

(2.1) Xf(p.0) = [K(expp(té),epr(tG))f(expp(tQ))dt, (p.0) e SM,
where we used the notation
exp(tv) = %exp(tv).

Thet integral above is carried over the maximal interval, including 0, where exy¢6) is defined. The assumptions
that we make below guarantee that this interval remains bounded.

Let (po,vo) € TM be such thabt = vy is a critical point for exp, (v) (that we call a conjugate vector) of fold
type, see the definition below. Lg§ = exp,, (vo). Then our goal is to study / for p close top, and6 close to
0o := vo/|vo| under the assumption that the supportfofs such thaty is the only conjugate vectar at p, so that
exp,, (v) € supp/. Note thatvy can be written in two different ways a8y, |6y| = 1, with £7 > 0, and we chose the
first one. The contribution of the second one can be easily derived from our results by repiaoing6,.

Instead of studying( directly, we study the operator

NI = [ k.00 X (7.6 doy 0
(2.2) D
— ﬂ .
_ /S . [ «*(p, ) (exp, (16), X1, (10)) (exp, (10)) it Aoy, (6),

with some smootk* localized in a neighborhood ¢py, 6,). Here @, () is the induced Riemannian surface measure
on S,(M). When exp is the geodesic exponential map, there is a natural way to give a structure of a manifold to all
non-trapping geodesics with a natural choice of a measure, see section 5. The ofjecatotbe viewed as map
from functions or distributions o/ to functions or distributions on the geodesics manifold. Then one can define
the adjointX ™ with respect to that measure. Then the operafdix is of the form (2.2) withw# = i, see (5.1).
The condition that supg? should be contained in a small enough neighborhoagef6,) can be easily satisfied by
localizing p near po, and choosing suppto be nealy,, q,. ¥p,.6,)- IN the case of general regular exponential maps
N is not necessarilyy™* X

A direct calculation, see [16] and Theorem 5.1, shows that the Schwartz ker&élgfin the geodesic case (see
also [6] for general families of curves), is singular at the diagonal, as can be expected, and that singularity defines
a ¥DO of order—1 similarly to the integral geometry problem for geodesics without conjugate points. We refer to
section 5 for more details. Next, singularities away from the diagonal exist at(paig3 so thaty = exp,(v) for
somev, and @ exp, is not an isomorphismy{ andq are conjugate points). The main goal of this paper is to study
the contribution of those conjugate points to the structur& k™ and the consequences of that. We actually study a
localized version of this; for a global version on a larger open set, under the assumption that all conjugate points are
of fold type, one can use a partition of unity.

Let! be a small enough neighborhoods p§, 6y) in SM . LetU be a small neighborhood ¢f so thaty C = (i),
wherer is the natural projection on the base. ki e CeeU). Let Nf be as in (2.2), related to*, wherex is a
smooth weight. We will apply” to functionsf supported in an open s&t> p, satisfying the conjugacy assumption
of the theorem below, see Figure 1. Our goal is to study the contribution of a single fold type of singularity. Let
X C M x M be the conjugate locus in a neighborhood pf. g0), see section 3. Finally, ety = y,,.0,(), 1 € I,
be the geodesic throudlpy, 8y) defined in the interval > 0, with endpoints outsidé .

The first main result of this paper is the following.
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FIGURE 1

Theorem 2.1. Letvy = |vg|6p be afold conjugate vector aty, and letN be asin (2.2). Let, be the only singularity
of exp,, (v) on the ray{exp,(¢6o), 1 € I} N V. Thenif U (and thereforel/) is small enough, the operator

N :C5°(V) — C5°(U)
admits the decomposition
(2.3) N=A+F,

whereA is a¥DO of order—1 with principal symbol

(2.4) op(A)(x.§) = 2n/ MS(E(G)) (i) (x. 0) do (6).
and F is an FIO of order—n/2 associated to the Lagrangiak™ X. In particular, the canonical relatioi® of F in
local coordinates is given by

(2.5) C={(p.6.q.0).(p.q) € . § = —n;dexy,(v)/dp.n € Cokerd, exp,(v). detd, exp,(v) = 0}.

If expis the exponential map @f, thenC can also be characterized a¢* X/, whereN' X is as in (4.17), and the
prime means that we replaggby —.

It is easy to check that above is invariantly defined.

In section 9 we show that in dimension 3 or higher in the case(thst local canonical graph the operaféris
microlocal invertible. In two dimensions, in the geodesic case, we show that there is always a loss of some derivatives
at least when the curves are geodesics. We study in detail the case of the circular Radon transform in two dimensions
in section 10, and show that thénis not microlocally invertible.

3. REGULAR EXPONENTIAL MAPS AND THEIR GENERIC SINGULARITIES

3.1. Regular exponential maps.Let M be a fixedz-dimensional manifold. We will recall the definition of Warner

[20] of a regular exponential map ate M . We think of it as a generalization of the exponential map on a Riemannian
manifold, by requiring only those properties that are really necessary for what follows. For that reason, we use the
notation exp(v). In addition to [20] , we will require exp(v) to be smooth irp as well. LetN, (v) C T, 7, M denote

the kernel of d exp. Unless specifically indicated, d is the differential w..t. The radial tangent space awill be

denoted by, . It can be identified wit{sv, s € R}, wherev is considered as an elementBf7, M .

Definition 3.1. A mapexp, (v) that for eachp € M mapsv > 7, M into M is called aregular exponential mapif
(R1) expis smooth in both variables, except possibly at 0. Next,d exp,(tv)/ds # 0, whenv # 0.
(R2) The Hessiaml exp, (v) maps isomorphically, x N, (v) onto Tex,, ) M/d exp, (T, T, M) for anyv # 0 in
T, M for whichexp, (v) is defined.
(R3) Foreachv € T, M \ 0, there is a convex neighborho@d of v such that the number of singularitiesefp,,
counted with multiplicities, on the ray, t € R in U, for each such ray that intersects, is constant and
equal to the order ob as a singularity oexp, .
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An example is the exponential map on a Riemannian (or more generally on a Finsler manifold), see [20]. Then
(R1) is clearly true. Next, (R2) follows from the following well known property. pixand a geodesic through it.
Consider all Jacobi fields vanishing at Then at any; on that geodesic, the values of those Jacobi fields that do not
vanish aty and the covariant derivatives of those that vanish sppan7, M . Also, those two spaces are orthogonal.
Finally, (R3) represents the well known continuity property of the conjugate points, counted with their multiplicities
that follows from the Morse Index Theorem (see, e.g., [11, Thm 4.3.2]).

We would need also an assumption about the behavior of the exponential mapt

(R4) exp,(tv) is smoothinp,z,vforall p € M, |t| < 1, andv # 0. Moreover,

d
exp,(0) = p, and @ exp,(tv) =v forz =0.
Given a regular exponential map, we define the “geodegigi?), v # 0, by y,,0 (1) = exp,(tv). We will often use
the notation

(3.1) g =exp,(v) = ypo(l), w=—eXp,(v) :=—ppo(l), 6 =0/|v|
Note that the “geodesic flow” does not necessarily obey the group property. We will assume that
(R5) Forg, w asin (3.1), we have expw) = p, exp,(w) = —v.

This shows that in particulatp, v) — (¢, w) is a diffeomorphism. If exp is the exponential map of a Riemannian
metric, then (R5) is automatically true and that map is actually a symplectomorphisFi (an.

Remark 3.1. In case of magnetic geodesics, or more general Hamiltonian flows, (R5) is equivalent to time reversibility
of the “geodesics.” This is not true in general. On the other hand, one can define the reverse exponential map
exp, (w) = yg,—w(—1) in that case, see e.g. [3], ne@s, wo), and replace exp by expn that neighborhood. Then

(R5) would hold. In other words, (R5) really says tliat v) — (¢, w) is assumed to be a local diffeomorphism with

an inverse satisfying (R1) — (R4).

3.2. Generic properties of the conjugate locus.We recall here the main result by Warner [20] about the regular
points of the conjugate locus of a fixed poipnt Thetangent conjugate locusS(p) of p is the set of all vectors

v € T, M so that d exp(v) (the differential of exp(v) w.r.t. v) is not an isomorphism. We call such vectoosjugate
vectorsat p (called conjugate points in [20]). The kernel of d gkp) is denoted byV, (v). Itis part of 7, 7), M that

we identify with7,, M . In the Riemannian case, by the Gauss lemiN)ay) is orthogonal taw. In the general case, by
(R1), itis always transversal to The images of the conjugate vectors under the exponential mgmekkjpe called
conjugate pointsto p. The image ofS(p) under the exponential map exwill be denoted byX'(p) and called the
conjugate locus ofp. Note thatS(p) C T, M, while £(p) C M. We always work withp near a fixedp, and with

v near a fixedy. Setgo = exp,,(vo). Then we are interested ) p) restricted to a small neighborhood @f, and

in X(p) neargq. Note that¥ (p) may not contain all points neag conjugate tgp along some “geodesic”; and may
not contain even all of those along exfrv) if the later self-intersects — it contains only those that are of the form
exp, (v) with v close enough tay.

Normally, d exp (v) stands for the differential of exv) w.r.t. v. When we need to take the differential w.pt.
we will use the notatiow/, for it, We write d, for the differential w.r.tv, when we want to distinguish between the
two.

We denote by the set of all conjugate paifp, ¢) localized as above. In other words, = {(p.q); ¢ € X (p)},
wherep runs over a small neighborhood p§. Also, we denote by the set(p, v), wherev € S(p).

A regular conjugate vectop is defined by the requirement that there exists a neighborhoogdsofthat any radial
ray of 7, M contains at most one conjugate point there. The regular conjugate locus then is an everywhere dense open
subset of the conjugate locus that has a natural structure(ef-an)-dimensional manifold. The order of a conjugate
vector as a singularity of exgthe dimension of the kernel of the differential) is called an order of the conjugate vector.

In [20, Thm 3.1], Warner characterized the conjugate vectors at a fixed order at leas?, and some of those of
orderl, as described below. Note thatih, one needs to postulate thsi, (v) remains tangent t§'(po) at pointsv
close touvy as the latter is not guaranteed by just assuming that it holasatly.
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(F) Fold conjugate vectors: Let vy be aregular conjugate vectoraf, and letV,, (vo) be one-dimensional and
transversal t&5'(po). Such singularities are known as fold singularities. Then one can find local coordinates
& nearvo andy neargo so that in those coordinates, exps given by

(3.2) y =€, y"=E"
Then
(3.3) S(po) = {&" =0}, Np,(vo) = span{d/dE"}, X(po) = {y" = 0}.

Since the fold condition is stable under sm@f° perturbations, as follows directly from the definition, those
properties are preserved under a small perturbatign of

(B1) Blowdown of order 1: Let vy be a regular conjugate vector g and let N, (v) be one-dimensional.
Assume also thatv,, (v) is tangent taS(po) for all regular conjugate nearvy. We call such singularities
blowdown of order 1. Then locally, expis represented in suitable coordinates by

(3.9) y =€, yr=¢'¢"
Then
(3.5) S(po) ={€' =0}, Nyy(vo) =spanfd/dE"}, X(po) ={y' =)y" =0}

Even though we postulated that the tangency condition is stable under perturbatignsta$ not stable
under a small perturbation ¢fy, and the type of the singularity may change then. In some symmetric cases,
one can check directly that the type is locally preserved.

(Bx) Blowdown of higher order: Those are regular conjugate vectors in the case whigyévo) is k-dimensio-
nal, with2 < k£ < n — 1. Then in some coordinates, exgs represented as

T= gl i =1,....n—k
(3.6) y gl o "
y=¢E%¢, i=n—k+1,...,n
Then
@ S(po) = (£' =0}, Npy(vo) = span{d/o"*+1,... 9/0g"}

Z(po) ={y' =" ==y =0}

In particular, Ny, (vo) is tangent taS(po). This singularity is unstable under perturbationggf as well. A
typical example are the antipodal points 8f, » > 3; thenk =n — 1.

The purpose of this paper is to study the effect of fold conjugate points to

4. GEOMETRY OF THE FOLD CONJUGATE LOCUS

In this section, we study the geometry of the tangent conjugate I8¢us andS respectively; and the conjugate
locus ¥'(p) and X, respectively. Recall that we work locally, and everywhere below, even if not stated explicitly,
(p. v) belongs to a small enough neighborhood gf, vo); (¢, v) is near(qo, wo). We assume throughout the section
that v is conjugate vector gb, of fold type. We also fix a non-zero covectgy at ¢ as in (2.5), and le§, be the
corresponding as in (2.5). We will see later thgh # 0. We refer to Figure 2, where is not shown, and the zero
subscripts are omitted.

We start with properties of (p) andS.

Lemma4.1.
(a) Letv € S(p) be a fold conjugate vector. Then near= exp,(v), X(p) is a smooth surface of codimension
one, tangent ta := —p, ,(1).

(b) S is a smooth2n — 1)-dimensional surface i M that can be considered as the bunfi&( p), p € M} with
fibersS(p).
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N,(v) S0 T

FIGURE 2. Atypical fold conjugate locus

Proof. Consider (a) first. The representation (3.2) implies that locallp) = exp,(S(p)) is a smooth surface of
codimension one (given by" = 0). Next, forv € S(p), the differential d exp sends any vector to a vector tangent
to S(p), as it follows from (3.2) again. In particular, this is true for the radial veetgconsidered as a vector in
T, T, M). This proves thaiv is tangent ta¥' (p).

The statement (b) follows from the fact thsitis defined by detd exgv) = 0, and that detd exfiv) has a non-
vanishing differential w.r.tv.

Remark 4.1. It is easy to show that in (a),,, iS tangent ta¥'(p) of order1 only.

We define “Jacobi fields” along, , vanishing atp as follows. For any € 7,7, M, set

J(t) = dlexp, (tv)](@) = ak% exp, (1v).
ThenJ(0) = 0, J(0) = &, whereJ (T) = dJ(¢)/dz. If J(1) = 0, then a direct computation shows that
(4.1) J(1) = d* exp, (v)(« x v).

When exp is the exponential map of a Riemannian metric, it is natural to work with the covariant derivative
D;J(t) =: J'(1) instead of/ (¢). While they are different in general, they coincide at points whigrg = 0.
The next lemma shows that the fold/blowdown conditions are symmetric wandg.

Lemma 4.2. The vectonwy is a conjugate vector gt of fold type, if and only ifv, is a conjugate vector at, of fold
type.

Proof. Setwy = —ypy,0,(1), @s in (3.1). Therpy = exp,, (wo). Assume now thatt € Ny, (vo). In some local
coordinates, differentiate = exp, (w) w.r.t. v in the direction ofx; hereq, w are viewed as functions of, v. Then,
using the Jacobi field notation introduced above in (4.1), we get

0 = dexp,, (wo) (akgTu;(po, vo)) = dengO(wO)J(l)
because

ow J0 d .
k— = k—— —
¢4 9k (p(),U()) o Juk df’l=l exg;([v)(p()v UO) ‘](1)
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By (R2), J(1) # 0, so in particular, this shows tha, is conjugate afo, andJ (1) € N,,(wo). Moreover, by (R2),
the linear map

(4.2) Ny(v) 30 =J(0)— J(1):= B € Ny(w), J©O)=J()=0

defines an isomorphism betweaf (v) and N, (w). Then (4.2) shows thab, is conjugate ag, of multiplicity one.
By (R3), applied tawy, it is also regular.
We will prove now thatw, is of fold type. Since it is regular and of multiplicity on8§{(g,) nearwg is a smooth
(n — 1) dimensional surface either of tygé, as in (3.3) or of typeB;, as in (3.5). Assume the latter case first, then
X (qo) is of codimension two, as follows from (3.5). In particular, using the normal form (3.4), we see that in this
case, one can find a non-trivial one-parameter family of veatds9 so thatw(0) = wo and exp, (w(s)) = po.
Then the corresponding tangent vectorg@tvould form a non-trivial one-parameter family of vectan®) so that
exp,, (v(s)) = qo. That cannot happen, i is of type F, see (3.2), since the equation gxfv) = ¢o has (neawo) at
most two solutions. O

For (p,v) € S, leta = a(p,v) € N,(v) be a unit vector. To fix the direction, assume that the derivative of
det d exp(v) in the direction ofv, for v a conjugate vector, is positive. Here we identifylin?, M and7, M . In the
fold case N, (v) is clearly a smooth vector bundle @h\/ near(po, vo), anda is a smooth vector field.

Lemma 4.3. For any fixedp near po, the map

4.3) S(p) 3 v a(p,v) € Np(v)
is a local diffeomorphism, smoothly depending;oifiand only if
(4.4) o exp,, (vo) (Npo(vo) \ 0 x ) ]Tvos(m) is of full rank

Proof. In local coordinates, we want to find a condition so that the equation
o' 9, exp,(v) =0
can be solved fov so thatv = vy for (p, @) = (po, g), Whereay = a(pg, v9). Thenv would automatically be in
S(p). By the implicit function theorem, this is equivalent to
det(d,00,i €xp,, (v)) #0 atv = vo.

Choose a coordinate system negiso thatd/dv” spansi,, (vo), and{d/dv!,...d/dv" "'} spanT,,S(po). Denote
F(v) = exp, (v) and denote by, Fj; the corresponding partial derivatives. Greek indices below run frdm
n — 1. We have

(4.5) 0, F(vg) = 0, becaus@/ov" € Ny, (vo).

(4.6) 0q det(dF)(vg) = 0, because/dv* is tangent taS(po) at v,
4.7 0, det(dF)(vo) # 0, by the fold condition

(4.8) c*0q F(vg) #0, Vc #0, because®d/0v* & Ny, (vo).

We want to prove that dét,dF)(vg) # 0 if and only if (4.4) holds. That determinant equals

(4.9) detFin, Fan, ..., Fan)(vo).

Perform the differentiation in (4.6). By (4.5), (4.8),
det(Fl,...,Fn_tha)(Uo) =0, Va — me(vo) € Spar(F1(U0),...,Fn_1(vo)).
Similarly, (4.7) implies

(4.10) detFi, ..., Fu—1, Fun)(vo) #0 = 0% Fun(vo) & Spant#1(vo), ..., Fa—1(vo)).
Those two relations show that (4.9) vanishes if and onlyifi (vo), . . . Fu,n—1(vo)) form alinearly dependent system,
that is equivalent to (4.4). |

We study the structure of the conjugate lo&ligp), X' (¢) and X' next. Recall again that we work locally neay,
vo andgo.
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Theorem 4.1. Let v, be a fold conjugate vector aty.
(a) Then for anyp near po, X'(p) is a smooth hypersurface of dimensioa 1 smoothly depending op. Moreover
foranyq = exp,(v) € X(p), T, M is a direct sum of the linearly independent spaces

(4.11) T,M = T,5(p) ® Ny(w).

and
T,X(p) =Imdexp,(v), N;X(p)= Cokerd exp,(v).
Next, those statements remain true witndg swapped.
(b) X is a smooth(2n — 1)-dimensional hypersurface iW x M near (po, qo), that is also a fiber bundl&Z =
{X(p), p € M} with fibersX(p) (and alsoX = {¥(g), ¢ € M}). Moreover, the conormal bund}§™ X is given
by

N*Z ={(p.q.&.1): (p.q) € X. § = n;dexp,(v)/dp.n € Coker d, exp,(v)

(4.12) _ :
wherev = exp, ' (¢) with exp, restricted toS(p) }.

Proof. We start with (a). By the normal form (3.2), also clear from the fold condition, the imad®&( pf under
dexp,(v) coincides with7,; X (p). In particular, dexp(v), restricted toS(p) is a diffeomorphism to its image.
Relation (4.11) follows from (4.2) and (R2).

Consider (b). We havép, ¢) € X' if and only if there exist® (nearv,) so that

(4.13) q = exp,(v), detd exp,(v) = 0.

In some local coordinates, we view thisrag- 1 equations for th8n-dimensional variablép, g, v) near(po, g0, vo).
We show first that the solution that we denotelbyis a(2n — 1)-dimensional submanifold. To this end, we need to
show that the following differential has ramk+ 1 at (po, go, vo):

(4.14) . gp exp, (v) —Id dy exp, (v) .

p detd, exp,(v) 0 d,detd, exp,(v)
The elements of the first “row” are x n matrices, while the second row consists of theegectors. That the rank
of the differential above is full follows from the fact thaf detd, exp,(v) # 0 at (po, vo), guaranteed by the fold
condition.

Setn(p,q,v) = (p,q). We show next that (L) is a(2n — 1)-dimensional submanifold, too. To this end, we need
to show that & is injective on7T'L. The tangent space tb is given by the orthogonal complement to the rows of
(4.14). Let us denote any vector L by p = (0p. pg. pv). Then dv(p) = (pp. pg). Our goal is therefore to show
thatp, = p, = 0 impliesp, = 0. Then(0, 0, p,) is orthogonal to the rows of (4.14), therefore,

phoexgf(v) =0, k=1....n p,d, detd exp,(v) =0.

The latter identity shows that, € N,(v), while the first one shows that, € Kerd, exp,(v). By the fold condition,
py = 0.

This analysis also shows that the covectorrthogonal toX' are of the formv = (v,, v,) with the property that
(vp, vg,0) is conormal toL. Since the conormals th are spanned by the rows of (4.14), in order to get the third

component to vanish, we have to take a linear combination with coefficignts= 1, ...,n andb so that
g’ 0 detd, exp, (v
v/ v/

whereq = exp,(v). Let0 # o € N,(v). Multiply by a/ and sum overj above to get that the-derivative of
b detd, exp, (v) in the direction ofN, (v) vanishes. According to the fold assumption, this is only possitfe= 0.
Then we get that € Coker d, exp, (v). Therefore the normal covectors ¥ are of the form

(4.16) V= ({a,%} ,—a) ., a € Cokerd, exp,(v),

that proves (4.12).
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Theorem 4.2. Letv, be a fold conjugate vector af. Letexp, be the exponential map of a Riemannian metric.
(a) Then the sum in (4.11) is an orthogonal one, i.e.,

NgX(p) = Ng(w).
(b) Next, (4.17) also admits the representation
NZ ={(p.q.a.B): (p.q) € X, a =J'(0), =—J'(1), whereJ is any Jacobi field

4.17
#.17) along the locally unique geodesic connectingndg with J(0) = J(1) = 0}.

(c) N X is a graph of a smooth map, o) — (¢, B) if and only if condition (4.4) is fulfilled. Then that maps is a
local diffeomorphism.

Remark 4.2. Note that for(p, ¢) € ¥, the geodesic connectingandg is unique, as follows from the normal form
(3.2), only among the geodesics wijti0) close tovy. Also, J is determined uniquely up to a multiplicative constant.
Next, once we prove that' is smooth, themr € N,(v) andB € N,(w) by (a) (see also (3.2)), but (4.17) gives
something more than that — it restricts, §) to an one-dimensional space.

Remark 4.3. Itis a natural question whethef’(0)| = |J’(1)|. One can show that generically, this is not the case.
Proof. By [12, Lemma IX.3.5], the conjugate of d gx@), w.r.t. the metric form is given by

(4.18) (dexp,(v))" = dexp,(w),
where we use the notation (3.1). The normaki@p) atgq is in the orthogonal complement to the image of d gxp,
that by (4.18) is Kerd exw) = N, (w). This proves (a).

Then we get by (4.18), (4.15) (whebe= 0) thata € N,(w), where we identify the covectar with a vector by
the metric.

We will use now [12, Lemma 1X.3.4]: for any two Jacobi fields, J, along a fixed geodesic, the Wronskian
(J1. J2)—(J1. J;) is constant. Along the geodesic connectingndg, in fixed coordinates near, let J be determined
by J(0) = ¢;, J'(0) = 0. Heree; has component.. If p andg are conjugate to each other, théql) is the equal
to the variationdg/dp/, and this is independent on the choice of the local coordinates, as lengsasonsidered as
a fixed vector afp. Define another Jacobi field bi(1) = 0, J'(1) = a, wherea is as in (4.16) but considered as a
vector. Denote the field in the brackets in (4.16)Xy Then

(4.19) Xj = (a, J(1))
= (J'(1). J (1))
= (J/(). J (1)) = (J(1). (1))
= (J'(0). J(0)) — (J(0). J'(0))
= J}(0).

This proves (4.17).
The proof of (c) follows directly from Lemma 4.3. |

5. THE SCHWARTZ KERNEL OF N NEAR THE DIAGONAL AND MAPPING PROPERTIES OEX AND N

5.1. The geodesic caselet exp be the exponential map of the metgic Then X is the weighted geodesic ray
transform. One way to parametrize the geodesics is the following.HLee any orientable hypersurface with the
property that it intersects transversally, at one point only, any geodesicigsued from a point ié&{. For our local
analysis,H can be an arbitrarily small surface intersecting transversglly, , so let us fix that choice. Let d Viglbe

the induced measure i, and letv be a smooth unit normal vector field df consistent with the orientation df.

Let H consists of alp, 8) € SM with the property thap € H and#é is not tangent ta4, and positively oriented,

i.e., (v,8) > 0. Introduce the measurguo= (n, 0) d Volg (p) do,,(6) on’H. Then one can parametrize all geodesics
intersectingH transversally by their intersectignwith H and the corresponding direction, i.e., by elementq irAn
important property of d is that it introduces a measure on that geodesics set that is invariant under a different choice
of H by the Liouville Theorem, see e.g., [16].
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The weighted geodesic transfori can be defined as in (2.1) f@p, 6) € H instead of(p, ) € U because
transporting p, v) along the geodesic flow does not change the integral. Since we assumed originalig thaalized
near a small enough neighborhoodygf .., we get thak is supported in a small neighborhood(@k, 6y) in . We
view X as the following map

X : L*(M) — L*(H,du),

restricted to a neighborhood 6fg, 6y). This map is bounded, see [15], and this also follows from our analygis. of
By the proof of Proposition 1 in [16)X* X is given by

(5.1) X*Xf(p) = /,z(p, 6)c(exp, (16), exp, (16)) f (exp, (6)) dt do, (6).

1
Vdetg(p) /s,,M

We therefore proved the following.

Proposition 5.1. Letexpbe the geodesic exponential map. kebe the weighted geodesic ray transform (2.1), and
let N be as in (2.2), depending ari. Then

X*X =N withe«t = k.

Split ther integral in (5.1) in two: for > 0 and forz < 0, and make a change of variablgst) — (—¢, —0) in the
second one to get

(5.2) X*Xf(p) = / W(p.v) £ (exp, (1)) d Vol (v).

\/detg(p
where

59 W = o]+ (R(p. v/ vk (€xB, (1), €xB, 1)/ 0])
| + R(p,—v/ o]k (exp, (v), —exp, (v)/ I0]) ).

Note thatiexp, (v)| = [v| in this case.
Next we recall a result in [16]. Part (a) is based on formula (5.2) after a change of variables.

Theorem 5.1([16]). Letexpbe the exponential map 8f . Assume thagxp, : exp;1 (M) — M is a diffeomorphism
for p near po.
(a) Then forp in the same neighborhood pf,

5 S (D2(0*/2)
(5. XX = s [ e

where
A(p.q) = k(p,.—grad, p)x(q.grad, p) + k(p.grad, p)x(q, —grad, p).
(b) X* X is a classical’DO of order—1 with principal symbol
(5.5) op(X*X)(x.§) = 27r/ MS(E((?))IK(x,Q)Izdax((?),

X

wheret () = &6/, and$ is the Dirac delta function.

Note that the integral (5.4) is not written in an invariant form but one can easily check that writing it w.r.t. the
volume form, the kernel is invariant. We also note that in the proof of Theorem 2.1, we apply the theorem above by
restricting supp” and the region where we studyf to a small enough neighborhood pf, where we there will be
no conjugate points. This gives tieDO part4 of N in Theorem 2.1.
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Mapping properties of X. Let (x’, x") be semigeodesic coordinates Bnearx,. Then(x’, ') parameterize the
vectors nearxy, 6y). We define the Sobolev spaée' (H) of functions constant along the flow, supported near the
flow-out of (xg, 69) as theH* norm in those coordinates w.r.t. the measyure We can chose another such surfdte
neargo with some fixed coordinates on it; the resulting norm will the be equivalent to that on

Proposition 5.2. With the notation and the assumptions above, forsapy0, the operators
(5.6) X H{(V) — H**V2(n),

(5.7) X*X : H§(V) — H*T(V)

are bounded.

Proof. Recall first that the weight localizes in a small neighborhood @fy, 7). Let first / has small enough support
in a set that we will calli/y. ThenM, will be a simple manifold if small enough. Then we can replatéy another
surfaceH, that lies inM,, and denote by, the corresponding@{ . This changes the original parameterization to a
new one, that will give us an equivalent norm.

Then, ifs is a half-integer,

XS pesiom <€ 2 [(@eXrX0),, |=C 3 [(X#exrS),,, |

la]<2s+1 la|<2s+1

The termd$, E,Xf is a sum of weighted ray transforms of derivatives/afip to order|. ThenX ™9, s,X isa¥DO
of order|a| — 1 becausel, is a simple manifold. That easily implies

IXS N rs+172040) = CUILS Nlrs-

The case of general> 0 follows by interpolation, see, e.g., [18, Sec 4.2].

To finish a proof, we covey, with open sets so that the closure of each one is a simple manifold. Choose a finite
subset and a partition of unity = >_ x; related to that. Then we apply the estimate above to éaghf on the
corresponding®;. We then have finitely many Sobolev norms that are equivalent, and in particular equivalent to the
one onH. This proves (5.6).

To prove the continuity off * X', we need to estimate the derivativesXf X. We have that* X* X1 is sum of
operatorsX,, of the same kind but with possibly different weights applied to derivative¥ fup to orderj«|, see
(5.1). Letfirsts = 0. For /', hin C§°(V), |B| = 1, we have

(123,00 0 XH) | = ClXey 2| Xhlgisz < CULE 2 200,

In the last inequality, we used (5.6) that we proved already. This proves (5. Xdr.
Fors > 1, integer, we can “commute” the derivativedfi X * X" with X* X by writing it as a finite sum of operators
of the typeXgX,gPﬂf, |B| < |x|, where Pg are differential operators of ordgr. To this end, we first “commute”

it with X*, as above, and then withi. Then we apply (5.7) with = 0. The case of general > 0 follows by
interpolation. |

Remark 5.1. We did not use the fold condition here. In fact, Proposition 5.2 holds without any assumptions on the
type of the conjugate points, as long Eds contained in a small enough neighborhood of a fixed geodesic segment
that extends to a larger one with both endpoints outgidBlote that proving the mapping propertiesXf X" based on

its FIO characterization is not straightforward, and we would get the same conclusion under some assumptions only,
for example that the canonical relation is a canonical graph; that is not always true.

Remark 5.2. A global version of Proposition 5.2 can easily be derived by a partition of unity in the phase space.
Let (M, g) be a compact non-trapping Riemannian manifold with boundaryM.ebe another such manifold which
interior includesM , and assume thatM, is strictly convex. SuchW/, always exists ifdM is strictly convex. Let

d_S M, denote the vectors with base point&W pointing intoM,. Then we can parameterize all (directed) geodesics
with points ind_S M, that plays the role dff above. Then fos > 0,

X HS(M) — HPV2Q_SM,), X*X : HS(M) — H*"'(M;)
are bounded.
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5.2. General regular exponential maps. Let now exp be a regular exponential map. As above, we splitihiegral
in the second line below into two parts to get

Nf(p) = / H(p. )X/ (p.6) oy ()

(5.8) = [gpM[Kﬂ(p, 0)x (expp(te),ei(pp(té)) S (exp,(¢6)) dr doy ()
= W(p.v).f(exp,(v) dVol(v),
T,M
where
W = [o| ! (K”(p, v/|v)k (exp, (v), exp,(v)/|v])
(5.9

+«*(p, —v/|v])k(exp, (v), —epr(v)/|v|)).

Theorem 5.2. Let exp, (v) satisfy (R1) and (R4) and assume that for &pyt) € suppct, 16 is not a conjugate
vector atp for 7 such thatexp, (1¢) € supp/. ThenN is a classicak’DO of order—1 with principal symbol

(5.10) op(N)(x,§) = Zﬂ/ MS(E(G))(K”K)(x,Q) do (6).

Sx

where£ (0) = &0/, and$ is the Dirac delta function.

Proof. The theorem is essentially proved in Section 4 of [6], where the exponential map is related to a geodesic like
family of curves. We will repeat the arguments there in this more general situation.
Notice first that it is enough to study small enoygh Fix local coordinates nearp,. By (R4),
exp,(t0) = x +tm(t,0;x), m(0,0;x) =6,
with a smooth functiom: near(0, 6y, po). Introduce new variable@, w) € R x Sy M by
r=tlm(, 0;x), o=m@0;x)/|m(,0;x)|,

where| - | is the norm in the metrig(x). Then(r, ) are polar coordinates for exfré) — x = rw with r that can be
negative, as well, i.e.,
exp,(10) = x + ro.

The functiongr, w) are clearly smooth gdt| < 1, andx close top,. Let
J(t,0;x) = detd ,(r, w)

be the Jacobi determinant of the map) — (r, w). By (R4),J|;=0 = 1, therefore that map is a local diffeomorphism
from (—¢,¢) x Sy M to its image for0 < ¢ « 1. Itis not hard to see that fdr < ¢ « 1 itis also a global
diffeomorphism, because it is clearly injective. ket ¢(x,r, w), 8 = 0(x, r, w) be the inverse functions defined by
that map. Then

t=r+0(r)), 8=w+0(r|), exptd)=w+ O(r|).
Assume that the weight in (2.2) vanishes fop outside some small neighborhood gf. Then after a change of
variables, we get

Nf(x) =/S M/A(x,r, ) f(x + rw) drdoy (w),

where
Alx,r,w) = K”(x, O(x,r,0)k(x +ro,w +ro(1)J 1 (x,r, w)
with J as before, but written in the variablés, r, w). By [6, Lemma 2],V is a classica¥’ DO with a principal symbol

(5.11) 27r/ 3(§(w))A(x,0,w) doy(w) = 271/ §(E())kt (x, )k (x, w) doy ().
SxM

X
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Remark 5.3. Formulas (5.2) and (5.8) are valid regardless of possible conjugate points. In our setup, the supports
of k, k* guarantee that exir0), for (p, 0) close to(po, th) reaches a conjugate point for> 0 but not forz < 0.
Therefore, near the conjugate paojnof p, the second term on the r.h.s. of (5.3), and (5.9), respectively, vanishes.

6. THE SCHWARTZ KERNEL OF N NEAR THE CONJUGATE LOCUSY

We will introduce first three invariants. Let : M — N be a smooth orientation preserving map between two
orientable Riemannian manifoldd/, g) and(N, /). Then one defines defdinvariantly by

(6.1) F*(dVoly) = (detdF) dVoly,,
see also [12, X.3]. In local coordinates,

6.2) detd (x) = ,/dzt:t(gig)) detagix).

We choose an orientation &(po) nearvy, as a surface iff,, M by choosing a unit normal field so that the
derivative of detd exy (v) along it is positive or(p). Then we extend this orientation &(p) for p close topy by
continuity. On Figure 2, the positive side is the one belyp), if v is the first conjugate vector along the geodesic
through(p,v). Then we choose an orientation 8f(p) so that the positive side is that in the range of gx®n
Figure 2, the positive side is to the left &f(p). The so chosen orientations conform with the sign§"oénd »” in
the normal form (3.2).

Next we synchronize the orientations Gf M and M nearg by postulating that expis an orientation preserving
map from the positive side & (p), as described above, to the positive sid&gp).

For eachp € M, the transformation laws i 7, M under coordinate changes on the base showZthat has the
natural structure of a Riemannian manifold with the constant mgtg. Then one can define detd exjvariantly
as above. Let d Vglbe the volume form iff), M, and let d Vol be the volume form it/ . Then detd expis defined
invariantly by

(6.3) exg d Vol = (detdexp) dVol, .

In local coordinates,
| detg(exp, v) d
detd = | ———*F " det—
etdexp detg(p) e 5 expp(v),

where, with some abuse of notatian(p) is the metricg in fixed coordinates near a fixgeh, andg(exp, v) is the
metric g in a possibly different system of fixed coordinates ngase exp,, vo. Set

(6.4) A(p,v) ;= |ddetdexp(v)|.

Since detd exp(v) is a defining function forS(p), its differential is conormal to it. By the fold condition} # 0.
One can check directly that is invariantly defined or¥.

By (3.3), for(p,v) € S, the differential of exp maps isomorphically;, S(p) (equipped with the metric on that
plane induced by (p)) into 7, X', with the induced metric. LeD be the determinant of exps(,), i.€.,

(6.5) D = det(d exp, |TUS(1J)) ,

defined invariantly by (6.1). We synchronize the orientationS @f) and X' (p) so thatD > 0.

We express next the weightt(p, v) restricted taS in terms of the variable&p, ¢). For(p,q) € ¥, v = exp;1 (q),
where we inverted exprestricted toS. Letw = w(p, ¢) be defined as in (3.1) with as above. Then we set, see also
(5.9), and Remark 5.3,

(6.6) Ws(p.q) == W((p.exp," ()]s = [v]'7"c*(p, v/ [v]ie (g, —w/|v])
For p close topy, X (p) dividesM in a neighborhood af, into two parts: one of them is in the range of gxp)
for v nearvy, that is the positive one w.r.t. the chosen orientation; the other is not’ (j&tg) be the distance from
¢ to X (p) with a positive sign in the first region, and with a negative sign in the second one. Then for & fixed
z' = Z/(p,q) is a normal coordinate t&'(p) depending smoothly op, and X is given locally byz’ = 0. Thenz’
is a defining function fox, i.e., ¥ = {z/ = 0} and ¢, ,z’ # 0 because g£’ # 0. Letz” = z"(p,q) € R*"~! be
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such that its differential restricted X' is an isomorphism atpo, go). Since d¢” and d’ are linearly independent,
z = z(Z/,Z"”) are coordinates nedmpy, go). One way to construct” is the following. Chooséz,+1....,z2x),
depending orp only, to be local coordinates fgy, and to choos€z’, z,, ..., z,), depending orp andg, to be
semi-geodesic coordinatesgphearX (p).

The next theorem shows that néaythe operatoV has a singular but integrable kernel with a conormal singularity
of the typel /v/Z'.

Theorem 6.1. Near X (p), the Schwartz kerneV (p, ¢) of N (with respect to the volume measure) néag, qo) is of
the form

J%a + VZ'R(VZ',Z")),

whereWs = Wx(z"), A = A(z”), D = D(z"”), and R is a smooth function.

(6.7) N = Ws

Proof. We start with the representation (5.8). We will make the change of variabiesxp, (v) for (p,v) close to
(po, vo) as always. Themw will be on the positive side oE (p), and the exponential map is 2-to-1 there. We split the
integration in (5.8) in two parts: one, wherés on the positive side of (p), that we callV,. /', and the other one we
denote byN_ /. Then

(6.8) Nef(p) = /S y / W/ (»)(det dexif (v) ™" dVol(y).

whereW is as in (6.6) but not restricted t&, and(exp;,'t)‘1 there is the corresponding inverse in each of the two
cases.

To prove the theorem, we need to analyze the singularity of the Jacobian determinant dgbvylespr X (p). It
is enough to do this dipy, vo).

Let y = ()', »") be semi-geodesic coordinates n€ayo), g0 = €Xp,,(vo), and lety, correspond tay,. We
assume that” > 0 on the positive side oF' (p). In other wordsy” = z/(po. q).

We have

dVol(y) = det(d, exp,(v)) d Vol(v)
The form on the left can be written as d gl (»’) dy”; while the one on the right, restricted %X p), equals
dVolg(p) (v') dv” in boundary normal coordinates & p), wherev” > 0 gives the positive side &(p). On the other
hand, by (6.5),
d VO|2(p) (y/) = Dd V0|S(p) (U/).
We therefore get
D dy" = det(d exp,(v)) dv".
By the definition of4, we have
(6.9) detd exp,(v) = 4v"(1 + O(v")).
Therefore,
Ddy" = A(1 4+ O(W")) v"dv".
Sincey” = 0 for v = 0, we get
Y= S5 00,
Solve this forv™ and plug into (6.9) to get

(6.10) detd exp(v) = +/24Dy" (1 + oi(\/ﬁ)).

Here Oi(./y") denotes a smooth function Qf y” near the origin with coefficients smooth jr, that vanishes at
y™ = 0. The positive/negative sign corresponds tieelonging to the positive/negative sidefxp). By (6.8),

(6.12) Nef = | Wf(y)\/ﬁ (1+ 0=(v5m) dVol(y.
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We replacedy, Dy in (6.11) by their values at” = 0; the error will then just replace the remainder term above by
another one of the same type. Similarly; = W(p,v), where exp(v) = ¢. Solving the latter fon = v(p,q)
provides a function having a finite Taylor expansion in powersg/of of any order, with smooth coefficients. The
leading term is what we denoted b¥s that is a smooth function o&'.

With the aid of (6.2), it is easy to see that (6.11) is a coordinate representation of the formula (6.7) at the so fixed
p. When p varies nearpy, it is enough to notice that since we already wrote the integral in invariant fgfrthen
becomes the functiofl (p, ¢) introduced above. Far” we then have”(p,q) = (x(p), y'(p.q)). Finally, we note
that another choice af’ so that(z’, z”’) are coordinates would preserve (6.7) with a possibly different O

7. N AS A FOURIERINTEGRAL OPERATOR PROOF OFTHEOREM2.1

We are ready to finish the proof of Theorem 2.1. By Theorem 6.1, deathe Schwartz kernel oV has a
conormal singularity a&’, supported on one side of it, that admits a singular expansion in powngTgf with a

leading singularityl //z/, . The Fourier transform of the latter is

(71) \/;e—i:’t/4(é-;1/2 +Ig_:1/2)

where¢;: = max({,0), ¢ = (—¢)+. The singularity neat = 0 can be cut off, and we then get a symbol of
order—1/2, depending smoothly on the othzr — 1 variables. Therefore, ne&, the kernel ofN belongs to the
conformal clasg ~/2(M x M, X;C), see e.g., [9, 18.2]. It is elliptic whert (po. 6o)x¥ (g0, —wo) # 0 by (5.9),
(6.6). Therefore, the kernel df nearX is a kernel of an FIO associated to the Lagrandidn~’. Moreover, the
amplitude of the conormal singularity &l is in the classS;/*'/* (polyhomogeneous of ordef1/2, having an
asymptotic expansion in integer powerg@ift/2), see also (9.13) and (9.14).

8. THE TWO DIMENSIONAL CASE

Theorem 8.1. Letdim M = 2. Assume that (R1) — (R5) are fulfilled. Th&ft X \ 0, near (po, £o. 90, 10), is the
graph of a local diffeomorphisii*M \ 0 € (p,&) — (¢,n) € T*M \ 0, homogeneous of order one in its second
variable (a canonical graph).

Proof. For (p, £) near(po, &), there are exactly two smooth maps that ngdap a unit normal vector. We choose the
one that map§, to vo/|ve|. Then we map the latter toe S(p). Since the radial ray throughis transversal t& (p),

that map is smooth. Knowing, then we can expregs= exp,(v) € X(p) andw = —exp,(v) as smooth functions of
(p, &) as well. Then in local coordinates,— g,-aexp;l(w)/aq, see (4.12), that in particular proves the homogeneity.
By (R5), this map is invertible. ]

The principal symbol ofy * X in the geodesics case, see Theorem 5.1, and (5.5), is given by
(8.1) op(X*X)(x,8§) = 2lic(x, E-/|ET DI,

where& is a continuous choice of a vector field normaktand of the same length so thatat= po, SOL/|.§OL| = 6y,
—EOL/| — SOH = b,; therefore, the sign of the angle of rotation is different ngaand near-£,. Notice that (5.5) in
the two dimensional case is a sum of two terms but we assumed thaupported nedtpo, 6y), therefore only one
of the terms is non-trivial. A similar remark applies to (5.10).

Theorem 6.1 takes the following form in two dimensions, in the Riemannian case.

Corollary 8.1. Letn = 2 and letexp be the exponential map of a Riemannian metric. With the notation of Theo-
rem 6.1, we then have

_ \/5 / P/
(8.2) N =Ws m(l + VZ'R(VZ',Z")),
where

d
B = av det d exp(v)
is evaluated ab € S(p) such thaty = exp,(v), andd/dN stands for the derivative in the direction %, (v).
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FIGURE 3. The 2D case

Proof. Note first thatB # 0 by the fold condition. Let) be the (acute) angle betwestip) and N, (v) atv. Since
N, (v) is orthogonal to the radial ray at we can introduce an orthonormal coordinate system waith the first
coordinate vector being/|v|, and the second one: the positively oriented unit vector alén@), that we calk. Let

us parallel transport this frame along the geodesgig; and invert the direction of the tangent vector to conform with
our choice ofw atg. In particular, this introduces a similar coordinate system near the correspondingwestipin

the conjugate locus. In these coordinates then

(8.3) dexp(v) = (_01 j/(il)'),

where j is uniquely determined by (r) = j(t)Z(¢), whereJ(¢) is the Jacobi field with/(0) = 0, J'(0) = &,
and Z(¢) is the parallel transport d@f, compare that with (4.1). The extra factbf|v| comes from the fact that we
normalizev now in our basis, so that the result would be the Jacobian determinant. Then the Jacobi determinant
detdexp(v) is given by—;/[v|. In particular, for(p, v) € S we have d exp(v) = diag(—1, 0). Note thatj depends
onv as well, therefore its differential that essentially gives d det d @jypdepends on the properties of the Jacobi field
under a variation of the geodesic.

Now, it easily follows from the definition (6.5) ab that

D = sing.
On the other hand, d detd exp) is conormal toS(p), therefore, the derivative of detd exp) in the direction of
N, (v) satisfies

‘% detd exg(u)‘ = |[ddetdexp(v)|sing = Asing = AD.

9. RESOLVING THE SINGULARITIES IN THE GEODESIC CASE

Let, as before(py, go) be a pair of fold conjugate points alopg, and X" be the ray transform with a weight that
localizes neay,. We want to see whether we can resolve the singularities néar p, and neaiy, knowing that
Xf e C*, and more generally, whether we can inv&rtnicrolocally. Assume for simplicity thaty # g.

We will restrict ourselves to the geodesic case only but the same analysis holds without changes to the case of
magnetic geodesics as well. We avoid the formal introduction of magnetic geodesics for simplicity of the exposition.
Assume also that

(91) K(p,@)K(q,—U)”U)D 7é Ov for (P»Q) € Z/[O,
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FIGURE 4

where(q, w) are given by (3.1), antd 3 Uy > (po, 6p). This guarantees the microlocal ellipticity of t#>O A4 near
N*(po,vo) andN*(go, wo) in Theorem 2.1, see Theorem 5.1.

9.1. Sketch of the results. We explain the results before first in an informal way. As we pointed out in the Introduc-
tion, X/ (y) for geodesics neat, can only provide information for WE') nearN*y,, and does not “see” the other
singularities. The analysis below based on Theorem 2.1, shows that on a principal symbol level, the dpErater
behaves as a Radon type of transform on the curves (wher) or the surfaces (whem > 3) ¥ (p). Similarly, its
adjoint behaves as a Radon transform on the curves/surfaggs Therefore, there are two geometric objects that
can detect singularities @b conormal tovg: the geodesigy = y,,,4, (@nd those close to it) and the conjugate locus
X (q0) throughpg (and those corresponding to perturbationsf We refer to Figure 4.

Whenn = 2, the information coming from integrals along the two curves (and their neighborhoods) may in
principle cancel; and we show in Theorem 9.2 that this actually happens, at least to order onen Whgnthe
Radon transform oveE(¢) > p competes with the geodesic transform over geodesics thrpu@fepending on the
properties of that Radon transform, the information that we getfgrmay or may not cancel becauggis conormal
both toy, and X'(¢¢). On the other hand, for any othgr conormal tovy but not parallel ta&,, the geodesig, (and
those close to it) can detect whether it is in YH but the Radon transform restricted to small perturbations, of
(and therefore of) will not. Thus, we can inverV microlocally at such(po, &1).

Now, whenn > 3, we may try to invertV even atf, by choosingv’s close tov, but normal to&,. If £ happens
not to be conormal to the corresponding conjugate IQCug( po, v)) at po, we can just use the argument above with
the newv. In particular, if the map (4.3) is a local diffeomorphism, this can be done.

This suggests the following sufficient condition for invertiNgat ( po, &1):

(9.2) 301 € Sy, M, so thatc(pg, 01) # 0, &1(61) = 0, and, is not conormal ta¥ (¢(po, 61)) at po.

Above, ¥ (¢q(po, 01)) is the conjugate locus to the poiptthat is conjugate tgp, alongy,, ¢,. We normally denote
that point byg(po, v1), wherev; € S(po) has the same direction és.
In case of the geodesic transform, one could formulate (9.2) in terms of the map (4.3) as follows:

(9.3) Jvy € S(po), so thatc(po, v1/|v1]) # 0, &1 (vy) = 0, andg; is not the image ob; under the map (4.3) atp.

In Section 10.3, we present an example where (4.3) is a local diffeomorphism, therefore (9.2) holds. In Section 10.4
we present another example, where (9.2) fails.
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9.2. Recovery of singularities in all dimensions.We proceed next with analysis of the recovery of singularities.
Let x1,» be smooth functions oM that localize neap,, andgo, respectively, i.e., supp; C U, suppyxz C

U,, whereU, , are small enough neighborhoods pfand ¢, respectively. Assume that;, x» equall in smaller
neighborhoods opy, go, Where f, f> are supported. Thefi := f; + f, is supported iUy U U, and we can write
9.4) XiNf = Ay fi + Fiz /2,

whered; = x; Ny, isa¥DO by Theorem 5.2, whilé;, = x; N x; is the FIO that we denoted by in Theorem 2.1.
By (R5), we can do the same thing negrto get

(9.5) XaNf = Az fo + Fa f1,

whered; = x2N x2, F21 = x2N x1. It follows immediately that,; = F',. Recall thatF;, = F in the notation of
Theorem 2.1. Assuming*Xf € C*, we get

(9.6) A1 f1i+ Ffy € C*, A2f2+F*f1€Coo.
Solve the first equation fof;, plug into the second one to get
(9.7) (Ild— A" F*AT'F) f, € C* near(qo, £10) ,

WhereAjl, A;l, denote parametrices of;, A, near(po, £&0), and(qo, =10), respectively. The operator in the
parentheses is DO of order0 if the canonical relation is a graph, that is true in particular whes= 2, by
Theorem 8.1. In that case, if K A;lF*Al—lF is an elliptic (as a#DO of order 0), neatqo, £n0), then we can
recover the singularities. Without the canonical graph assumption, if it is hypoelliptic, then we still can.

Another way to express the arguments above is the following. Sinee¢ogether withe restrict to conic neighbor-
hoods of(po £ &), and(go £ 10), respectively, andt, », F, F* have canonical relations of graph type that preserve
the union of those neighborhoods, we may thinkfo& f1 + f, as a vectorf = (f1, f2), and then

9.8) F= (Iffi i)

The operator Id- A;l F*AI*1 F can be considered then as the “determinantFotip to elliptic factors.

Theorem 9.1. Let the canonical relation of’ be a canonical graph. With the assumptions and the notation above, if
the zeroth orde®?DO

(9.9) ld— Ay ' F*AT'F

is elliptic in a conic neighborhood dfyq, +1), thenXf € C* near(po, 8y) (or more generallyN f € C* near
po andgo) implies f € C*°.

In the geodesic case in two dimensions, the principal symbﬂl;dfF*Al_lF is alwaysl, see the Proposition 9.1
below.

Whenn > 3 and F is of graph type, thenl; ' F* A7 F is of negative order, therefore we can resolve the singular-
ities.
Corollary 9.1. Letn > 3 and assume that the canonical relation®fis a canonical graph. Then the conclusions of
Theorem 9.1 hold, i.eXf € C near(py, 6y) (or more generallyN f € C near py, qo) implies f € C*.

Proof. In this case,Al‘lF is an FIO of orderl — n/2 with the same canonical relation 5. Similarly A;lF* is

an FIO of orderl — n/2 with a canonical relation that is a graph of the inverse canonical map. Their composition is
therefore alDO of order2 — n < 0. Its principal symbol as &DO of order0 is zero. The corollary now follows
from Theorem 9.1. O

In Section 10.3, we give an example where the assumptions of the corollary hold. Note that those assumptions are
stable under small perturbations of the dynamical system.

When the graph condition does not hold, the analysis is harder. Then (4.3) is not a local diffeomorphism. If its
range is a lower dimension submanifold, for example, we can at least recover the conormal singulaijtesdy
from it, as the corollary below implies. Note that below, (b) implies (a). Also, (9.1) is not needed; only elliptieity of
at(po, 0o) suffices.
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Corollary 9.2. Let Xf € C* for y neary,. Then
(a) If& € Ty, M \ 0is conormal tovy but not conormal ta¥ (go) (not parallel to&), then

(Po.&1) & WE(f).

(b) The same conclusion holds if condition (9.2) or the equivalent (9.3) is fulfilled.

Proof. Note first that4; is elliptic at (po, ¢) by (9.1) and Theorem 5.1(b). By the first relation in (9.@)y.&1) €
WEF( /1) if and only if (po,&1) € WF(Ff>). To analyze the latter, we will use the relation \WF,) c WF(F) o
WF( f>), see [8, Thm 8.5.5]. Note also that in the notation in [8, Thm 8.5.5]( Wk is empty. By Theorem 6.1,
WF (F) consists of those points in the canonical relatiprsee (2.5), for which the conormal singularity in (6.7) is
not canceled by a zero weight.

Now, let&; be as in (a). Sincg, is separated by-£&, by a conic neighborhood, one can choose a wexgh S M
that is constant along the geodesic flow, non-zer@pat 6y) and supported in a flow-out of a neighborhodaf it
small enough such that the conormals to the corresponding conjugate |jacistdy away from a neighborhood of
&:1. In the geodesics case, the condition is that the map (4.3) restrici&ditmes not intersect a chosen small enough
conic neighborhood of=£,. This can always be done by continuity arguments. Then left projection &€&y Rvill
not be singular atpo, £1), and thereforeF /> will have the same property regardless of the singularitie of

Statement (b) follows from (a) by varyingnearv, in directions normal tg; . |

9.3. Calculating the principal symbol of (9.9) in case of Riemannian surfacesLet exp be the exponential map of
g, and letn > 2. We will taken = 2 later. Recall that the leading singularity of the kerneNohearX' is of the type
(z;)—l/z, by Theorem 6.1. We will composE with a certain DO R so that this singularity becomes of the type
8(z"). Then modulo lower order term&R /' (p) will be a weighted Radon transform over the surfacgp). In 2D,
that will be an X-ray type of transform. We are only interested in this composition acting on distributions with wave
front sets in a small conic neighborhobd of (¢, £70).

The Fourier transform qu’+)‘1/2 is given by (7.1). Its reciprocal is

w2 (@8 = ih(=5)(=0)1?) = w2 (@) — (=) ]2,

where/ is the Heaviside function, and| is the norm in7;7 M. We fix p near po and local coordinates = x(p)
there, and we work in semi-geodesic coordingtes y(p, ¢) neargy normal toX'(p) oriented as in section 6. Lat
denote local coordinates negy. Let R be a properly supporte®dDO of order1/2 with principal symbol, equal to

(9.10) r(v,n) = 72 (h(na) — ih(=na)) " Pro (v, ),

in W, outside some neighborhood of the zero section, whgeiea homogeneous symbol of orderan even function
of n. Note that

(9.11) |r|2 = n_1|77|r§.

The appearance of the Heaviside function here can be explained by the faét‘thatas two connected components:
near(po, g0, —0, o) @and neax po, g0, £0, —10); and the constants needs to be chosen differently in each component.
We start with computing the composition

(9.12) FR.

Since the kernel of (9.12) is the transpose of thakdf’, we will compute the latter; and we only need those
singularities that belong tV. Denote byF(p, ¢) the Schwartz kernel of". Then the kerneF’(¢, p) = F(p,q) of
F’ (with the notation conventiod”’ /' (¢) = | F'(¢. p) /' (p) dVol(p)) can be written ag”’(¢(x, y), p(x)) that with
some abuse of notation we denote againFbgy, x). Then

(9.13) F'(y,x):=(Qn)"! /eiyn"”ﬁ’(y’,nn,x) dn,.

whereF” is the partial Fourier transform df w.r.t. y”, and there is no summation irf7,,. By Theorem 6.1 and (7.1),
(9.14) F'( 0 x) = 7' 24 (h(na) + ih(=110)) 107G (. V' 1)
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whereG is a symbol w.r.tz,,, smoothly depending ofx, y’) with principal part

V2
VAD

Moreover, by Theorem 6.17 has an expansion it terms of positive powersigi~'/2. In particular,G — G, is an
amplitude of order-1/2 that contributes a conormal distribution in the clds®/2~1/2(M x M, X;C), see, e.g.,
[9, Thm 18.2.8]. By the calculus of conormal singularities, see e.g., [9, Theorem 18.2.12], the kefRli®of
conormal type ai” = 0 as well, with a principal symbol given by that 6f multiplied byr|,»—¢ ,—=¢. That principal
symbol coincides with the full one modulo conormal kernels of oiddess that the former, see the expansions in [9]
preceding Theorem 18.2.12. Since we assumed-ghaan even homogeneous functiomadf order0, ro (', 0, 0, n,,)

is a function ofy’ only for 5 in a conic neighborhood @b, 1), equal tor(y, 0, 0, 1). Therefore, the principal part of
r(y,Dy)F'(-, x) is

G() = WE

V2
ro(3',0,0, DS(™),
7ap°V )8(y™)
and the latter is i —"/2+1/2(M x M, X; C). The “error” is determined by the next term of the principal symbol of
the compositionFR with G replaced byG,, that is of orderl lower and by the contribution aff = G, that is of
order—1/2 lower. Since the coordinatés’, y") depend orp, as well,ro()’, 0,0, 1) is actually the restriction ofy
to V* X (p). So we proved the following.

Lemma 9.1. Letry be as in (9.10). Then moduls™/2(M x M, X:C), FR € I'/*"/2(M x M, X; C) reduces to

the Radon transform
V2
FRf(p):/ afdS, a:= ro|pysxp Wy——.
2(p) i ~AD
wheredsS is the Riemannian surface measureX(p) that we previously denoted loWol 5 ).

(9.15) @n)™! /eiy""" Go(x,n)re(3',0,0,1)dn, = Wy

In two dimensions, this is an X-ray type of transform. In higher dimensions, this is a Radon type of transform on
the family of codimension one surfac&X p).

In what follows,n = 2.

We will computeR F* FR next. We have

(9.16) / FRfFRhd Vol ~ /M /Z (p)(af)(z)dS(z) /Z (p)(ah)(q) dS(q)dVol(p)

modulo terms of the kindPf, &), whereP is awDO of order—3/2 or less.

In the latter integral,p parameterizes the curvE(p), while ¢ € X (p) parameterizes a point on it. Another
parameterization is by and¢ € S; M with & oriented positively; theg = exp, (v), wherev € X(p) andé(v) = 0.
For the Jacobian of that change we have

|v]

D
(9.17) 85(g) dVol(p) = D d Vol () dVol(p) = 2 dop (€) dVo(p).

and we recall that}, denotes the surface measureSyi/, that in this case is a circle. The canonical ngapé¢) —
(¢, n) is symplectic, and therefore preserves the volume foprd&d Set

(9.18) K :=1n(p.O)I/IEl.
Then this map takeS* M into {(¢,n) € T*M; |n| = K}. Project that bindle to the unit circle one, and&et n/|n|.
Then we have the magp, §) — (¢, 7)), and d Vol p) do,, (£§) = K2d Vol(g) dog (7).
When we perform those changes of variables in (9.16), we will have
|w|DK?
dVol(q) dog ().
S¢ q

wherep € M, q € X(p), (¢q,n) € S*M, and we removed the hat over Let w is the corresponding vector i$i(g)
normal ton. That parameterizes the curvEg p) over which we integrate by initial pointsand unit conormal vectors

(9.19) dS(g)dVol(p) =
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1. The latter can be replaced by unit tangent vectors: w/|w|; then d Volg) do, () = dVol(g) do, (). Let us
denote the so parameterized curves py (s), wheres is an arc-length parameter.

It remains to notice that the integral w.izt. € X(p) is an integral w.r.t. the arc-length measureX(p), that we
denote by. Then performing the change of the variablesg, z’) — (¢, W, z’) in (9.16), we get

(9.20) / FRf FRhdVol ~ / (af)(cq,ﬁ,(s))&(q,—lf))}_l(q) ds |w] DK do, () d Vol(q).
RxSq M xM co
Therefore, we get as in (5.2), (5.4),
.k o g 1 _|lw|DK> f(¢) ,
R*F"FR ~ d Vol
/@ ,/det(g(q))/ “Ucoss p(g.a) ° )

9.21
- = e [ Inbysip W S0
~ /delz(q)) ) Acosp p(q.q')

For the directional derivatives of detd gxp) = —J'/|v|, see (8.3), we have that the derivative along the radial ray is
|J'(1)|/|v] by absolute value, while the derivative in the directiorS¢fy) vanishes. That implies

dVvol(g").

Acosp = [J'(D]/|w| = K/|w].
Therefore,
1 2 20 12 f(q/)
— [ 2K . W
\/det(g(q))[ b=z Wzl lul 0(q.q")

Here(p, v) is defined as follows. It is the point ifiM that lies on the continuation of the geodesic throggl to its
conjugate point neapy, The weightc restrictsy’ to a small neighborhood gf,. Next, 4, restrictsy’ neargy.

We compare (9.22) with (5.4) and (5.5). Notice that the Jacobian term in (5.4) at the diagonal gde&dsand
therefore cancels the factor in front of the integral in the calculation of the principal symbol. We therefore proved the
following.

(9.22) R*F*FR/f(q) ~ dVol(g').

Lemma 9.2. Letn = 2. ThenR* F* FR is a¥DO of order—1 with principal symbol modul&—3/2 at (¢, n) near
(90, m0) given by

— 2
A K|~ rolare s | I (po v/ oD P [k (g, —w/[w])]?

Here w/|w| is a continuous choice of a unit vector normal#faat ¢, so that(g, w/|w|) = (g0, wo/|wo|) When
(¢.m) = (90, 10), andv/|v| is a parallel transport of-w/|w| fromq to its conjugate poinp along the geodesig, -

Later we use the notation = n*/|nt|, andv = £1/|£4).

Proposition 9.1. Letrn = 2. Then
ld— Ay ' F*AT'F
isa¥DO of order—1/2.
Proof. We apply Lemma 9.2 withr ~1/2¢1™/4|n|1/2r, being the principal symbol afi; /%, see (9.10), where(; />
is a parametrix of{ /> near(qo, +7). To this end, choose
w2 Q) o (g ) = @r) T P l(g /It DI

see (8.1). Note that(g, w/|w|) = k(p.—v/[v]) = 0 because of the assumption on supprhen |ro|x=x(p)| =
27121k(q, —w/|w|)|~!, wherew is as in (3.1). The choice of, yields RR* = A;l/z mod¥~!. So Lemma 9.2
implies thatR* F* FR, and thereforeRR* F* F andA;lF*F, have principal symbol

op(A5' F*F)(q.n) = 2nK |k (p. & /1EXDI/In]
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We only need to inserjell—1 betweenF* and F. By [10, Thm 25.3.5], modul@’DOs of orderl lower, the principal
symbol of A;! F* AT F is given by that of4; ' F* F multiplied by the principal symbof2x |« (p. v)|2|/|§|)_1 of
A1_1 pushed forward by the canonical mapfof In other words,

2|k (p, E4/1EDIP

0p(A7 F*AT F)(q.m) = =

K [2nle((p. 6 /D @] = 1.

The following lemma is needed below for the proof of Theorem 9.2.

Lemma 9.3. Letx; and« both satisfy the assumptions foin the Introduction, and let (po. 6y) # 0. Lety € ¥°
have essential support ne@py, &) U (g9, =19) and Schwartz kernel iUy x U;) U (U, x U,). Then there exists
a zero order classica’ DO Q with the same support properties so that

OX}Xex = X} Xex. modI /> (M x M, AUN*X, C),
whereA is the diagonal. In particularQ X X, x — X X, x : H® — H*13/2 is bounded for any.

Proof. We defineQ = Q; + O, whereQ; , have Schwartz kernels iti; x U; andU, x U,, respectively. Following
the notation convention in (9.80 = diag(Q1, 0»).
Then we choos®; to have principal symbol

(9.23) ki (p. E1/IETD/R(p.E1/1ED)
in a conic neighborhood dfp,, ££&) with the same choice d@f*+ as in (8.1). Next, we choos@, with a principal
symbol
(9.24) (g /D /R (g 1/ )
in a conic neighborhood afo, £10). Then
* 0141 O F

X X, = ! )
0X, (QzF QzAz)
Then, see (8.1),

0p(Q141) = 2m (k1K) (P, EX/IEXD], 0p(Q2A2) = 2 (iere) (g, ™/ In*).
For Q. F, Q, F*, we use the arguments used in the proof of Lemma 9.1. A representation of the Schwartz kernel of
F’ as a conormal distribution is given by (9.13). The compositiy¥* then is of the same conormal type with a
principal symbol equal to the complex conjugate of thaFbmultiplied by the symbol (9.24) restricted Aé* X. This
replacesc* = i in (6.6) byk;. Since in (6.6)«* = k we get thatQ, F* is of the same conormal type with leading
singularity as in Theorem 6.1, with
Wy = o[~k (p, v/[v])k1 (g, —w/|w]).

This is however the leading singularity g X", Xy 1.
The proof forQ, F is the same with the roles gf andq replaced. |

9.4. Cancellation of singularities on Riemannian surfaces Assume in all dimensions that there are no conjugate
points on the geodesics M, and thabM is strictly convex. LetM; D M be an extension a¥/ so that the interior
of M, containsM be as in Remark 5.2. Then«f# 0,

(9.25) 1A l2an < CIX*Xf I any + Cel fla—sxany. VS € L2 (M),

forall k > 0, see [16, 6], and [17] for a class of manifolds with conjugate points. When we knowtiginjective,
for example when the weight is constant; then we can remové/tteterm. The same arguments there show that for
anys > 0,

(9.26) 1/ sy < CUX*XF mrsvranyy + Cell Sl s any. ¥ € H(M).
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ConsiderX f parameterized by points i S M, that defines Sobolev spaces fof as in section 5.1. Then
(9.27) |/ ey < CIXS Ngsvirz, say + Cell fla—ran. VS € Hy(M), s = 0.

Indeed, in Proposition 5.2, one can compl&fe and to closed manifolds, and then we would get thdt: H* —

H’*1/2 is bounded. Then (9.27) follows by (9.26). Estimate (9.27) is sharp in view of Proposition 5.2. In the
following theorem, we show that (9.25), (9.27) fail in the 2D case, with a loss at least of one derivative in the first one,
and1/2 derivative in the second one.

Theorem 9.2. Letn = 2, and lety, be a geodesic of with conjugate points satisfying the assumptions in section 2.
Then for eachf, € H*(M), s > 0, with WF( f2) in a small neighborhood ofy,, +1°), there existsf; € H*(M)
with WF( £1) in a some neighborhood ¢p,, +£°) so that

XfeHT* and X*Xf e H T2, wheref := fi + f».

In particular, if (M, g) is a non-trapping Riemannian surface with boundary with fold type of conjugate points on
some geodesics, none of the inequalities (9.25), (9.27) can hold.

Remark 9.1. It is an open problem whether we can repldé&t3/2 and H°*+2 above withC*. See Section 10.1 for
an example where this can be done.

Remark 9.2. If there are no conjugate points, one hg € H*t!/2 x*Xf e H*+!'. Therefore, the conjugate
points are responsible for dri4 derivative smoothing foX /', and anl /2 derivative smoothing foX ™* X f

Proof. Let f, be as in the theorem. Set
fi=—A7'Ff,
where, as before41—1 , A;l are parametrices of; , in conic neighborhoods @fpo, &) and(qo, £10), respectively.

Then f; belongs toH* and has a wave front set in small neighborhoodmf+ &j), by Theorem 2.1. By construction
and by (9.4),

(9.28) K X*Xf e C™.
Next, by (9.28),
Asfa+ F* fi = As fa — F*AT Ffy = (A3 — F*AT'F) /.
The operator in the parentheses RO of order—3/2 by Proposition 9.1. Therefore, see (9.5),
X2 X*Xf = As fo + F* fi € HT3/2,

We therefore gek * X f € HST3/2(U, U U,).
To proveX f € H*t!, note first that above we actually proved that

(9.29) X*X(Id — AT F)y : HS(Uy) — H*T3/2(U, U Us)

is bounded, being &DO of order—3/2, where xy denotes a zero ordakDO with essential support in a small
neighborhood of py, +1¢) and Schwartz kernel supportedih x U,.
Our goal is to show that

X(id— A7 F)y : H*(Uy) — H: T4 (M)
is bounded. It is enough to prove that
(9.30) X (d = AT F)* X Payisp X (1d — AT F)y : HY (Uz) — H™'(Un)
for anywDO P,.3/, of order2s + 3/2 on’H. All adjoints here are in the correspondifig spaces. By (9.29),
(9.31) Q25432 X " X(1d = AT F)x : H*(Uy) — H™*(U2)

is bounded for an¥DO Q. 3/> of order2s + 3/2.
To deduce (9.30) from (9.31), itis enough to “commui&” with P, 3/, in (9.30). Let2s +3/2 be a non-negative

integer first. As in the proof of Proposition 5.2, we use the fact 1aP,;1 3/, = (Pz*s+3/2X)*’ andPj_ ,Xfisa
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finite sum of X-ray transforms with various weights of derivativesfobf order not exceedin@s + 2. Thus we can
write

(9.32) X*Pya =) 0;X},

where Q; are differential operators ol of degree2s + 3/2 or less, andY; are like X in (2.1) but with different
weights still supported whereis supported. By Lemma 9.CQjA’j*X = R; X*X, whereR; is a¥DO of the same

order ast. The proof of (9.30) is then completed by the observation #igtd — Al‘lF)* maps continuously?*®
into itself, since the canonical relation &fis canonical graph. |

10. EXAMPLES

In this section, we present a few examples. We start in Section 10.1 with the fixed radius circular transform in
the plane, where we can have cancellation of singularities similarly to Theorem 9.2 but we show that this happens
to any order. Then we consider in Section 10.2 the geodesic X-ray transform on the sphere, where the conjugacy is
not of fold type, but a similar result holds. Next, in Section 10.3, we study an example of magnetic geodesics in the
Euclidean spacR? with a constant magnetic field. We show that then the canonical relatidheofanonical graph,
and therefore, one can resolve the singularities. Finally, in Section 10.4, we present an example of a Riemannian
manifold of product type where the graph condition is violated.

10.1. The fixed radius circular transform in the plane. Let R be the integral transform iR? of integrating func-
tions over circles of radius. We fix the negative orientation on those circles; then for dach) € SR?, there is a
unique unit circle passing throughin the direction ofy. It is very easy to see that the first conjugate point appears at
“time” 7. The next one is &x, that equals the period of the curve. If one originally chooesipported near, say
(0,0) and(2, 0); and chooses, to be the arc of the circle that is a small extensiot|ef — 1]> + x§ =1, x, > 0},
then we are in the situation studied above. On the other hand, if we do not impose any assumptionsfomsugit
get contributions that are smoothing operators only. Therefore, we do not need to restrift supp

The conjugate locu& (x) is the circle

) =1{y: ly—x[=2}
that is the envelope of all circles of radiligassing through. It follows immediately that
Sy(v) = {v; [v] =7}, Nye(v) = Re*(2/m, —1),

where we used complex identification to denote rotation by the angiearg(v). Hence,S is a fold conjugate locus.
The other assumptions of the dynamical system are easy to check.
It is much more natural to parametrize those circles by their centers, we use the n6tatjoThen

2w

(10.1) Rf(x) = [C( )fdez / l_lf(x—i-a))dﬁa, =/ f(z + €'%) da.

Those circles are also magnetic geodesics w.r.t. the Euclidean metric and a constant non-zero Lorentzian force. Note
that the “geodesics” are naturally parametrized by a poiR?ras well (and that parametrization reflects the choice
of the measure w.r.t. which we talf&", it is not hard to see that this is the same measure that we had before).

10.1.1. R as a convolution.It is well known and easy to see thAtis a convolution with the delta functiafy: of the
unit circle

Rf =641 % f.
Fourier transforming, we get
(10.2) R =2nF ' Jo(E)F,
whereJy is the Bessel function of ordér This shows that
(10.3) R*R = 2n)*F ' J2 (&) F.

Note thatJ02(|§|) is not a symbol because it oscillates. In principle, one can use this representation to &fakyze
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10.1.2. Integral representation\We write

(Rf,Rh):/ | Hf(x+w)d€w h(x + 0) dly dx

(10.4) o1t
Therefore,

10.5 R*Rf(x) = ‘ D
(10.5) f(x) /w|=1[9=1f(x+w+ ) .

compare with (5.1).
We will make the change of variables= » + 6. For0 < |z| < 2, there are exactly two wayscan be represented
this way. Writew = ¢'®, § = ¢'#. Since d,, = do, dfy = dB, and d; A dz, = (—2i)~'dz A dz, we get

dzy Adz, = % (iei"‘da + ie‘ﬂdﬁ) A (—ie—‘ada - ie-iﬁdﬁ) = sin(8 — o) da A dB

=sin(f —a)dl, A dly.

It is easy to see thap — «| equals twice the angle between= w + 6 andf. Letr = |z|. Thenr/2 = cos‘“%ﬂ'.
Elementary calculations then lead to
sinja — B = gm_ r2.

Therefore, (10.5) yields the following.

Proposition 10.1. Let R be the circular transform defined above. Then
4
(10.6) R*Rf(x) = ——/(dy, r:i=lx-yl
r<2 ra4 — }’2
10.1.3. R*R as an FIO. The kernel has singularities near the diagonat y, and also near
Y ={lx-yl=2}

That singularity is of the typ€ — |x — y|)~!/2, and for a fixedx the expressiol — |x — y| measures the distance
from the circleX (x) to the pointy inside that circle. We therefore get the same singularity as in Theorem 6.1. Note
also that

(10.7) N*Z = {(x,x £2§/|E].6.-§): £ e R*\ 0.

Based on Proposition 10.1, and Theorem 2.1, we concludethRtis an FIO of order1 with a canonical relation
C of the following type. We have thdi, £, y,n) € C if and only if (y,n) = (x, &) (that gives us th& DO part), or

(r.m) = (x £ 28/[§]. £).

This can also be formulated also in the following form.
Theorem 10.1. Let R be the circular transform defined above. Then, modits®,
(10.8) R*R= Ao+ Fy + F_,
whereA,, F+ and F_ are Fourier multipliers with the properties
(@) A9 = 47| D|™! mody1;
(b) F+ are elliptic FIOs of order—1 with canonical relations of a graph type given by
(10.9) Fi i (x,8) > (x £28/[8].6).
(c) F- = F}.

Proof. We start with the Fourier multiplier representation (10.2). The leading teri@of J02(|§|) is

87 87 2 QllEl 2l
0.10 — COS (|€ — =— i =27 | =+ —— — = :
(10.10) ] cos (|5 —n/4) |¥|(1 +sin2|§]) = 2n (|§| + ] ] )
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Those three terms are the principal parts of the operators in (10.8). The first ondgiy¥s !, while the second and
the third one are FIOs with phase functighs = (x — y) - £ £ 2|£|. A direct calculation show that the canonical
relations of F. are given by (10.9), indeed. For the complete proof of the theorem, we need the full asymptotic
expansion of/,.

We recall the well known expansion df(z) for z — oco:

Jo(2) ~ v2/(mz) (P(z) codz — m/4) — Q(2) sin(z — /4)) .

where
o0 o0
P~ pz 0 Q@) ~ ) gz
k=0 k=0
with some (explicit) coefficientpy, ¢x. In particular,p; = 1,4, = —1/8. Then
2 ) ) 2
Q2R ) ~ = (P +iQ)e 9 4+ (P —i Qe E=m/4)
z
2 ) )
~ (—i(P 1i0)2e%7 4 i(P—iQ)e 27 4 2P 4 2Q2) .
z
We set
(10.11) Ao =4x|DI7' (P2(ID) + Q*(DD)), Fa = F2xi|D|"'(P(D]) +i0(D]))*e*2I2"
This completes the proof. |

We will now connect this to Theorem 2.1. Ley = (0,0), go = (2,0), vo = (0,7), wo = (0,7). Then
vo € S(po). Choosety = (1,0), conormal to the conjugate locWS(qo) = {|x — qo| = 2} at po; and choose
no = (1,0), conormal to the conjugate locUs(po) = {|x — po| = 2} atqo. The directions ok, no reflects the
choice of the orientation we made earlier. We refer to Figure 5.

FIGURES

If we localize R nearv = vy, then the pseudo-differential part &* xR is (1/2) Ao, see (5.10). Therefore, in the
notation of Theorem 2.1,

1
A= Ao F=Fy+F.
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The canonical relation af . maps(po, &) into (¢o, o), See Figure 5, while that df— maps(py, —&) into (g0, —10)-
This is consistent with the results in Theorem 2.1, where the Lagrangian has two disconnected components located
near(po, go, =80, F1o)-

To analyze the operator (9.9), note first thet = 4, = Ay/2. Let us first analyze this operator applied to
distributions with wave front set nedyo, o) but not neargo, —n¢). Then F reduces toF; only, and we have,
moduloy—°,

1
A'F*AT'F = ZA—ZF;*_F+ = Id,

see (10.11). The analysis ndagp, —19) is similar. Therefore, we have a stronger version of Theorem 9.2 in this case:
singularities can cancel to any order.

Theorem 10.2. Let f; be any distribution withWWF( f;) supported in a small conic neighborhood of sofxg, £°)
T*R?\ 0. Then there exists a distributiof, with WF( f>) supported in a small conic neighborhood ©fy +
2£0/1£91, £9), that is an image oWWF( f;) under the mapF., so thatR(f; + f2) € C for all unit circles in a
neighborhood of the unit circl€ (x, + £°).

In other words, for a fixed circl€ of radiusl, there is a rich set of distributions, with any order of singularity
at N*Cy, so that those singularities are invisible lylocalized neaiCy, i.e., X/ € C*. Explicit examples can be
constructed by choosing (x) = §(x —qo), thenF f, nearpy is just given by the Schwartz kernel &* R, see (10.6).
To obtain f1, we apply24;" to the result.

We would like to emphasize on the fact that the theorem provides an example of cancellation of singularities for
the localized transform only. As we will see beloRif” € C* (globally) for f € £ implies f € C°. On the other
hand, without the compact support assumption, on can construct singular distributions in the k&&nabifg the
Fourier transform.

10.1.4. The wave front set of a distribution ier R. Now, if Rf = 0 or more generally, iiRf € C*, one easily
gets that

(10.12) V f € Ker R, WF( /) is invariant under the action of the gro@p?’, m € Z}.

Then, if /' is compactly supported (or more generally, smooth outside some compact set), we get thifatrivist

be empty, i.e.,/ € C*°(R?). In other words, even though recovery of YWH is impossible by knowing / locally,

as we saw above; the conditidn/ € C° globally, together with the compact support assumption yielded a global
recovery of singularities. Here an important role is played by the factithiattranslation invariant, and in particular,

our assumptions are valid for aqy,. fy) € TSR? that cannot be guaranteed in the general case. Also, the dynamics
is not time reversible; therefore for eacty, £°) € T* M \ 0 there are two different curves through in our family.

The latter is true for general magnetic systems with a non-zero magnetic field, see [3].

Remark 10.1. One can see that is invertible onL?(M ) by using Fourier transform, see (10.2). The formal inverse
is 1/Jo(]€]), and conjugating a compactly supportgdvith the Fourier transform, one gets a convolution in ¢he
variable that will smoothen out the zeros.&f(|£|), thus producing a Fourier multiplier with asymptotic|£|'/2. In
L?(R?) with p > 4 however it is not invertible, and elements of the kernel include functions with Fourier transforms
supported on the circlef (|€]) = 0, see also [19, 1].

Finally, we remark that in this case, one can stltlglirectly, instead ofR* R = R?, with the same methods. Our
goal however is to connect the analysis of this transform with our general results.

10.2. The X-ray transform on the sphere. Consider the geodesic ray transform on the sptreThe conjugate
points are not of fold type, instead they are of blow-down type..Lbe the antipodal map.
Without going into details, we will just mention that then (2.3) still holds with

CN =|D|™' = |D|""Y,

with some constant’, where the canonical relation df is the graph of the antipodal map, lifted 16*S2. Then
CN|D| = Id — J. The canonical graph is an involution, however (its square is identity), so arguments similar to that
in the previous example do not apply. That means that singularities may cancel. In fact, it is knownhastan
infinitely dimensional kernel — all odd functions with respect/toThis is a case opposite to the one above.
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In this caseX' consists of all antipodal paifs, y), and has dimension 2 (and codimension 2), unlike the case above
(dimension 3 and codimension 1). On the other havid X still has the same dimension (that is 2n=4, and this is
always the case as long Asis smooth submanifold). One can see that the Lagrangian in this case $"sHll

10.3. Magnetic geodesics in R. Consider the magnetic geodesic system in the Euclidean §'aadth a constant
magnetic potentialo, 0, @), « > 0. The geodesic equation is then given by
(10.13) y =y x(0,0,a),

wherex denotes the vector productR?. The r.h.s. above is the Lorentz force that is always normal to the trajectory
and in particular does not affect the speed. We restrict the trajectories on the energythatés preserved under the

flow. Then we get
)'/'1 :0”)2, )'/'22_“)}1’ )'/'3 =0.

The magnetic geodesics are then given by
v(1) = y(0) + (ﬁ(sin(ar +6) —sing), = (— cogat + ) + cosh), tz) ,
o o
where(r, 0, z) are the cylindrical coordinates ¢f0). The unit speed requirement means that
2422 =1.

The geodesics are then spirals; whea 0 then they reduce to closed circles, and whea 0 they are vertical lines.
The parameterization by cylindrical coordinates is singular whea 0. Away from that we can usé, z to
parametrize unit speeds. Then in g, we use the coordinatés ¢, z) to parametrize, i.e.,

v = t(\/l — z2(c059,sin9),z).

At ¢+ = 0 we may have additional singularity but this is irrelevant for our analysis since we know that the exponential
map has an injective differential near= 0. An easy computation yields that the conjugate locus is given by the
conditionat = 7, i.e.,

Sp(v) =A{v: |v| = n/a},
and this is true for any € R3. This is a sphere if'R". For X, we then get

(10.14) y(w/a) = p +a” ' (=2rsinb, 2r cosh, nz)
with p = y(0). This shows that(p) is an ellipsoid

1 1 1
y= {(p,q); 2@ =)+ @2 =)’ + (a3 —p3)* = a_z} :
T
Then
4
(10.15) N*Y = {(p,q,é, n; (p.q) € X; &= C(m — 41, D2 —m»;(ps —qa)), n=-£0#ce R}-

Therefore, giverp, &, we can immediately ggtas a smooth function dfp, £), and we can obtain so that exp(v) =
¢ by (10.14), where the L.h.s. is Therefore(p, &) — v is a smooth map, and therefaig, &) — (g, n) is a smooth
map, too. The later also directly follows from (10.15), sipce —£.

We therefore get thak is an FIO of order3/2 with a canonical relation

(10.16) (p.&) — (4.6),

whereg can be determined as described above. A geometric descriptigiisahe following: ¢ is one of the two
points on the ellipsoid, where the normal is given by, The choice of one out of the two points is determined by
the choice of the initial velocity, near which we localize; changing to —v, would alter that choice. Since (10.16)
is a diffeomorphismF is of canonical graph type, and therefore mapsto H*+3/2. In contrast,4, , are elliptic

of order—1, thus they dominate oveff. By Corollary 9.1,X can be inverted microlocally in the setup described in
Section 2.
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10.4. Fold caustics on product manifolds.Let (M, g) = (M’,g’) x (M", g") be a product of two Riemannian
manifolds. The geodesics adf then have the form

yp,v([) = ()/1;/71)/([), V;C/’v//(t)).
Consequently,
exp,(v) = (exg, (v'), exg,, (v")).
Assume that in(M’, g’), v; is conjugate ap, of fold type, and assume thaf is not conjugate apg in (M", g").
Then
dexp,(v) = diag(d exg, (v"), dexp,, (v")).

The kernel of dexp(v) then consists ofV,(v) = Ny(v') x 0. Next, S(p) = S(p') x TpyM", and X(p) =
X'(p"yxM". ThenN,(vo) is transversal t& (p) atv = vy, thereforeg(v’, v”) is a fold conjugate vector far € S’(p)
close tovg and for any”. Then the left projectior, of the Lagrangiav™ X consists of p, &) with (p’, §') € 7. (%)
and&” = 0. Thus the rank drops at least by = dim(M"). We get the same conclusion foeg(N* X). Therefore,
N*X is not a canonical graph in this case.

Letn’ = dim(M’) = 2. Then the canonical relation M ’, g’) is a canonical graph, and we get thatg(N* X)
have rankr’ + n” = 4 + n” instead of the maximal possibte = 4 + 2»”; i.e., the loss is exactly”.

Assume now that’ = 2, n” = 1, and the metric in\f is given by

2
Z go,,g(xl,>c2)dx"‘d>c’3 + (dx?)>.
a,B=1

Assume also that id/’, we have a fold conjugate vectog = (0, 1) atx! = x2 = 0. Then all possible conormals to
the conjugate loci at0, 0) corresponding to small perturbationswgfwill lie in the planev? = 0. This is an example
where Corollary 9.2 can be applied. We can recover singularities of thetkiad &, &5, £3) at po = (0, 0, 0) with

&3 # 0 and(&y, &) in a conic neighborhood dfl, 0). The ones wittE; = 0 are the problematic ones.
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