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Abstract. We develop an algorithm for the computation of general Fourier integral operators associated with canonical graphs. The
algorithm is based on dyadic parabolic decomposition using wave packets and enables the discrete approximate evaluation of the action
of such operators on data in the presence of caustics. The procedure consists in the construction of a universal operator representation
through the introduction of locally singularity-resolving diffeomorphisms, enabling the application of wave packet driven computation,
and in the construction of the associated pseudo-differential joint-partition of unity on the canonical graphs. We apply the method to a
parametrix of the wave equation in the vicinity of a cusp singularity.

1. Introduction. In this paper, we develop an algorithm for applying Fourier integral operators asso-
ciated with canonical graphs using wave packets. To arrive at such an algorithm, we construct a universal
oscillatory integral representation of the kernels of these Fourier integral operators by introducing singularity
resolving diffeomorphisms where caustics occur. The universal representation is of the form such that the
algorithm based on the dyadic parabolic decomposition of phase space previously developed by the authors
applies [2]. We refer to [7, 8, 10, 11] for related computational methods aiming at the evaluation of the action
of Fourier integral operators.

The algorithm comprises a geometrical component, bringing the local representations in universal form,
and a wave packet component which yields the application of the local operators. Here, we develop the
geometrical component, which consists of the following steps. First we determine the location of caustics
on the canonical relation of the Fourier integral operator. For each point on a caustic we determine the
associated specific rank deficiency and construct an appropriate diffeomorphism, resolving the caustic in
open neighborhoods of this point. We determine the (local) phase function of the composition of the Fourier
integral operator and the inverse of the diffeomorphism in terms of universal coordinates and detect the
largest set on which it is defined. We evaluate the preimage of this set on the canonical relation. We continue
this procedure until the caustic is covered with overlapping sets, associated with diffeomorphisms for the
corresponding rank deficiencies. Then we repeat the steps for each caustic and arrive at a collection of open
sets covering the canonical relation.

The complexity of the algorithm for general Fourier integral operators as compared to the non-caustic
case arises from switching, in the sets covering a small neighborhood of the caustics, from a global to a local
algorithm using a pseudodifferential partition of unity.

As an application we present the computation of a parametrix of the wave equation in a heterogeneous,
isotropic setting for long-time stepping in the presence of caustics.

Curvelets, wave packets. We briefly discuss the (co)frame of curvelets and wave packets [9, 13, 24].
Let u ∈ L2(Rn) and consider its Fourier transform, û(ξ) =

∫
u(x) exp[−i〈x, ξ〉] dx.

One begins with an overlapping covering of the positive ξ1 axis (ξ′ = ξ1) by boxes of the form

(1.1) Bk =
[
ξ′k −

L′k
2
, ξ′k +

L′k
2

]
×
[
−L

′′
k

2
,
L′′k
2

]n−1

,

where the centers ξ′k, as well as the side lengths L′k and L′′k , satisfy the parabolic scaling condition

ξ′k ∼ 2k, L′k ∼ 2k, L′′k ∼ 2k/2, as k →∞.
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FIG. 1. Projection Λ̄(y, η2) of a slice ξ = ξ0 of the canonical relation Λ associated with a half-wave equation in the vicinity of
a caustic (red solid line, the blue dashed lines indicate the neighborhood of the singularity) caused by a low velocity lens. The white
solid lines are connected to a regular grid in x by bi-characteristics. The black dot indicates the center of an open neighborhood of
conjugate points (x0, ξ0) 7→ (y0, η0) for which the projection onto standard microlocal focal coordinates (y, ξ) is not diffeomorphic.

Next, for each k ≥ 1, let ν vary over a set of∼ 2k(n−1)/2 uniformly distributed unit vectors. Let Θν,k denote
a choice of rotation matrix which maps ν to e1, and Bν,k = Θ−1

ν,kBk. In the (co-)frame construction, one
encounters two sequences of smooth functions on Rn, χ̂ν,k and β̂ν,k, each supported in Bν,k, so that they
form a co-partition of unity, χ̂0(ξ)β̂0(ξ) +

∑
k≥1

∑
ν χ̂ν,k(ξ)β̂ν,k(ξ) = 1, and satisfy the estimates

|〈ν, ∂ξ〉j ∂α
ξ χ̂ν,k(ξ)|+ |〈ν, ∂ξ〉j ∂α

ξ β̂ν,k(ξ)| ≤ Cj,α 2−k(j+|α|/2).

One then forms ψ̂ν,k(ξ) = ρ
−1/2
k β̂ν,k(ξ), ϕ̂ν,k(ξ) = ρ

−1/2
k χ̂ν,k(ξ), with ρk = vol(Bk), satisfying the

estimates

(1.2) ∀N :
|ϕν,k(x)|

|ψν,k(x)|

}
≤ CN2k(n+1)/4 ( 2k|〈ν, x〉|+ 2k/2‖x‖ )−N .

To obtain a (co)frame, one introduces the integer lattice: Xj := (j1, . . . , jn) ∈ Zn, the dilation matrix Dk =
1
2π

(
L′k 01×n−1

0n−1×1 L′′kIn−1

)
, det Dk = (2π)−nρk, and points xν,k

j = Θ−1
ν,kD

−1
k Xj . The frame elements

(k ≥ 1) are then defined in the Fourier domain as ϕ̂γ(ξ) = ϕ̂ν,k(ξ) exp[−i〈xν,k
j , ξ〉], γ = (xν,k

j , ν, k), and
similarly for ψ̂γ(ξ). The function ϕν,k is referred to as a wave packet. One obtains the transform pair

(1.3) uγ =
∫
u(x)ψγ(x) dx, u(x) =

∑
γ

uγϕγ(x).

2. Fourier integral operators and caustics. We consider Fourier integral operators, F , associated with
canonical graphs. We allow the formation of caustics.
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2.1. Oscillatory integrals, local coordinates. Let (y, xIi
, ξJi

) be local coordinates on the canonical
relation, Λ say, of F , and Si a corresponding generating function: If, at a point on Λ, (dy, dxI) are linearly
independent and dxJ vanishes, then (dy, dxI , dξJ) are coordinates on Λ nearby, I∪J = {1, . . . , n}, I∩J =
{∅}, and one can parameterize Λ as 〈XJ(y, xI , ξJ) − xJ , ξJ〉, where xJ = XJ(y, xI , ξJ) locally on Λ (cf.
[18], Thm 21.2.18). The fact that a (possibly empty) set I exists follows from the canonical graph property,
i.e. that (y, η) are local coordinates and dy linearly independent. Then

(2.1)
xJi =

∂Si

∂ξJi

, ξIi
= − ∂Si

∂xIi

,

η =
∂Si

∂y
.

The coordinates are standardly defined on (overlapping) open setsOi in Λ, that is, (y, xIi , ξJi) → r(y, xIi , ξJi)
is defined as a diffeomorphism on Oi; let i = 1, . . . , N . The corresponding partition of unity is written as

(2.2)
N∑

i=1

Γi(r) = 1, r ∈ Λ.

In local coordinates, we introduce

(2.3) Γ̄i(y, xIi , ξJi) = Γi(r(y, xIi , ξJi)).

Then (Fϕγ)(y) =
∑N

i=1(Fiϕγ)(y) with

(2.4) (Fiϕγ)(y) =
∫ ∫

Γ̄i(y, xIi , ξJi)ai(y, xIi , ξJi) exp[i(Si(y, xIi , ξJi)− 〈ξJi , xJi〉︸ ︷︷ ︸
φ(y,x,ξJi

)

] ϕγ(x) dxdξJi .

The amplitude ai(y, xIi , ξJi) is complex and accounts for the KMAH index.
We let Σφ denote the stationary point set (in θ) of φ = φ(y, x, θ). The amplitude can be identified with

a half-density on Λ. One defines the 2n-form dφ on Σφ,

dφ ∧ d
(
∂φ

∂θ1

)
∧ . . . ∧ d

(
∂φ

∂θN

)
= dy1 ∧ . . . ∧ dyn ∧ dx1 ∧ . . . ∧ dxn ∧ dθ1 ∧ . . . ∧ dθN .

In the above, we choose λ = (y, xI ,
∂φ
∂xJ

) as local coordinates on Λ, while θ = ξJ . Then we get

dφ = |∆φ|−1|dλ1 ∧ . . . ∧ dλ2n|, ∆φ =

∣∣∣∣∣ ∂2φ
∂xJ∂xJ

∂2φ
∂ξJ∂xJ

∂2φ
∂xJ∂ξJ

∂2φ
∂ξJ∂ξJ

∣∣∣∣∣ = −1;

λ is identified with (y, xI , ξJ). The corresponding half-density equals |∆φ|−1/2|dλ1 ∧ . . . ∧ dλ2n|1/2.
Densities on a submanifold of the cotangent bundle are associated with the determinant bundle of the

cotangent bundle. Let a0
i denote the leading order homogeneous part of ai. The principal symbol of the

Fourier integral operator then defines a half-density, a0
i d

1/2
φ . That is, for a change of local coordinates, if the

transformation rule for forms of maximal degree is the multiplication by a Jacobian , then the transformation
rule for a half-density is the multiplication by ||1/2. In our case, of canonical graphs, we can dispose of the
description in terms of half-densities and restrict to zero-density amplitudes on Λ.

2.2. Propagator. The typical case of a Fourier integral operator associated with a canonical graph is
the parametrix for an evolution equation [14, 15],

(2.5) [∂t + iP (t, x,Dx)]u(t, x) = 0, u(t0, x) = ϕγ(x)

on a domain X ⊂ Rn and a time interval [t0, T ], where P (t, x,Dx) is a pseudodifferential operator with
symbol in S1

1,0; we let p denote the principal symbol of P .
3



For every (x, ξ) ∈ T ∗X\{0}, the integral curves (y(x, ξ; t, t0), η(x, ξ; t, t0)) of

(2.6)
dy

dt
=
∂p(t, y, η)

∂η
,

dη

dt
= −∂p(t, y, η)

∂y
,

with initial conditions y(x, ξ; t0, t0) = x and η(x, ξ; t0, t0) = ξ define the transformation, χ, from (x, ξ) to
(y, η), which generates the canonical relation of the parameterix of (2.5), for a given time t = T ; that is,
(y(x, ξ), η(x, ξ)) = (y(x, ξ;T, t0), η(x, ξ;T, t0)).

The perturbations of (y, η) with respect to initial conditions (x, ξ) are collected in a propagator matrix,

(2.7) Π(x, ξ; t, t0) =
(
W1 W2

W3 W4

)
=
(
∂xy ∂ξy
∂xη ∂ξη

)
,

which is the solution to the 2n× 2n system of differential equations

(2.8)
dΠ
dt

(x, ξ; t, t0) =


∂2p

∂η∂y
(t, y, η)

∂2p

∂η∂η
(t, y, η)

− ∂2p

∂y∂y
(t, y, η) − ∂2p

∂y∂η
(t, y, η)

Π(x, ξ; t, t0),

known as the Hamilton-Jacobi equations, supplemented with the initial conditions [25, 26]

(2.9) Π(x, ξ; t0, t0) =
(

I 0
0 I

)
.

Away from caustics the generating function of Λ is S = S(y, ξ) (Ii = ∅), which satisfies

∂2S

∂y∂ξ
(y, ξ) =

∂x

∂y

∣∣∣∣
ξ

= W−1
1 ,(2.10)

∂2S

∂ξ2
(y, ξ) =

∂x

∂ξ

∣∣∣∣
y

= −∂x
∂y

∣∣∣∣
ξ

∂y

∂ξ

∣∣∣∣
y

= −W−1
1 W2,(2.11)

∂2S

∂y2
(y, ξ) =

∂η

∂y

∣∣∣∣
ξ

=
∂η

∂x

∣∣∣∣
ξ

∂x

∂y

∣∣∣∣
ξ

= W3W
−1
1 ,(2.12)

upon substituting x = x(y, ξ; t0, T )) denoting the backward solution to (2.6) with initial time T , evaluated
at t0. The leading-order amplitude follows to be

(2.13) a(y, ξ/|ξ|) =
√

1/detW1(x(y, ξ/|ξ|; t0, T ), ξ/|ξ|;T, t0),

reflecting that a is homogeneous of degree 0 in ξ.

In the vicinity of caustics, we need to choose different coordinates. Admissible coordinates are directly
related to the possible rank deficiency of W1: One determines the null space of the matrix W1 and rotates
the coordinates such the null space is spanned by the columns indexed by the set Ii. Then (y, xIi , ξJi) form
local coordinates on the canonical relation Λ, as in the previous subsection, and Oi is given by the set for
which the columns indexed by Ii span the null space of W1.

3. Singularity resolving diffeomorphisms. We consider the matrix W1(x(y, ξ; t0, T ), ξ;T, t0) for
given (T, t0) at y0 = y(x0, ξ0;T, t0) and ξ = ξ0 and determine its rank. Suppose it does not have full
rank at this point. We construct a diffeomorphism which removes this rank deficiency in a neighborhood of
r0 = (y0, η0;x0, ξ0) ∈ Λ, where η0 = η(x0, ξ0;T, t0).

To be specific, we rotate coordinates, such that ξ0 = (1, 0, . . . , 0) (upon normalization). Let us assume
that the row associated with the coordinate x2 generates the rank deficiency. (There could be more than one
row / coordinate.) We then introduce the diffeomorphism,

Q : x 7→ x̃ = (x1 −
α

2
(x2 − (x0)2)2, x2, . . . , xn);
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FIG. 2. Illustration of canonical relations χ (top) and χ̌ (bottom) of operators F and F̌ associated with a half-wave equation:
(bi-)characteristics (”rays”) in y for initial conditions (x2 = x2,0, ξ = ξ0) and (x̃2 = x̃2,0, ξ̃ = ξ̃0), respectively, for evolution
through a low velocity lens (see Section 5). The black circles on the left indicate the conjugate points corresponding to the initial
conditions.

to preserve the symplectic form, we map

ξ 7→ ξ̃ = (ξ1, ξ2 + α(x2 − (x0)2) ξ1, ξ3, . . . , ξn),

yielding a canonical transformation CQ : (x, ξ) 7→ (x̃, ξ̃). We note that CQ(x0, ξ0) = (x0, ξ0). The
diffeomorphism Q can be written in the form of an invertible Fourier integral operator with unit amplitude
and canonical relation given as the graph of CQ (see Appendix A).

The canonical transformation, C−1
Q , associated with Q−1 is given by

x̃→ x = (x̃1 +
α

2
(x̃2 − x0,2)2, x̃2, . . . , x̃n),

ξ̃ → ξ = (ξ̃1, ξ̃2 − α(x̃2 − x0,2) ξ̃1, . . . , ξ̃n).

We introduce the pull back, Q∗u(x̃) = u(Q−1(x̃)) = u(x̃1 + α
2 (x̃2− (x0)2)2, x̃2, . . . , x̃n). The correspond-
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ing propagator matrices are given by

ΠQ =

(
∂x̃
∂x

∂x̃
∂ξ

∂ξ̃
∂x

∂ξ̃
∂ξ

)
=



1 −α(x2 − x0,2) 0 · · · 0 0 0 · · ·
0 1 0 · · · 0 0 0 · · ·
0 0 1 · · · 0 0 0 · · ·
...

...
...

. . .
...

...
...

. . .
0 0 0 · · · 1 0 0 · · ·
0 αξ1 0 · · · α(x2 − x0,2) 1 0 · · ·
0 0 0 · · · 0 0 1 · · ·
...

...
...

. . .
...

...
...

. . .


,(3.1)

Π−1
Q =

(
∂x
∂x̃

∂x
∂ξ̃

∂ξ
∂x̃

∂ξ

∂ξ̃

)
=



1 α(x̃2 − x0,2) 0 · · · 0 0 0 · · ·
0 1 0 · · · 0 0 0 · · ·
0 0 1 · · · 0 0 0 · · ·
...

...
...

. . .
...

...
...

. . .
0 0 0 · · · 1 0 0 · · ·
0 −αξ̃1 0 · · · −α(x̃2 − x0,2) 1 0 · · ·
0 0 0 · · · 0 0 1 · · ·
...

...
...

. . .
...

...
...

. . .


,(3.2)

which are easily verified to be symplectic matrices. In the more general case, each coordinate xj generating

a rank deficiency yields additional non-zero entry pairs ∂x̃1
∂xj

, ∂x1
∂x̃j

, ∂ξ̃j

∂xj
, ∂ξj

∂x̃j
, and ∂ξ̃j

∂ξ1
, ∂ξj

∂ξ̃1
in the above

propagator matrices. It follows that the composition (x̃, ξ̃)
C−1

Q7→ (x, ξ)
χ7→ (y, η) generates the graph of a

canonical transformation, χ̌ say, which can be parametrized by (y, ξ̃) locally on an open neighborhood of
(y0, ξ̃(x0, ξ0)). We denote the corresponding generating function by Š = Š(y, ξ̃). We can compose F with
Q−1 as Fourier integral operators: F̌ = FQ−1. The canonical relation of F̌ is the graph of χ̌. In summary:

(x, ξ)

Q: CQ

��

F : χ // (y, η)

(x̃, ξ̃)

F̌=FQ−1: χ̌

88rrrrrrrrrrrrrrrrrrrrrrrrrrr

Q−1: CQ−1

SS

For each given type of rank deficiency (here, in x2) and each (x0, ξ0) within this class, there is an open set
O(x0,ξ0) on which the coordinates (I, J) are valid. These sets form an open cover, and we obtain a family of
diffeomorphisms parametrized by (x0, ξ0); there exists a locally finite subcover, and we only need a discrete
set to resolve the rank deficiencies everywhere. We index these by j = 1, . . . , Ni and construct a set of
diffeomorphisms, {Qij}Ni

j=1, which resolve locally the rank deficiency leading to coordinates (y, xIi , ξJi).
We write

(y, xIi , ξJi)
κij−→ (y, ξ̃)

↑ ↓ r ↑ ↓ r̃

Λ 3 r = (y, η;x, ξ)
CQij−→ (y, η; x̃, ξ̃) = ř ∈ Λ̌ij

We write Ǒi for the image of Oi under the diffeomorphism on the level of Lagrangians. Let the matrix ∂2Šij

∂y∂ξ̃

in the above be nonsingular on the open set Ǔij , and introduce Ǒij = Ǔij ∩ Ǒi ⊂ Λ̌ij . This set corresponds
6



FIG. 3. Caustic surfaces Ξ(y, ξ) (dark gray) and Ξ̌(y, ξ) (light gray) of Λ and Λ̌ corresponding to propagation through a low
velocity lens (cf. Section 5): The singular regions of Λ and Λ̌ do not intersect.

with a set Oij ⊂ Λ. We subpartition Oi = ∪j=1,...,NiOij . The corresponding partition of unity now reads

(3.3)
N∑

i=1

Ni∑
j=1

Γij(r) = 1, while Γ̄ij(y, xIi
, ξJi

) = Γij(r(y, xIi
, ξJi

)), j = 1, . . . , Ni.

Then (Fϕγ)(y) =
∑N

i=1

∑Ni

j=1(Fijϕγ)(y) with

(3.4) (Fijϕγ)(y) =
∫ ∫

Γ̄ij(y, xIi , ξJi)ai(y, xIi , ξJi) exp[i(Si(y, xIi , ξJi)− 〈ξJi , xJi〉] ϕγ(x)dxdξJi .

Inserting the diffeomorphisms, we obtain

(3.5) (Fijϕγ)(y) =
∫
Ǎij(y, ξ̃) exp[iŠij(y, ξ̃)] Q̂∗

ijϕγ(ξ̃) dξ̃.

The amplitude Ǎij(y, ξ̃) and phase function Šij(y, ξ̃)− 〈ξ̃, x̃〉 are obtained by composing Fij with Q−1
ij

as Fourier integral operators and changing phase variables. It is possible to treat this composition from a
semi-group point of view. Then, to leading order, we get

(3.6) Ǎij(y, ξ̃) = ¯̌Γ ij(y, ξ̃) ǎij(y, ξ̃),

where

(3.7) ¯̌Γ ij(y, ξ̃) = Γ̌ij(ř(y, ξ̃)),

in which

(3.8) Γ̌ij(ř(r)) = Γij(r).
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FIG. 4. Iso-amplitude surface of the partition functions Γ̄i(x, ξ), i = 1, 3, associated with Qi = I (left): the joint admissible set
O1 ∪O3 comprises the exterior of the two sheets. Iso-amplitude surface of Γ̄ij(x(x̃, ξ̃), ξ(x̃, ξ̃)) for ξ0 = π/2, x2,0 = 0 and α = 1
(i = 2, j = 1) (right): the admissible set Oij contains the region on the back of the sheet. Bottom: boundaries ∂Oi, i = 1, 3 (dashed
curves) and ∂Oij , i = 2, j = 1 (solid curves) of the admissible domains: Clearly, the joint admissible set O1 ∪O3 ∪O21 covers Λ.

Moreover, ǎij(y, ξ̃) can be obtained as follows. If Π is the propagator matrix of the perturbations of χ, then
the propagator matrix of the perturbations of χ̌ is given by: Π̌ij = Π Π−1

Qij
. Then

(3.9) ǎij(y, ξ̃) =

√√√√1/det

(
∂Šij(y, ξ̃)
∂y∂ξ̃

)−1

,

where det
(

∂Šij(y,ξ̃)

∂y∂ξ̃

)−1

is obtained as the determinant of the upper-left sub-block of Π̌ij . To accommodate
a common notation, we set Qij = I (Ni = 1) if Ii = ∅. In the further analysis, we omit the subscripts ij

where appropriate.

Expansion of the cutoff functions. The application of our algorithm involves the re-decomposition of
Q∗ϕγ into wave packets. The key novelty is constructing a separated representation of the partition functions.

Consider our oscillatory integral in (y, ξ̃) including the cutoff ¯̌Γ(y, ξ̃). ¯̌Γ(y, ξ̃) is homogeneous of degree
zero in ξ̃ and is a classical smooth symbol (of order 0). We “subdivide” the integration over ξ. A possible
procedure involves obtaining a (low-rank) separated representation of ¯̌Γ(y, ξ̃) on the support of each relevant

8



FIG. 5. Illustration of joint partition of unity for the partition functions and sets in Fig. 4 for ξ0 = 1.67 fixed: Slice of
Γ̄i(x, ξ = ξ0) (left), the admissible set Uij and the associated partition function Γ̄ij(x(x̃, ξ̃), ξ(x̃, ξ̃) = ξ0) (center), and the partition
function Γ̄ij(x(x̃, ξ̃), ξ(x̃, ξ̃) = 1.67) for Oij realizing the partition of unity with Γ̄i(x, ξ = ξ0).

box in ξ̃ [3, 5, 4],

(3.10) ¯̌Γ(y, ξ̃) =
Jν,k∑
β=1

Γ̌β
1 (y)Γ̌β

2 (ξ̃), ξ̃ ∈ Bν,k.

(Basically, this can be obtained using spherical harmonics in view of the fact that the ξ̃ is implicitly limited
to an annulus.) One can view this also as windowing the directions of ξ̃ into subsets (cones) using Γ̌β

2 (ξ̃) and
then constructing Γ̌β

1 (y) according to the smallest admissible set in y for the β-range of directions.
The oscillatory integral becomes

(3.11) (Fϕγ)(y) =
∑
ν,k

Jν,k∑
β=1

Γ̌β
1 (y)

∫
ǎ(y, ν̃) exp[iŠ(y, ξ̃)] Γ̌β

2 (ξ̃) |χ̂ν,k(ξ̃)|2 Q̂∗ϕγ(ξ̃)dξ̃.

One can view Γβ
2 (ξ̃)χ̂ν,k(ξ̃) as a subdivision of the box Bν,k. We know that |Jν,k| → 1 as k →∞ since the

cone of directions in Bν,k shrinks as
√
k. Hence, for large k this does not involve any action.

The procedure allows a subdivision for coarse scales, as long as the scaling is not affected for large k. If
the subdivision is too “coarse” then parts of the integration will be lost.

4. Computation. Here, we develop an algorithm for applying Fourier integral operators in the above
constructed universal oscillatory integral representation. The algorithm makes use of the wave-packet based
”box-algorithm” computation of the action of Fourier integral operators associated with canonical graphs
in microlocal standard focal coordinates (y, ξ̃) [2]. It is based on the discretization and approximation, to
accuracy O(2−k/2), of the action of F̌ij on a wave packet ϕj,ν̃,k(x̃),

(4.1) (F̌ijϕγ̃)(y) ≈ Ǎ(y, ν̃)
R∑

r=1

α
(r)
ν̃,k(y)

∑
ξ̃∈Bν̃,k

ei〈Tν̃,k(y),ξ〉|χ̂ν̃,k(ξ̃)|2ϑ̂(r)
ν̃,k(ξ̃).

The procedure relies on truncated Taylor series expansions of Šij(y, ξ̃) and Ǎ(y, ξ̃) near the microlocal
support of ϕγ̃ , along the ν̃ = ξ̃′/|ξ̃′| axis and in the ξ̃′′ directions perpendicular to the radial ν̃ = ξ̃′ direction.
Here, Tν̃,k(y) is the backwards-solution

x(y) = Tν̃,k(y) =
∂Šij(y, ν̃)

∂ξ̃
,
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FIG. 6. Illustration of admissible sets and expansion functions Γ̌β
1 (y(x)) in (3.10) for the partition functions Γ̄i(y(x), ξ),

i = 1, 3, in Fig. 4: Jν,k = 1 (top), Jν,k = 3 (middle), and Jν,k = 5 (bottom).

and α(r)
ν̃,k(y) and ϑ(r)

ν̃,k(ξ̃) are functions realizing, on Bν̃,k, a separated tensor-product representation of the
slowly oscillating kernel appearing in the second-order expansion term of Šij ,

(4.2) exp
[
i

1
2ξ̃′

〈
ξ̃′′,

∂2Šij

∂ξ̃′′2
(y, ν̃) ξ̃′′

〉]
Bν̃,k(ξ̃) ≈

R∑
r=1

α
(r)
ν̃,k(y)ϑ̂(r)

ν̃,k(ξ̃).
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FIG. 7. Illustration of admissible sets and expansion functions Γ̌β
1 (y(x)) in (3.10) for the partition functions

Γ̄ij(y(x̃, ξ̃), ξ(x̃, ξ̃)), i = 2, j = 1, in Fig. 4: Jν,k = 1 (top), Jν,k = 3 (middle), and Jν,k = 5 (bottom).

We construct the functions α(r)
ν̃,k(y) and ϑ(r)

ν̃,k(ξ̃) and the tensor product separated representation from prolate
spheroidal wave functions [6, 21, 22, 23, 27]. We refer to [2] for a detailed description of the box-algorithm.

Preparation step. We begin with determining the sets Oi by computing the perturbations of the inte-
gral curves (y(x, ξ), η(x, ξ)) with respect to initial conditions (x, ξ) and monitoring the null space of the
matrix ∂y

∂x , as detailed in Section 2.2. For parametrices of evolution equations, this involves evaluation of the
propagator matrices Π(x, ξ). Then, for each set Oi, we detect Ǔij (and consequently Ǒij) in a similar way,

11



FIG. 8. Joint admissible sets and partition of unity for the expansion functions Γ̌β
1 (y(x)) plotted in Fig. 6 and 7: Jν,k = 1 (top),

Jν,k = 3 (middle), and Jν,k = 5 (bottom).

as the sets on which the upper left sub-block of Π̌ij = Π Π−1
Qij

has full rank. Here Π−1
Qij

(x̃, ξ̃) is given by
(3.2).

We then proceed with the construction of the partition of unity. Since the partition functions enter
the computation as pseudodifferential cutoffs in the construction of the amplitude (cf. (3.6)), requiring the
backwards solutions x̃(y, ξ̃) (compare (2.10–2.13)), we perform our numerical construction in coordinates
(x̃, ξ̃). We obtain ¯̌Γij(y, ξ̃) upon substituting y = y(x̃, ξ̃) implied by the canonical relation χ̌ij . For the
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FIG. 9. Illustration of diffeomorphism Q, Q−1 and re-decomposition for a wave packet ϕγ(x) at frequency scale k = 2. Top row:
ϕγ(x) (left) and pull-back Q∗ϕγ(x̃) (right). Rows 2 to 4: Re-decompositions

P
ν̃,k uγ̃ ϕ̃γ̃(x̃) of Q∗ϕγ(x̃) using 3, 7, and 9 boxes

Bν̃,k , respectively (right column), and the corresponding image Q∗−1
“P

ν̃,k uγ̃ ϕ̃γ̃

”
(x) under the action of Q−1 (left column). An

insufficient number of boxes alters the amplitudes and the minimum phase property of wave packets. Increasing the number of boxes
yields satisfactory results in an open neighborhood of (x0, ξ0).

construction of the partition functions Γ̌ij , we choose double-exponential cutoffs of the form

exp(− exp(d(x̃, ξ̃))

mimicking a C∞
0 cutoff, with appropriate normalization and truncated to precision ε. Here d(x̃, ξ̃) is a

function measuring the distance of the point (x̃, ξ̃) from the boundary ∂ ¯̌Uij of the set ¯̌Uij(x̃, ξ̃). The
partition of unity is then formed by weighting ¯̌Γij(x̃, ξ̃) on the overlaps of the sets ¯̌Uij(x̃, ξ̃) such that∑

ij Γ̌ij(ř(x̃, ξ̃)) = 1. Finally, we construct the separated representations in (x̃, ξ̃) coordinates by win-
dowing the directions of ξ̃ into subsets using Γ̌β

2 (ξ̃), realizing a subdivision into ξ̃ cones.

Diffeomorphism. We evaluateQ in the Fourier domain. The data ϕγ(x) enter the box algorithm via the
coefficients uγ of their discrete almost symmetric wave packet transform [13], allowing the fast evaluation
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of the Fourier transform of the data at a set of frequency points ξν,k
l limited to the box Bν,k. From these, we

obtain Q∗
ijϕγ(x̃) via evaluation of adjoint unequally spaced FFT [16, 17] at points x(x̃).

Application of the box algorithm. We are now ready to compute the action (Fijϕγ)(y) (cf. (3.5)) by
applying the box algorithm (cf. (4.1)) to the pull-back Q∗

ijϕγ(x̃). First, we compute the discrete almost
symmetric wave packet transform of Q∗

ijϕγ(x̃), yielding its wave packet coefficients uג,ν̃,k. Note that nu-
merically significant coefficients uג,ν̃,k are contained in a small set of boxes Bν̃,k neighboring the direction
ν̃ = ξ0/|ξ0|. We subdivide each box according to the separated representation of Γ̌ij (cf. (3.11)). Then, we
apply the box algorithm to each subdivision, indexed by triples (β, ν̃, k), β = 1, . . . , Jν̃,k. Here, the Taylor
series expansion of the generating function Šij(y, ξ̃) underlying the box algorithm is constructed about the
central ξ̃ direction within the support of Γβ

2 (ξ̃)χ̂ν̃,k(ξ̃), accounting for the induced subdivision of the box
Bν̃,k. Note that sub-dividing into ξ̃ cones results in a reduction of the range of ξ̃ orientations in each element
(β, ν̃, k) of the subdivision, as compared to the ξ̃ range contained in Bν̃,k. This reduces the number R of
expansion terms necessary in the separated tensor product representation for yielding prescribed accuracy,
and effectively counter-balances the increase by a factor Jν̃,k, evoked by the separated representation of Γ̌ij ,
of the number of times the box-algorithm has to be applied.

Operator hierarchy. The operators Fij for which Qij = I, F (I)
ij say, are directly associated with the

canonical relation ΛF and involve only computations on ΛF . In the algorithm, we reflect this physical
hierarchy of the operators Fij in the construction of the partition of unity. First, we construct a partition of
unity for these hierarchically higher operators. Then, we construct a joint partition of the remaining operators
on the sets which are not covered by the sets for which Qij = I.

Re-decomposition. Starting from a single box Bν,k, re-decomposition of Q∗ϕγ(x̃) results in a set
of boxes Bν̃,k yielding numerically non-zero contribution to the solution. The number of boxes entering
the computation is directly proportional to the computational cost of the algorithm. In applications, we
therefore aim at keeping this number small and consider only a subset of boxes, yielding the most significant
contributions. We choose this subset such that on an open neighborhood of (x0, ξ0)

Q−1
ij Qij ≈ I.

We can estimate the energy loss induced by the restriction to subsets of Bν̃,k and re-normalize the solu-
tion. We illustrate the impact of choices of subsets containing different numbers of boxes on the numerical
accuracy of the diffeomorphic identity in Fig. 9.

Furthermore, the re-decomposition of Q∗ϕγ(x̃) yields in general, under the action of Q−1, ξ-values
outside the set Bν,k, ξ(x, ξ̃) ⊃ Bν,k. We monitor ξ(x, ξ̃) and do not consider their contribution in our
computation if |χ̂ν,k(ξ(x, ξ̃))| is below a given threshold.

5. Numerical example. We numerically illustrate our algorithm for the evaluation of the action of
Fourier integral operators associated with evolution equations. We consider wave evolution under the half-
wave equation, that is, the initial value problem (2.5) with symbol

P (x, ξ) =
√
c(x)2||ξ||2,

in n = 2 dimensions. Here c(x) stands for the medium velocity.

Heterogeneous, isotropic model. We choose a heterogeneous velocity model

c(x) = c0 + κ exp(−|x− x0|2/σ2),

containing a low velocity lens, with parameters c0 = 2km/s, κ = −0.4km/s, σ = 3km, and x0 =
(0, 14)km. As the initial data, we choose horizontal wave packets at frequency scale k = 2 and k = 3,
respectively, in the vicinity of the point x′ = (0, 5)km. We fix the evolution time to T = 7s. With this choice
of parameters, most of the energy of the solution is concentrated near a cusp-type caustic. We illustrate the
induced sets Oi and the joint partition of unity Γi in Fig. 4 and 5.
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FIG. 10. Illustration of operator action on a wave packet ϕγ(x) at frequency scale k = 2: Contribution of operators Fi

(i = 1, 3) associated with Qi = I (top left), contribution of operator Fij (i = 2, j = 1) with diffeomorphism parameters (ξ0 =
π/2, x2,0 = 0, α = 1), resolving the singularity in the tip of the caustic (top right), and joint action of Fi and Fij (bottom left). Time
domain finite difference reference (bottom right). In the operator computation, we consider 9 boxes Bν̃,k and a separated representation
with Jν,k = 1 term.

Operator factorization. We partition the Lagrangian Λ into three sets Oi, i = {1, 2, 3}. The sets
i = {1, 3} are separated by the caustic. For these sets, we can choose coordinates (y, ξ), hence Qi = I. The
set i = 2 contains the caustic. For illustration purposes, in the factorization Fij of Fi for i = 2, we choose to
compute the operator j = 1, which resolves the singularity in an open neighborhood of the point indicated
by a black dot on the Lagrangian plotted in Fig. 1. This neighborhood contains the cusp of the caustic.
Furthermore, we limit our separated representation to one term, Jν,k = 1 (for the corresponding admissible
sets and partition functions, see Fig. 6–8 (top rows)). We restrict the computation of Fij for the initial data
at frequency scale k = 2 (k = 3) to 9 (11) boxes Bν̃,k neighboring the ν direction, respectively.

Results. In Fig. 10, we plot the contributions of the different components in the factorization of the
propagator acting on a single horizontal wave packet at frequency scale k = 2, and compare to a time
domain finite difference computation. The support of the wave packet within the joint admissible set of
the chosen factorization is mostly covered by the set Oij , such that most of its energy is contributed by the
operator Fij , for which Qij 6= I.

We observe that in the joint admissible set, our algorithm has effectively removed the singularity. We
note that the phase of the operator computation matches the phase of the finite difference reference. This
includes the KMAH index, which is best observed for operator F3, which exclusively contributes to the
region beyond the caustic (cf. Fig. 10, top left). Furthermore, note that the amplitude obtained by our
algorithm is slightly weaker than the true amplitude. This is consistent with the observations and discussion
following Fig. 9 and results from the energy leakage induced by restricting the number of boxes in the
re-decomposition step following the application of Q. We can compensate and re-normalize the amplitude
by monitoring the energy loss resulting from the restriction (in Fig. 10, we have not re-normalized the
amplitudes). Finally, we note that our algorithm yields the correct result in an open neighborhood in the
vicinity of the tip of the caustic, for which we have designed the operator Fij . In consistency with this fact, it
is ineffective for yielding the image of the entire wave packet which, at this low frequency scale, has support
extending beyond the admissible set of the operator factors we compute.
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FIG. 11. Left column: Joint contribution of the operators Fi and Fij acting on a wave packets ϕγ(x) at frequency scale
k = 3 (compare Fig. 10 (bottom left) for a wave packet at frequency scale k = 2). Center column: Time domain finite difference
reference. Right column: The equivalent to the left column when using a separated representation with Jν,k = 11 terms (note that for
computational reasons, only 1 box Bν̃,k has been used in the numerical evaluation of Fi and Fij with Jν,k = 11 terms).

These observations are further illustrated in Fig. 11 (left column), where we plot the contributions of
the different components in the factorization of the propagator acting on horizontal wave packets, at higher
frequency scale k = 3, centered at locations in the vicinity of the caustic tip (results of a time domain
finite difference reference computation are plotted in Fig. 11 (center column)). With these initial data, we
explore the open neighborhood about the point for which the operator composition with Qij resolves the
singularity. Indeed, at this frequency scale, we can obtain the image of an entire wave packet with only one
operator factor Fij (cf. Fig. 11 (second row)). For the wave packet located slightly further above the tip of
the caustic (top row), we observe a phase artifact in the region of overlap of Oi=1 and Oij , which can be
explained as follows: The restriction of the separated representation for Fi to one term only induces that the
computation of the geometry (bi-characteristics) for the entire box Bν,k is exclusively based on one single
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direction ν. This results in inaccuracies in regions close to the caustics where slight perturbations in ξ yield
large variations in y. Furthermore, as discussed above, wave packets exploring the regions beyond the tip of
the caustics eventually start to leave the admissible set for Fij (third and bottom line).

We note that both for removing the phase artifact of Fi close to the caustic, and for enlarging the admis-
sible set, it is necessary to increase the number of terms Jν,k in the separated representation (3.10) (compare
Fig. 8). This is illustrated in Fig. 11 (right column), where the joint contributions of operators Fi and Fij

with Jν,k = 11 terms in the separated representation are plotted. Here, the expansion functions Γ̌β
2 (ξ̃) are

constructed as as cones in ξ̃ with a squared cosine cutoff window. For practical reasons and illustration pur-
pose, only one single frequency boxBν̃,k has been used in the computation (cf. Fig. 9). While this restriction
to only one frequency box affects the amplitudes and the phases in the tails of the wave packet, the separated
representation remains nonetheless effective in resolving the issues observed above: the admissible set is
extended beyond the caustic and the inaccuracies in the regions of overlap of sets Oi and Oij as well as in
the regions close to the caustics are considerably reduced.

6. Discussion. We developed an algorithm for the evaluation of the action of Fourier integral operators
through their factorization into operators with a universal oscillatory integral representation, enabled by the
construction of appropriately chosen diffeomorphisms. The algorithm comprises a preparatory geometrical
step in which open sets are detected on the canonical relation for which specific focal coordinates are ad-
missible. This covering with open sets induces a pseudodifferential partition of unity. Then, for each term
of this partition, we apply a factorization of the associated operators using diffeomorphisms reflecting the
rank deficiency and resolving the singularity in the set. This factorization admits a parametrization of the
canonical graph in universal (y, ξ̃) coordinate pairs and enables the application of our previously developed
box algorithm, following the dyadic parabolic decomposition of phase space, for numerical computations.
Hence, our algorithm enables the discrete wave packet based computation of the action of Fourier integral
operators globally, including in the vicinity of caustics. This wave packet description is valid on the entire
canonical relation. It can now enter procedures aiming at the iterative refinement of approximate solutions,
and drive the construction of weak solutions via Volterra kernels [1, 12].

In the special case of Fourier integral operators corresponding to parametrices of evolution equations, for
isotropic media, an alternative approach for obtaining solutions in the vicinity of caustics has been proposed
previously [2, 19, 20]. It consist in a re-decomposition strategy following a multi-product representation of
the propagator. Here, we avoid the re-decompositions and operator compositions following the discretiza-
tion of the evolution parameter, reminiscent of a stepping procedure. What is more, our construction is not
restricted to parametrices of evolution equations, but is valid for the general class of Fourier integral op-
erators associated with canonical graphs, allowing for anisotropy. The cost of the algorithm resides in the
construction and application of the separated representation of the pseudodifferential partition of unity.

Appendix A. Fourier integral representation of Q and Q−1.
We write (Q∗u)(x̃) = u(X(x̃)), ((Q−1)∗ũ)(x) = ũ(X̃(x)). That is, X = Q−1 and X̃ = Q. The

diffeomorphisms Q and Q−1 define the Fourier integral operators with oscillatory integral kernels,

(A.1) AQ(x̃, x) =
∫

e−i〈ξ,x−X(x̃)〉dξ, AQ−1(x, x̃) =
∫

e−i〈ξ̃,x̃−X̃(x)〉dξ̃.

The generating functions are

SQ(x̃, ξ) = 〈ξ,X(x̃)〉, SQ−1(x, ξ̃) = 〈ξ̃, X̃(x)〉,

respectively. The canonical relations are the graphs of CQ and CQ−1 , and are given by

ΛQ = {(x̃ = X−1(x), 〈ξ, ∂x̃X〉|x̃=X−1(x);x, ξ)}, ΛQ−1 = {(x = X̃−1(x̃), 〈ξ̃, ∂xX̃〉|x=X̃−1(x̃); x̃, ξ̃)}.

The Hessians yield a unit amplitude:∣∣∣∣det
∂2〈ξ,X(x̃)〉

∂x̃∂ξ

∣∣∣∣ = 1,

∣∣∣∣∣det
∂2〈ξ̃, X̃(x)〉

∂x∂ξ̃

∣∣∣∣∣ = 1.
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Substituting the particular diffeomorphism, we obtain:

∂xX̃|x=X̃−1(x̃) =


1 −α(x̃2 − x0,2) 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .


〈ξ̃, ∂xX̃〉|x=X̃−1(x̃) =

 ξ̃1
ξ̃2 − α(x̃2 − x0,2)ξ̃1

...

 .
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