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Set up
Green’s Function
Known results

Parabolic equations
I Solve the parabolic equation in RN :{

∂tu − Lu = g, t > 0,
u(0) = h.

where

L =
∑
i,j

aij(x)∂i∂j +
∑

j

bj(x)∂j + c(x),

with smooth, bounded coefficients, and A = [aij ] symmetric
and positive definite (⇒ L is strongly elliptic).

I Solution in term of Green’s function or fundamental
solution:

u(x , t) =

∫
GL

t (x , y) f (y) dy .
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I Goal is to obtain approximations of the Green’s function,
explicitly computable and accurate to any order as t → 0+.

I Approximation obtained via elementary methods, easily
implemented algorithmically.

I Method works for time-dependent coefficients (W. Cheng’s
PhD Thesis), and in certain free-boundary problems.

I Approximate solutions for semi-linear equations by
fixed-point method (e.g. from non-linear Feynmann-Kac
formula).

I Application to parameter estimation. E.g., reconstruct
volatility from prices on contingent claims (V. Isakov for
Black-Scholes)
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Known results

Applications/Extensions
I When bj(x) 6= 0, ∂t − L is a Fokker-Planck or Forward

Kolmogorov operator ⇒ evolution of the p.d.f associated
to the following stochastic process:

dX = b(X ) dt +
√

A(X ) dW (X ), W Brownian Motion.

(Statistical Mechanics, Probability, . . .).

I Can allow for certain singular coefficients, if bounded in the
Varadhan metric A−1(x) and the metric is of bounded
geometry (curvature and its derivatives bounded).

Example: Lu(x) = σ(x) x2∂2
x u(x) + 2r(x)(x∂xu(x)− u(x)),

on x > 0. The Varadhan metric is (σ(x) x2)−2 dx2.
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Green’s Function
Known results

Well-posedness
I GL(x , y) is the Green’s function for ∂t − L, i.e., the

distributional kernel of the solution operator et L.
I Use also notation T (x , y) to denote the kernel of operator

T , if a smooth function.
I Error estimates sought in largest space where uniqueness

holds⇒ exponentially weighted Sobolev space:

W r ,p
a (RN) := e−a〈x〉W r ,p(RN)

= {u : RN → C, ∂αx
(
ea〈x〉u(·)

)
,∈ Lp(RN), |α| ≤ r}, if r ∈ Z+,

where 〈x〉 = (1 + x2)1/2,
Such initial data arise in applications.
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Heat Kernel short-time asymptotics
Short-time asymptotic expansions well-known in literature:

I Geodesic flow (L = Laplace-Beltrami operator):

Gt (x , y) =
e−

d(x,y)2

4t

(4πt)N/2

(
G(0)(x , y) + G(1)(x , y)t + G(2)(x , y)tn + . . .

)
,

d(x , y) geodesic distance (McKean-Singer, Greiner,..).

I Parametrix approximation (related to WKBJ)

GL(t , x , y) ∼
∑
j≥0

t(j−n)/2pj

(
x , t−1/2(x − y)

)
e
−(x−y)T A(x)−1·(x−y)

4t ,

pj(x ,w) a polynomial of degree j in w (Melrose, Taylor, ...).

I Hermite function expansion (Y. Ait-Sahalia).
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Implementation issues
I Our method is also based on a parametrix, but more easily

implementable. It combines well with numerical methods to
solve over large time intervals.

I Geodesic flow approximation is very accurate, but difficult
to implement in practice. Except in special cases,
geodesics must be computed numerically. Also, extension
to time dependent coefficients not straightforward.

I Challenging to solve the PDE directly (unbounded domain,
high dimensionality in certain problems, degeneracy of L)

I Monte Carlo methods to obtain the p.d.f. of a Markov
process are generally slow and not very accurate.
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Preliminaries
Main result

Our expansion
I Based on Taylor expansion of parabolic rescaling Ls,z of

operator L:

Ls,z :=
N∑

i,j=1

as,z
ij (x)∂i∂j + s

N∑
i=1

bs,z
i (x)∂i + s2cs,z(x),

f s,z(t , x) := f (s2t , z + s(x − z)),

z dilation center, s dilation parameter (eventually, s =
√

t).

I Dilation center z allowed to be a function of x , y (may
improve accuracy).

I Taylor expansion coupled with time-ordered perturbative
expansion via Duhamel’s principle.
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Definition
z : R2N → RN is admissible if z(x , x) = x , and all derivatives
are bounded. Ex: z = x , z = x+y

2 .

For each µ ∈ Z+ and z = z(x , y) admissible, let:

G[µ,z]
t (x , y) := t−N/2

µ∑
`=0

t`/2 P`( z, z +
x − z
t1/2 , z +

y − z
t1/2 )·

· 1√
4πtN det(A(z)

e−
(x−y)T A−1(z)(x−y)

4t ),

where P`(z, x , y) =
∑

|α|≤`,β≤3`

aα,β(z)(x − z)α(x − y)β,

aα,β smooth, bounded.
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Main Result

Theorem
Let µ ∈ Z+, z = z(x , y) an admissible function. Then, ∃ aα,β
explicitly computable such that

et L f (x) =

∫
RN
G[µ,z]

t (x , y)f (y)dy + t(µ+1)/2E [µ,z]
t f (x).

where, for any a ∈ R, m ∈ R+, 1 < p <∞, k ∈ Z+,

‖E [µ,z]
t f‖W m+k,p ≤ Ct−k/2‖f‖W m,p ,

G[µ,z]
t (x , y) is the µth-order approximate kernel for the

solution operator et L. E [µ,z]
t is the error operator.
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Some remarks
I Expansion agrees with usual parametrix if z = x and L

time independent. Can optimize choice of z(x , y) (work in
progress).

I When z = x , our construction is equivalent to Taylor’s
expanding the Green’s function.

I Error estimates are global on RN (generalize to
non-compact, complete manifolds).

I In 1D, solution has closed form in term of Error Functions if
initial data is piece-wise polynomial (e.g. pricing of
contingent claims).
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Pertubative expansion
Commutator Estimates
Error Estimates

Proof - Duhamel’s Formula

By Duhamel’s principle, reduce to ∂tu − Lu = 0.

etL analytic semigroup on W m,p
a ⇒

‖u(t)‖W r,p
a
≤ Ct(s−r)/2‖f‖W s,p

a
, t ∈ (0,1].

r ≥ s, 1 < p <∞, C independent of t and a in bounded set.

The map
(0,∞) 3 t → etL ∈ B(W s,p

a ,W r ,p
a )

is smooth for any s, r .

Set V = L− L0, L0 given operator in the same class as L.
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Iterating Duhamel’s give time-ordered (Dyson) expansion:

etL = etL0 + t
∫

Σ1

etτ0L0Vetτ1L0dτ

+ t2
∫

Σ2

etτ0L0Vetτ1L0Vetτ2L0dτ + · · ·+

+ td
∫

Σp

etτ0L0Vetτ1L0 . . . etτd−1L0Vetτd L0dτ

+ td+1
∫

Σd+1

etτ0L0Vetτ1L0 . . . etτd L0Veτd+1Ldτ,

Σk k -dim unit simplex, d iteration level.
Integrals are Banach-valued Riemann integrals.
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Pertubative expansion
Commutator Estimates
Error Estimates

Proof - Dilation and Taylor expansion
Given fixed point z (center), s > 0, recall

Ls,z :=
N∑

i,j=1

as,z
ij (x)∂i∂j + s

N∑
i=1

bs,z
i (x)∂i + s2cs,z(x) ⇒

GL
t (x , y) = s−NGLs,z

1 (z + s−1(x − z), z + s−1(y − z)), t = s2.

Taylor expand Ls,z to order n = d in s at 0:

Ls,z =
n∑

m=0

smLz
m + sn+1Ls,z

n+1.
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Choose L0 = Lz
0 =

∑
ij aij(z)∂i∂j , constant-coefficient operator:

eLz
0 (x , y) =

1√
4π det(A(z))

e−
(x−y)T A−1(z)(x−y)

4 .

For each µ ≤ n, Dyson expansion becomes:

eLs,z
= eLz

0 +

µ∑
`=1

s`Λ`z +

max(`,n+1)∑
`=µ+1

s`Λ`z =

µ∑
`=0

s`Λ`z + sµ+1Es,z
µ ,

Es,z
µ error operator, Λ`z = Λ`z,s, if ` > n.
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Pertubative expansion
Commutator Estimates
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Where, with Λ0
z = eLz

0 set: Λ`z :=
∑

α∈A`
Λα,z ,

Ak ,` := {α = (α1, α2, . . . , αk ) ∈ Nk : |α| = `}, A` :=
⋃`

k=1 Ak ,`.

And if 1 ≤ k ≤ n,

Λα,z :=

∫
Σk

eτ0Lz
0Lz
α1

eτ1Lz
0Lz
α2
· · · Lz

αk
eτk Lz

0dτ,

while if k = n + 1,

Λα,z :=

∫
Σd+1

eτ0Lz
0Lz
α1

eτ1Lz
0Lz
α2
· · · Lz

αd+1
eτd+1Ls,z

dτ.
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Proof - Commutators

If α ∈ A`, Lz
α differential operator of order `+ 2 and degree `

polynomial coefficients (say Lz
α ∈ D(`, `+ 2)).

Campbell-Baker-Hasdorff formula then gives:

eθL0Lz
α = Pα(θ)eθL0 ,

where Pα(θ) = Pα(L0,Lz
α; θ, x , ∂) ∈ D(`, `+ 2) given by

P`(θ) :=
∑̀
k=0

θk

k !
adk

L0
(Lz
α)
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Proof - Expansion revisited

For ` ≤ n, then have

Λz
α =

∫
Σk

k∏
i=1

Pαi (L
z
0,L

z
αi

; 1− σi , x , ∂)dσeLz
0 := Pα(x , z, ∂)eLz

0 ,

with
Pα(x , z, ∂) =

∑
|β|≤`

∑
|γ|≤`+2k

aβ,γ(z)(x − z)β∂γx ,

aβ,γ smooth, bounded function.

Using explicit formula for eLz
0 (x , y), dilating back, substituting

z = z(x , y) gives the final formula for the approximation kernel.
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Error Estimates
Let z = z(x , y) admissible, s = t1/2.
Two types of error terms in E [µ,z]

t , operator with kernel:

s−N Es,z
µ (z + s−1(x − z), z + s−1(y − z)).

1. For µ < ` ≤ n, operators Ls,` with kernel

s−NΛ`z(z + s−1(x − z), z + s−1(y − z)).

2. For ` ≥ n + 1, operators Ls,` with kernel

s−NΛs,`
z (z + s−1(x − z), z + s−1(y − z)).
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1. For µ < ` ≤ n, obtain error bounds uniformly in s in W r ,p
a ,

for all r ∈ R by showing:

Ls,` = bs(x , ∂), bs(x , ξ) = as(x , sξ),

for some family of symbols as bounded in S0
1,0.

2. For ` ≥ n + 1, use Riesz Lemma along with:

∂βx ∂
β′

z ∂
β′′

y Λs,`
z (x , y) = 〈∂βδx , ∂

β′

z Λs,`
z ∂β

′′
δy 〉 ⇒

‖Ls,`‖W r,p→W r,p ≤ CT t−r/2, t ∈ (0,T ].

This bound not optimal, but sufficient to prove sharp
estimate for E [µ,z]

t by choosing n > µ+ N − 1.
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Examples - 1D Formulas

Set z = x and denote Gµ,zt =: Gµt .

If L(x) = 1
2Σ(x)2∂2

x + µ(x)∂x − ρ(x), then first-order approx
kernel given by:

G[1]
t (x , y ; z) =

1√
2π(t)Σ(z)2

e
− |x−y|2

2tΣ(z)2

[(
1 +

3Σ(z)Σ′(z)− 2µ(z)

2Σ(z)2

)
(x − y)

− Σ′(z)

2tΣ(z)3 (x − y)3 + (x − z)

(
(x − y)2 − tΣ(z)2

tΣ(z)3

)]
.
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In pricing of contingent claims, initial data u(x ,0) = (x − K )+.

h is the claim pay-off and parameter K is the strike price.

Then, first-order approx solution given by

u[1](t , x) =

√
t

2
√

2π
e
− (x−K )2

2Σ(x)2t
(
2Σ(x)− Σ′(x)(x − K )

)
+

1
2
·
(

erf
(

x − K√
2tΣ(x)

)
+ 1
)

(µ(x)t + x − K )

Can easily compute 2nd-order approximation as well.
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An example
Consider the CEV model (J.C. Cox, S. A. Ross) for pricing
contingent claims:

L(x) =
1
2
σ2x2β∂2

x + rx∂x − r , β > 0.

Exact formula for β = 1, 2/3, otherwise series solution
(Cox-Ross, D.Emanuel-J. MacBeth) in terms of Bessel’s
functions ⇒ slow to compute.

Varadhan metric is complete if β ≥ 1, our theorem applies. For
β = 1, metric is Poincaré metric.

Varadhan metric is incomplete if β < 1, but our formula gives a
very accurate approximation nevertheless.
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Assume again initial data u(x ,0) = h(x) = (x − K )+.

Our 1st-order approximate solution for z = x :

u[1]
CEV (t , x) =

σxβ−1
√

t
2
√

2π
e−

(x−K )2

2σ2x2β t ((2− β)x − βK )

+
1
2
·
(

erf
(

x − K√
2tσxβ

)
+ 1
)

((1 + rt)x − K )

Compare exact formula with 1st-order approximation, when
β = 2/3.
Closed-form solution avoid issues with numerical integration
against Green’s function.

In practice, important to approximate solution well near x = K .

A. Mazzucato Approximate Green functions



Introduction
Results

Sketch of Proof
Examples

Long-time approximation

1D Models
Numerics

Assume again initial data u(x ,0) = h(x) = (x − K )+.

Our 1st-order approximate solution for z = x :

u[1]
CEV (t , x) =

σxβ−1
√

t
2
√

2π
e−

(x−K )2

2σ2x2β t ((2− β)x − βK )

+
1
2
·
(

erf
(

x − K√
2tσxβ

)
+ 1
)

((1 + rt)x − K )

Compare exact formula with 1st-order approximation, when
β = 2/3.
Closed-form solution avoid issues with numerical integration
against Green’s function.

In practice, important to approximate solution well near x = K .

A. Mazzucato Approximate Green functions



Introduction
Results

Sketch of Proof
Examples

Long-time approximation

1D Models
Numerics

Numerical Test - CEV Model

β = 2
3 ,K = 15, σ = 0.3, r = 0.1 Error is O(10−3)
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Bootstrap to large time
Discuss only second-order approximation. Observe
etL =

(
et/nL)n

.

Error in the second-order approx over time t is O(t)3/2).
Time step t/n small if n large, so error over one time step is
small ⇒ error O(

( t
n

)3/2
).

Denote by G[2]
t/n the approximate solution operator over the time

step t/n. Compare etL with
(
G[2]

t/n

)n
.

After n steps, total error is

O
(
(t/n)3/2)× n = O

(
t3/2/

√
n
)
→ 0, n→∞.
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I Error is not improved by bootstrap for first-order
approximation (error is O(t1/2).

I Prove rigorous error bound by using equivalent norm for
which etL is contractive.

I Neglect error from numerical quadrature at each time step.
After first time step, no closed-form solutions available.

I Quadrature error negligible if space discretization fine
enough. For t > 0 integrand is smooth, can use high-order
methods away from y = x (e.g. high-order Gaussian
quadrature).

I Neglect error from truncation of domain (small if use
compactly supported data).
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Numerical test - CEV Model
β = 1, K = 20, σ = 0.3, r = 0.1, t = 1, n = 10

Error is O(10−5) with bootstrap
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Truncate at x = 200
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