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Introduction

Set up
Green’s Function
Known results

Parabolic equations
» Solve the parabolic equation in RV:

{&U—Lu:g, t>0,
u(0) = h.
where

L= Za/ x)a,a,+Zb/ )8; + ¢(x)

with smooth, bounded coefﬂments, and A = [a’] symmetric
and positive definite (= L is strongly elliptic).
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Introduction

Set up
Green’s Function
Known results

Parabolic equations
» Solve the parabolic equation in RV:
{&U—Lu:g, t>0,
u(0) = h.
where
L= Za/ x)a,a,+Zb/ )8; + ¢(x)

with smooth, bounded coefﬂments, and A = [a’] symmetric
and positive definite (= L is strongly elliptic).

» Solution in term of Green’s function or fundamental
solution:

u(x, ) = / GL(x,y) f(y) dy. g



Introduction

Set up
Green’s Function
Known results

» Goal is to obtain approximations of the Green’s function,
explicitly computable and accurate to any order as t — 0.

» Approximation obtained via elementary methods, easily
implemented algorithmically.
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Introduction
Set up
Green’s Function

Known results

» Goal is to obtain approximations of the Green’s function,
explicitly computable and accurate to any order as t — 0.

» Approximation obtained via elementary methods, easily
implemented algorithmically.

» Method works for time-dependent coefficients (W. Cheng’s
PhD Thesis), and in certain free-boundary problems.

» Approximate solutions for semi-linear equations by
fixed-point method (e.g. from non-linear Feynmann-Kac
formula).
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Introduction

Set up
Green’s Function
Known results

» Goal is to obtain approximations of the Green’s function,
explicitly computable and accurate to any order as t — 0.

» Approximation obtained via elementary methods, easily
implemented algorithmically.

» Method works for time-dependent coefficients (W. Cheng’s
PhD Thesis), and in certain free-boundary problems.

» Approximate solutions for semi-linear equations by
fixed-point method (e.g. from non-linear Feynmann-Kac
formula).

» Application to parameter estimation. E.g., reconstruct
volatility from prices on contingent claims (V. Isakov for
Black-Scholes)

A. Mazzucato Approximate Green functions
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Introduction

Set up
Green’s Function
Known results

Applications/Extensions

» When b/(x) # 0, 9; — L is a Fokker-Planck or Forward
Kolmogorov operator =- evolution of the p.d.f associated
to the following stochastic process:

dX = b(X) dt + \/A(X) dW(X), W Brownian Motion.

(Statistical Mechanics, Probability, .. .).
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Introduction

Set up
Green’s Function
Known results

Applications/Extensions

» When b/(x) # 0, 9; — L is a Fokker-Planck or Forward
Kolmogorov operator =- evolution of the p.d.f associated
to the following stochastic process:

dX = b(X) dt + \/A(X) dW(X), W Brownian Motion.
(Statistical Mechanics, Probability, .. .).
» Can allow for certain singular coefficients, if bounded in the

Varadhan metric A~'(x) and the metric is of bounded
geometry (curvature and its derivatives bounded).

Example: Lu(x) = o(x) x202u(x) + 2r(x)(x0xu(x) — u(x)),

on x > 0. The Varadhan metricis (o(x)x2)~2 dx?.
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Introduction

Set up
Green’s Function
Known results

Well-posedness

» GL(x.y) is the Green’s function for 9; — L, i.e., the
distributional kernel of the solution operator e'".

» Use also notation T(x, y) to denote the kernel of operator
T, if a smooth function.
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Introduction

Set up
Green’s Function
Known results

Well-posedness
» GL(x.y) is the Green’s function for 9; — L, i.e., the

distributional kernel of the solution operator e'".

» Use also notation T(x, y) to denote the kernel of operator
T, if a smooth function.

» Error estimates sought in largest space where uniqueness
holds = exponentially weighted Sobolev space:

WiP(RN) := e~ @ W P(RN)
={u:RN —C, a2 (ea™u()),e LPRN), la| < r}, ifrezy,

where (x) = (1 + x?)/2,
Such initial data arise in applications. ws%
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Introduction

Set up

Green’s Function
Known results

Heat Kernel short-time asymptotics
Short-time asymptotic expansions well-known in literature:
» Geodesic flow (L = Laplace-Beltrami operator):

_dxy)?
Gi(x.y) = 517?1‘)’\’/2 (Q(O)(X,y) + G (x, )t + 6B (x, )" + .. )

d(x, y) geodesic distance (McKean-Singer, Greiner,..).
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Introduction

Set up

Green’s Function
Known results

Heat Kernel short-time asymptotics
Short-time asymptotic expansions well-known in literature:
» Geodesic flow (L = Laplace-Beltrami operator):
(4rt)N/2

d(x, y) geodesic distance (McKean-Singer, Greiner,..).

Gi(x.y) = (Q(O)(X,y) + G (x, )t + 6B (x, )" + .. )

» Parametrix approximation (related to WKBJ)
—x— T A~ (x—
L(t,x,y) ~ Zt(/ ( 1/2(X—y))e G AT y>’
j>0
pj(x, w) a polynomial of degree j in w (Melrose, Taylor, ...).

PENNSTATE

» Hermite function expansion (Y. Ait-Sahalia).
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Introduction
Set up
Green’s Function

Known results

Implementation issues

» Our method is also based on a parametrix, but more easily
implementable. It combines well with numerical methods to
solve over large time intervals.
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Introduction
Set up
Green’s Function

Known results

Implementation issues

» Our method is also based on a parametrix, but more easily
implementable. It combines well with numerical methods to
solve over large time intervals.

» Geodesic flow approximation is very accurate, but difficult
to implement in practice. Except in special cases,
geodesics must be computed numerically. Also, extension
to time dependent coefficients not straightforward.
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Introduction
Set up
Green’s Function

Known results

Implementation issues

» Our method is also based on a parametrix, but more easily
implementable. It combines well with numerical methods to
solve over large time intervals.

» Geodesic flow approximation is very accurate, but difficult
to implement in practice. Except in special cases,
geodesics must be computed numerically. Also, extension
to time dependent coefficients not straightforward.

» Challenging to solve the PDE directly (unbounded domain,
high dimensionality in certain problems, degeneracy of L)

» Monte Carlo methods to obtain the p.d.f. of a Markov
process are generally slow and not very accurate.

A. Mazzucato Approximate Green functions
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Results

Preliminaries
Main result

Our expansion

» Based on Taylor expansion of parabolic rescaling LS# of
operator L:

Zasz 8,8,+stsz )0; + 82¢5%(x),
ij=1 i=1

fS2(t, x) := f(%t,z + s(x — 2)),

z dilation center, s dilation parameter (eventually, s = \/1).
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Results

Preliminaries
Main result

Our expansion

» Based on Taylor expansion of parabolic rescaling LS# of
operator L:

Zasz 8,8,+stsz )0; + 82¢5%(x),
ij=1 i=1

fS2(t, x) := f(%t,z + s(x — 2)),
z dilation center, s dilation parameter (eventually, s = \/1).

» Dilation center z allowed to be a function of x, y (may
improve accuracy).

» Taylor expansion coupled with time-ordered perturbative
expansion via Duhamel’s principle.

A. Mazzucato Approximate Green functions
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Results

Preliminaries
Main result

Definition
z:R?N . RN is admissible if z(x, x) = x, and all derivatives
are bounded. Ex: z = x, z = *}”.
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Results

Preliminaries
Main result

Definition
z:R?N . RN is admissible if z(x, x) = x, and all derivatives
are bounded. Ex: z = x, z = *}”.

For each p € Z, and z = z(x, y) admissible, let:

[,2] ~N/2 ¢ 2 4 y—2z
G “(xy) =t / Zt/ (z,z2+ t1/2vZ+W)‘
1 A @y
e at ),
47N det(A(2)

where Pz, x,y) = Z 80,5(2)(x — 2)*(x — y)*,

lo|<£,3<3¢

PENNSTATE

a,,3 smooth, bounded.
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Results ’
Preliminaries

Main result

Main Result

Theorem
Letp e Zy, z= z(x,y) an admissible function. Then, 3 a, s

explicitly computable such that
et = | G fy)dy + D Eg ),
where, foranyac R, me RT, 1 < p< oo, k € Z,,

1EY 2| ymen < CER/2 | ymeo,
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Results ’
Preliminaries

Main result

Main Result

Theorem
Letp e Zy, z= z(x,y) an admissible function. Then, 3 a, s
explicitly computable such that

et = | G fy)dy + D Eg ),

where, foranyac R, me RT, 1 < p< oo, k € Z,,

1EY 2| ymen < CER/2 | ymeo,

gt[“'z](xA y) is the uth-order approximate kernel for the
PENNSTATE
solution operator e't, 51[“ “lis the error operator.
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Results ’
Preliminaries

Main result

Some remarks

» Expansion agrees with usual parametrix if z= x and L
time independent. Can optimize choice of z(x, y) (work in
progress).
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Results ’
Preliminaries

Main result

Some remarks

» Expansion agrees with usual parametrix if z= x and L
time independent. Can optimize choice of z(x, y) (work in
progress).

» When z = x, our construction is equivalent to Taylor's
expanding the Green’s function.
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Results ’
Preliminaries

Main result

Some remarks

» Expansion agrees with usual parametrix if z= x and L
time independent. Can optimize choice of z(x, y) (work in
progress).

» When z = x, our construction is equivalent to Taylor's
expanding the Green’s function.

» Error estimates are global on RN (generalize to
non-compact, complete manifolds).
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Results ’
Preliminaries

Main result

Some remarks

» Expansion agrees with usual parametrix if z= x and L
time independent. Can optimize choice of z(x, y) (work in
progress).

» When z = x, our construction is equivalent to Taylor's
expanding the Green’s function.

» Error estimates are global on RN (generalize to
non-compact, complete manifolds).

» In 1D, solution has closed form in term of Error Functions if
initial data is piece-wise polynomial (e.g. pricing of
contingent claims). PENN%#
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Duhamel’s Formula

By Duhamel’s principle, reduce to 0;u — Lu = 0.
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Duhamel’s Formula
By Duhamel’s principle, reduce to 0;u — Lu = 0.
e'l analytic semigroup on WP =
lu(®)l|yre < V2| f|l s, € (0,1].

r>s,1<p< oo, Cindependent of t and a in bounded set.

The map
(0,00) > t — e € B(W5P, WiP)

is smooth for any s, r.
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Duhamel’s Formula

By Duhamel’s principle, reduce to 0;u — Lu = 0.

e't analytic semigroup on W7 =
lu(®)l|yre < V2| f|l s, € (0,1].

r>s,1<p< oo, Cindependent of t and a in bounded set.

The map
(0,00) > t — e € B(W5P, WiP)

is smooth for any s, r.

Set V = L — Ly, Ly given operator in the same class as L.

PENNSTATE
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Iterating Duhamel’s give time-ordered (Dyson) expansion:
etL — el‘Lo + t/ el‘ToLo Vet7'1 Ly dr
Xy

+ t2 / etToLo VetT1 Lo VetTgLo dr + -+

P
+ td/ etToLo VetT1 Ly o etTd—1L0 VetTdLo dr

Tp
+ ¢dH / ginboVeimibo  glmako \gTarilgr

gt

Y x k-dim unit simplex, d iteration level.
Integrals are Banach-valued Riemann integrals.
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Dilation and Taylor expansion
Given fixed point z (center), s > 0, recall

Za“ a,a,+st” X)0;+ §°c*(x) =
ij=1 i=1
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Dilation and Taylor expansion
Given fixed point z (center), s > 0, recall

Za“ a,a,+st” X)0;+ §°c*(x) =
ij=1 i=1

Gr(x,y) =sNGi (z+s N (x—2),z+ 5 (y - 2)), t=5"
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Dilation and Taylor expansion
Given fixed point z (center), s > 0, recall

Za“ a,a,+st” )9+ 8°¢>*(x) =
ij=1 i=1
Grx,y)=sNGE (z+ s (x—2),z+ s (y - 2)), t=¢°

Taylor expand LS to order n=d insatO0:

n
z _ Z SmL,Zn+Sn+1L,S7+Z1

PENNSTATE
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Choose Lo = L = }_;a'(2)9;0;, constant-coefficient operator:

e———————1°)
47 det(A(z))

2 1 =N TA= (@) (x—y)
eli(x,y) = i
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Choose Lo =L5=73; al(2)9,0;, constant-coefficient operator:

———————1 "]
47 det(A(z))

z 1 =N TA= (@) (x—y)
eli(x,y) = 3

For each « < n, Dyson expansion becomes:

I max(¢,n+1) I
e =6+ SN+ DT SN =)SIAL s RS,
=1 P =0

Ej* error operator, A, =A%, if £ > n.

PENNSTATE
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Where, with A2 = et set: AL =3 o, Aoz

Ao :={a=(a1,00,...,0k) € NK ol =0}, A= U£:1 A ¢
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Where, with A2 = et set: AL =3 o, Aoz

Ao :={a=(a1,00,...,0k) € Nk - la] =20}, A= U£:1 A ¢
Andif1 < k <n,

: L2 Lz Lz
Moz .—/z gLy entoly --- Ly, e™odr,
k
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Where, with AQ = ef set: AL := > acay, Nz
Ao :={a=(a1,00,...,0k) € NK ol =0}, A= U£:1 A ¢
Andif1 < k <n,
Naz = /z el entoLZ ... L2 e™hidr,
k
whileif Kk = n+1,
Qd+1

z z S,z
Mo,z = / el entoLZ ... L2 et dr
Xt
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Commutators

If « € Ay, LZ differential operator of order ¢ + 2 and degree ¢
polynomial coefficients (say LZ € D(/,( + 2)).

PENNSTATE
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Commutators
If o € 2y, LZ differential operator of order ¢ + 2 and degree ¢
polynomial coefficients (say LZ € D(/,( + 2)).
Campbell-Baker-Hasdorff formula then gives:
el Lz = P, (0)e™™,
where P, (0) = Po(Lo, L%;6,x,0) € D(¢, ¢+ 2) given by
y4 ek
Py(0) := Y - adf (LZ)

P k!

PENNSTATE
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Expansion revisited

For ¢ < n, then have

K
N = H Po, (L3, Lé: 1 — i, X, d)doets := P, (x,z 0)ek,
Tk =1
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Expansion revisited

For ¢ < n, then have

K
N = H Po, (L3, Lé: 1 — i, X, d)doets := P, (x,z 0)ek,
Tk =1

with

|B]<£ |v|<t+2k

as,, smooth, bounded function.
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Proof - Expansion revisited

For ¢ < n, then have

k
N = H Po, (L3, Lé: 1 — i, X, d)doets .= P, (x,z,0)e",
Tk =1
with
1B|<e|y|<e+2k

as,, smooth, bounded function.

Using explicit formula for e’ (x, y), dilating back, substituting
z = z(x, y) gives the final formula for the approximation kernel. ysur

A. Mazzucato Approximate Green functions



Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Error Estimates
Let z = z(x, y) admissible, s = t'/2,
Two types of error terms in 8}“’21, operator with kernel:

sNES?(z+s ' (x—2),z+5s (y — 2)).
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

Error Estimates
Let z = z(x, y) admissible, s = t'/2,
Two types of error terms in 8}“’21, operator with kernel:

sNES?(z+s ' (x—2),z+5s (y — 2)).

1. For i < ¢ < n, operators L., with kernel
s z+s(x—2),z+s ' (y - 2)).
2. For ¢ > n+ 1, operators L, with kernel

sNAS (z4+ s\ (x—2),z+ s (y - 2)).

PENNSTATE
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

1. For ;. < ¢ < n, obtain error bounds uniformly in s in W",
for all r € R by showing:

ES,Z - bS(X7 8)7 bS(X7§) - aS(X7 Sf)?

for some family of symbols as bounded in S .
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Pertubative expansion
Sketch of Proof Commutator Estimates

Error Estimates

1. For ;. < ¢ < n, obtain error bounds uniformly in s in W",
for all r € R by showing:

ES,Z - bS(X7 8)7 bS(X7§) - aS(X7 Sf)?

for some family of symbols as bounded in S .

2. For ¢ > n+ 1, use Riesz Lemma along with:
0507 0 N (x.y) = (076, 0F NS 07"5) =
|Ls.ellwro—wro < Ct /2, te(0,T].

This bound not optimal, but sufficient to prove sharp
estimate for St[“’z] by choosing n >+ N — 1. g
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1D Models
Numerics

Examples

Examples - 1D Formulas

Set z = x and denote G}** =: G},

PENNSTATE
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1D Models
Numerics

Examples

Examples - 1D Formulas

Set z = x and denote G}** =: G},

It L(x) = 35(x)%02 + u(x)9x — p(x), then first-order approx
kernel given by:
a(x.y:2) =
1 eyl 3% (2)Y'(2) — 2M(z)>
e 2t¥(z)2 1 + X —
V2r(HZ(2)? [( 2x(z)? (=)

r'(2) (x—yP - t5(2)?
a2 (e )|

PENNSTATE

A. Mazzucato Approximate Green functions



1D Models
Numerics

Examples

In pricing of contingent claims, initial data wv(x,0) = (x — K.

his the claim pay-off and parameter K is the strike price.
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1D Models
Numerics

Examples

In pricing of contingent claims, initial data wv(x,0) = (x — K.

his the claim pay-off and parameter K is the strike price.

Then, first-order approx solution given by

G, x) = zge s (2X(x) — T'(x)(x — K))
1 xX—K
+5- <erf (\@Z(XJ + 1) (u(x)t + x — K)

Can easily compute 2nd-order approximation as well.

PENNSTATE

A. Mazzucato Approximate Green functions



1D Models
Numerics

Examples

An example

Consider the CEV model (J.C. Cox, S. A. Ross) for pricing
contingent claims:

’
L(x) = §g2x2ﬂa§ +rxox —r,  3>0.

PENNSTATE
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1D Models
Numerics

Examples

An example

Consider the CEV model (J.C. Cox, S. A. Ross) for pricing
contingent claims:

’
L(x) = §g2x2ﬂa§ +rxox —r,  3>0.

Exact formula for 5 = 1, 2/3, otherwise series solution
(Cox-Ross, D.Emanuel-J. MacBeth) in terms of Bessel’s
functions = slow to compute.

PENNSTATE
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1D Models
Numerics

Examples

An example

Consider the CEV model (J.C. Cox, S. A. Ross) for pricing
contingent claims:

’
L(x) = §g2x2ﬂa§ +rxox —r,  3>0.

Exact formula for 5 = 1, 2/3, otherwise series solution
(Cox-Ross, D.Emanuel-J. MacBeth) in terms of Bessel’s
functions = slow to compute.

Varadhan metric is complete if 3 > 1, our theorem applies. For
B =1, metric is Poincaré metric.

Varadhan metric is incomplete if 5 < 1, but our formula gives a
. . ISTATE
very accurate approximation nevertheless. %
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1D Models
Numerics

Examples

Assume again initial data u(x,0) = h(x) = (x — K)+.

Our 1st-order approximate solution for z = x:

ﬁ 1 (x— K2
U[C1,]_:V(t X) = J);ﬁ\[e 20 xzm (2 - B)x — BK)

+ % (arf(\}%!%) + 1> (14 rt)x — K)

PENNSTATE
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1D Models
Numerics

Examples

Assume again initial data u(x,0) = h(x) = (x — K)+.

Our 1st-order approximate solution for z = x:

ﬁ 1 (x— K2
U[C1,]_:V(t X) = J);ﬁ\[e 20 xzm (2 - B)x — BK)

+ % (arf(\}%!%) + 1> (14 rt)x — K)

Compare exact formula with 1st-order approximation, when
B=2/3.

Closed-form solution avoid issues with numerical integration
against Green'’s function.

PENNSTATE

In practice, important to approximate solution well near x = K.
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1D Models
Numerics

Examples

Numerical Test - CEV Model
B=2K=15,06=03,r=0.1 Erroris O(107%)

1.5 . . . . . . 12
10F
1t
8k
:
' 6l —1st order approx.
-} >
0 —exact formula 1 4r
— 1st order approx.
-0.5} ] 2
0
_JiZ 13 14 15=K 16 17 18 19 10 15=K 20 25
X X
t — 01 t — 05 PENN%TE
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Bootstrap Scheme
Numerics

Long-time approximation

Bootstrap to large time

Discuss only second-order approximation. Observe
/ n
ell — (e’»’ nL) .

PENNSTATE
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Bootstrap Scheme
Numerics

Long-time approximation

Bootstrap to large time
Discuss only second-order approximation. Observe
ell — (et,/nL>”.

Error in the second-order approx over time t is O(t)%/2).
Time step t/n small if nlarge, so error over one time step is

small = error O((£)¥?).

PENNSTATE
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Bootstrap Scheme
Numerics

Long-time approximation

Bootstrap to large time

Discuss only second-order approximation. Observe
/ n
ell — (e’»’ nL) .

Error in the second-order approx over time t is O(t)%/2).

Time step t/n small if nlarge, so error over one time step is

small = error O((£)¥?).

Denote by Q}f]n the approximate solution operator over the time
n

step t/n. Compare e~ with <g}2]n> :

After n steps, total error is

O((t/n)s/z) X N = O(Z‘S/z/\/ﬁ) . O, n— oo. PENN%
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Bootstrap Scheme
Numerics

Long-time approximation

» Error is not improved by bootstrap for first-order
approximation (error is O(t'/?).

» Prove rigorous error bound by using equivalent norm for
which el is contractive.

PENNSTATE
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Bootstrap Scheme
Numerics

Long-time approximation

» Error is not improved by bootstrap for first-order
approximation (error is O(t'/?).

» Prove rigorous error bound by using equivalent norm for
which el is contractive.

» Neglect error from numerical quadrature at each time step.
After first time step, no closed-form solutions available.

» Quadrature error negligible if space discretization fine
enough. For t > 0 integrand is smooth, can use high-order
methods away from y = x (e.g. high-order Gaussian
quadrature).

PENNSTATE
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Bootstrap Scheme
Numerics

Long-time approximation

» Error is not improved by bootstrap for first-order
approximation (error is O(t'/?).

» Prove rigorous error bound by using equivalent norm for
which el is contractive.

» Neglect error from numerical quadrature at each time step.
After first time step, no closed-form solutions available.

» Quadrature error negligible if space discretization fine
enough. For t > 0 integrand is smooth, can use high-order
methods away from y = x (e.g. high-order Gaussian
quadrature).

» Neglect error from truncation of domain (small if use
compactly supported data).
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Bootstrap Scheme
Numerics

Long-time approximation

Numerical test - CEV Model

3=1,K=20,6=03,r=01,t=1, n=10
Error is O(10~°) with bootstrap

2.5 T T T 25 T T T
—2nd order approx. with bootstrap —2nd order approx. with bootstrap
2r |—1st order approx. 1 2t |—1st order aprox.
—2nd order approx. —2nd order approx. )
155 [~ 1storder approx. with bootstrap A 15 = 1st order approx. with bootstrap
= ] s 1t
0.5 1 0.5
0 0
0.5 . . . -0.5 . . .
10 20=K 30 40 0 10 20=K 30 40
X X
PENNSTATE
Truncate at x = 200 Truncate at x = 400
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