Complete Citation List



1.    On a theorem of Santaló.
    Pacific J. Math. 5(1955), 351 - 359.

2.    A characterization of compact metric spaces. [In Hebrew]
    Riveon Lematematika 9(1955), 70 - 71.

3.    A generalization of a problem of Sylvester. [In Hebrew]
    Riveon Lematematika 10(1956), 46 - 48.

4.    A proof of Vázsonyi's conjecture.
    Bull. Research Council of Israel 6A(1956), 77 - 78.

5.    A simple proof of Borsuk's conjecture in three dimensions.
    Proc. Cambridge Philos. Soc. 53(1957), 776 - 778.

6.    Two examples in the theory of polynomial functionals. [In Hebrew]
    Riveon Lematematika 11(1957), 56 - 60.

7.    Borsuk's partition conjecture in Minkowski planes.
    Bull. Research Council of Israel 7F(1957), 25 - 30.

8.    On common transversals.
    Archiv Math. 9(1958), 465 - 469.

9.    On a theorem of Kirszbraun.
    Bull. Research Council of Israel 7F(1958), 129 - 132.

10.    On a problem of S. Mazur.
    Bull. Research Council of Israel 7F(1958), 133 - 135.

11.    On common secants for families of polygons. [In Hebrew]
    Riveon Lematematika 12(1958), 37 - 40.

12.    Affine-regular polygons inscribed in plane convex sets. [In Hebrew]
    Riveon Lematematika 13(1959), 20 - 24.

13.    On some covering and intersection properties in Minkowski spaces.
    Pacific J. Math. 9(1959), 487 - 494.

14.    On intersections of similar sets.
    Portugaliae Math. 18(1959), 155 - 164.

15.    Some applications of expansion constants.
    Pacific J. Math. 10(1960), 193 - 201.

16.    On polyhedra in E3 having all faces congruent.
    Bull. Research Council of Israel 8F(1960), 215 - 218.

17.    A measure of asymmetry for convex surfaces.
    (With E. Asplund and G. Bredon)
    Portugaliae Math. 19(1960), 185 - 187.

18.    Projection constants.
    Trans. Amer. Math. Soc. 95(1960), 451 - 465.


19.    A variant of Helly's theorem.
    Proc. Amer. Math. Soc. 11(1960), 517 - 522.

20.    On a problem of L. Fejes Tóth.
    Amer. Math. Monthly 67(1960), 882 - 884.

21.    Common transversals for families of sets.
    J. London Math. Soc. 35(1960), 408 - 416.

22.    Partitions of mass-distributions and of convex bodies by hyperplanes.
    Pacific J. Math. 10(1960), 1257 - 1261.

23.    Subsets of Sn contained in a hemisphere.
    Anais Acad. Brasil. Ci. 32(1960), 323 - 328.

24.    On a coloring problem.
    (With E. Asplund)
    Math. Scand. 8(1960), 181 - 188.

25.    On the geometry of Minkowski planes.
    (With E. Asplund)
    Enseignement Math. 6(1960), 299 - 306.

26.    On some properties of convex sets.
    Colloq. Math. 8(1961), 39 - 42.

27.    On a conjecture of H. Hadwiger.
    Pacific J. Math. 11(1961), 215 - 219.

28.    On components in some families of sets.
    (With T. S. Motzkin)
    Proc. Amer. Math. Soc. 12(1961), 607 - 613.

29.    On a measure of asymmetry of convex bodies.
    (With E. Asplund and E. Grosswald)
    Proc. Cambridge Philos. Soc. 58(1962), 217 - 220.

30.    Projections onto some function spaces.
    Proc. Amer. Math. Soc. 13(1962), 316 - 324.

31.    Ueber zwei Probleme bezüglich konvexer Körper von P. Erdös und V. L. Klee.
    (With L. Danzer)
    Math. Zeitschr. 79(1962), 95 - 99.

32.    Longest simple paths in polyhedral graphs.
    (With T. S. Motzkin)
    J. London Math. Soc. 37(1962), 152 - 160.
    Reprinted in: Theodore S. Motzkin: Selected Papers, D. Cantor et al., eds.
    Birkhäuser, Boston 1983, pp. 292 - 300.

33.    The dimension of intersections of convex sets.
    Pacific J. Math. 12(1962), 197 - 202.

34.    A generalization of theorems of Kirszbraun and Minty.
    Proc. Amer. Math. Soc. 13(1962), 812 - 814.


35.    Strictly antipodal sets.
    Israel J. Math 1(1963), 5 - 10.

36.    On Steinitz's theorem about non-inscribable polyhedra.
    Proc. Nederl. Akad. Wet., Ser. A, 66(1963), 452 - 455.
    (= Indag. Math. 25(1963), 452 - 455.)

37.    Grötzsch'e theorem on 3-colorings.
    Michigan Math. J. 10(1963), 303 - 310.

38.    Helly's theorem and its relatives.
    (With L. Danzer and V. Klee)
    Proc. Symp. Pure Math. Vol. 7(Convexity) (1963), 101 - 180.

39.    Measures of symmetry for convex sets.
    Proc. Symp. Pure Math. Vol. 7(Convexity) (1963), 233 - 270.

40.    Borsuk's problem and related questions.
    Proc. Symp. Pure Math. Vol. 7(Convexity) (1963), 271 - 284.

41.    On polyhedral graphs.
    (With T. S. Motzkin)
    Proc. Symp. Pure Math. Vol. 7(Convexity) (1963), 284 - 290.

42.    The number of hexagons and the simplicity of geodesics on certain polyhedra.
    (With T. S. Motzkin)
    Canad. J. Math. 15(1963), 744 - 751.
    Reprinted in: Theodore S. Motzkin: Selected Papers, D. Cantor et al., eds.
    Birkhäuser, Boston 1983, pp. 301 - 308.

43.    Unambiguous polyhedral graphs.
    Israel J. Math. 1(1963), 235 - 238.

44.    Common secants for families of polyhedra.
    Arch. Math. 15(1964), 76 - 80.

45.    A measure of asymmetry for plane convex sets.
    J. London Math. Soc. 39(1964), 95 - 102.

46.    Fixing systems and inner illumination.
    Acta Math. Acad. Sci. Hungar. 15(1964), 161 - 163.

47.    Self-circumference of convex sets.
    Colloq. Math. 13(1964), 55 - 57.

48.    A proof of Rogers' conjecture on pairs of convex domains.
    J. London Math. Soc. 39(1964), 697 - 702.

49.    A simple proof of a theorem of Motzkin.
    Proc. Nederl. Akad. Wet., Ser. A, 67(1964), 382 - 384
    (= Indag. Math. 26(1964), 382 - 384).

50.    Addition and decomposition of convex polytopes.
    (With W. J. Firey)
    Israel J. Math. 2(1964), 91 - 100.


51.    Some semicontinuity theorems for convex polytopes and cell complexes.
    (With H. G. Eggleston and V. Klee)
    Comment. Math. Helvet. 39(1964), 165 - 188.

52.    On the facial structure of convex polytopes.
    Bull. Amer. Math. Soc. 71(1965), 559 - 560.

53.    The faces of a regular-faced polyhedron.
    (With N. W. Johnson)
    J. London Math. Soc. 40(1965), 577 - 586.

54.    The perimeter of Minkowski unit discs.
    Colloq. Math. 15(1966), 135 - 139.

55.    Continuous families of curves.
    Canad. J. Math. 18(1966), 529 - 538.

56.    The number of faces of convex polytopes.
    Proc. Colloq. on Convexity, Copenhagen 1965(1967), 117 - 125.

57.    Convex Polytopes.
    Interscience Monographs in Pure and Applied Mathematics, Vol. XVI.
    John Wiley & Sons, London-New York-Sydney, 1967, xiv + 456 pp.

58.    Convex sets and the combinatorial theory of convex polytopes.
    CUPM Geometry Conference, Santa Barbara, CA, 1967.
    Proceedings, Part I(1967), pp. 43 - 153.

59.    On inscribing and circumscribing hexagons.
    (With J. Ceder)
    Colloq. Math. 17(1967), 99 - 101.

60.    An enumeration of simplicial 4-polytopes with 8 vertices.
    (With V. P. Sreedharan)
    J. Combinatorial Theory 2(1967), 437 - 465.

61.    Metrically homogeneous sets.
    (With L. M. Kelly)
    Israel J. Math. 6(1968), 183 - 197.
    Corrigendum, ibid. 8(1970), 93 - 95.

62.    A result on graph coloring.
    Michigan Math. J. 15(1968), 381 - 383.

63.    Helly's Theorem and its Applications. [In Russian]
    Translated by S. I. Zalgaller, edited by I. M. Yaglom.
    Mir Publ., Moscow 1968. 160 pp.

64.    Grassmann angles of convex polytopes.
    Acta Math. 121(1968), 293 - 302.

65.    Some analogues of Eberhard's theorem on convex polytopes.
    Israel J. Math. 6(1968), 398 - 411.

66.    Planar  maps with prescribed types of vertices and faces.
    Mathematika 16(1969), 28 - 36.

67.    On n-connected graphs.
    Math. Nachrichten 39(1969), 345 - 347.

68.    Graphs, complexes, and polytopes.
    "Recent Progress in Combinatorics", W. T. Tutte, ed.
    Academic Press, New York 1969, pp. 85 - 90.

69.    Convex polytopes.
    (With G. C. Shephard)
    Bull. London Math. Soc. 1(1969), 257 - 300.

70.    On Steinitz's theorem concerning convex 3-polytopes and on some
    properties of planar graphs.
    (With D. W. Barnette)
    "The Many Facets of Graph Theory", G. Chartrand and S. F. Kapoor, eds.
    Lecture Notes in Math, 110(1969), 27 - 40.
    Springer, Berlin-Heidelberg-New York 1969.

71.    Incidence patterns of graphs and complexes.
    "The Many Facets of Graph Theory", G. Chartrand and S. F. Kapoor, eds.
    Lecture Notes in Math, 110(1969), 115 - 128.
    Springer, Berlin-Heidelberg-New York 1969.

72.    Imbeddings of simplicial complexes.
    Comment. Math. Helvet. 44(1969), 502 - 513.

73.    Some results on the upper-bound conjecture for convex polytopes.
    SIAM J. Appl. Math. 17(1969), 1142 - 1149.

74.    Preassigning the shape of a face.
    (With D. W. Barnette)
    Pacific J. Math. 32(1970), 299 - 306.

75.    Higher-dimensional analogs of the four-color problem and some
    inequalities for simplicial complexes.
    J. Combinatorial Theory 8(1970), 147 - 153.

76.    On combinatorial spheres.
    "Combinatorial structures and their Applications", Richard Guy et al., eds.
    Gordon and Breach, New York 1970, pp. 119 - 122.

77.    Some extremal problems concerning polytopes and complexes.
    "Combinatorial Mathematics and its Applications", R. C. Bose et al., eds.
    University of North Carolina, Chapel Hill 1970, pp. 192 - 208.

78.    Nerves of simplicial complexes.
    Aequationes Math. 4(1970), 63 - 73.

79.    Polytopes, graphs, and complexes.
    Bull. Amer. Math. Soc. 76(1970), 1131 - 1201.

80.    The importance of being straight.
    "Time Series and Stochastic Processes; Convexity and Combinatorics.
    Proc. Twelfth Bienn. Seminar Canad. Math. Congr., R. Pyke, ed.
    Canad. Math. Congress, Montreal 1970, pp. 243 - 254.

81.    A problem in graph coloring.
    Amer. Math. Monthly 77(1970), 1088 - 1092.

82.    Planar maps with prescribed degrees of vertices and faces. [In Russian]
    Translation of #66, by V. P. Kozyreva.
    "Kiberneticeskii Sbornik", A. A. Lyapunov and O. B. Lupanov, eds.
    Mir, Moscow 1970. New Series, vol. 7, pp. 108 - 117.

83.    Arrangements of hyperplanes.
    Proc. Second Louisiana Conf. on Combinatorics, Graph Theory and Computing,
    R. C. Mullin et al., eds.
    Louisiana State University, Baton Rouge 1971, pp. 41 - 106.

84.    Studies in Combinatorial Geometry and in the Theory of Convex Sets.
    [In Russian]
    Translated by S. I. Zalgaller, edited by V. A. Zalgaller and I. M. Yaglom.
    Nauka, Moscow 1971, 96 pp.

85.    Antidirected Hamiltonian paths in tournaments.
    J. Combinatorial Theory 11(1971), 249 - 257.

86.    Arrangements and Spreads.
    Conference Board of the Mathematical Sciences,
    Regional Conference Series in Mathematics, Number 10.
    Amer. Math. Soc., Providence, RI, 1972, 114 pp.

87.    How to cut all edges of a polytope ?
    Amer. Math. Monthly 79(1972), 890 - 895.

88.    Polygons in arrangements generated by n points.
    Math. Magazine 46(1973), 113 - 119.

89.    Osculation vertices in arrangements of curves.
    (With P. Erdös)
    Geometriae Dedicata 1(1973), 322 - 333.
    Correction, ibid. 3(1974), 130.

90.    Intersecting all edges of centrally symmetric polyhedra by planes.
    Discrete Math. 5(1973), 241 - 246.

91.    Acyclic colorings of planar graphs.
    Israel J. Math. 14(1973), 390 - 408.

92.    Shortness exponents of families of graphs.
    (With H. Walther)
    J. Combinatorial Theory A14(1973), 364 - 385.

93.    The orchard problem.
    (With S. A. Burr and N. J. A. Sloane)
    Geometriae Dedicata 2(1974), 397 - 424.

94.    Matchings in polytopal graphs.
    Networks 4(1974), 175 - 190.

95.    Combinatorial geometry.
    Encyclopaedia Britannica (1974), Macropaedia 4, pp. 950 - 953.

96.    Vertices missed by longest paths or circuits.
    J. Combinatorial Theory A17(1974), 31 - 38.

97.    The existence of certain planar maps.
    (With J. Zaks)
    Discrete Math. 10(1974), 93 - 115.

98.    On non-inscribable polytopes.
    (With E. Jucovic')
    Czechoslovak Math. J. 24(1974), 424 - 429.

99.    Venn diagrams and independent families of sets.
    Math. Magazine 48(1975), 12 - 23.

100.    Polygons.
    "The Geometry of Metric and Linear Spaces", L. M. Kelly, ed.
    Lecture Notes in Mathematics Number 490, pp. 147 - 184.
    Springer-Verlag, Berlin-Heidelberg-New York 1975.

101.    Polytopal graphs.
    "Studies in Graph Theory", Part II, D. R. Fulkerson, ed.
    Studies in Mathematics, vol 12, pp. 201 - 224.
    Math. Association of America, Washington DC 1975.

102.    Pairs of edge-disjoint Hamiltonian circuits.
    (With J. Malkevitch)
    Aequationes Math. 14(1975), 191 - 196.

103.    Incidence numbers of complexes and polytopes.
    (With G. C. Shephard)
    J. Combinatorial Theory A(1976), 345 - 368.

104.    New views on some old questions of combinatorial geometry.
    Colloq. Internaz. Theorie Combinat. Roma 1973, Vol 1.
    Accad. Naz. Lincei, Roma 1976, pp. 451 - 468.

105.    Patch-determined tilings.
    (With G. C. Shephard)
    Math. Gazette 61(1977), 31 - 38.

106.    The eighty-one types of isohedral tilings in the plane.
    (With G. C. Shephard)
    Math. Proc. Cambridge Philos. Soc. 82(1977), 177 - 196.

107.    Regular polyhedra -- old and new.
    Aequationes Math. 16(1977), 1 - 20.

108.    Tilings by regular polygons.
    (With G. C. Shephard)
    Math. Magazine 50(1977), 227 - 247.

109.    Perfect colorings of transitive tilings and patterns in the plane.
    (With G. C. Shephard)
    Discrete Math. 20(1977), 235 - 247.



110.    Do maximal line-generated triangulations of the plane exist?
    (With G. C. Shephard)
    Amer. Math. Monthly 85(1978), 37 - 41.

111.    Regularity of graphs, complexes and designs.
    Problèmes Combinatoires et Théorie des Graphes.
    Colloq. Internat. C.N.R.S. No. 260, Paris 1978, pp. 191 - 197.

112.    The ninety-one types of isogonal tilings in the plane.
    (With G. C. Shephard)
    Trans. Amer. Math. Soc. 242(1978), 335 - 353.
    Erratum, ibid. 249(1979), 446.

113.    Isotoxal tilings.
    (With G. C. Shephard)
    Pacific J. Math. 76(1978), 407 - 430.

114.    Isohedral tilings of the plane by polygons.
    (With G. C. Shephard)
    Comment. Math. Helvet. 53(1978), 542 - 571.

115.    The homeomeric classification of patterns.
    (With G. C. Shephard)
    Math. Reports Acad. Sci. Canada 1(1978), 57 - 60.

116.    Incidence symbols and their applications.
    (With G. C. Shephard)
    Proc. Sympos. Pure Math. 34(1979), 199 - 244.

117.    Spiral tilings and versatiles.
    (With G. C. Shephard)
    Mathematics Teaching 88(1979), 50 - 51.

118.    Some comments on "Juxtapositions".
    (With G. C. Shephard)
    Structural Topology 3(1979), 58 - 61.

119.    Satins and twills: an introduction to the geometry of fabrics.
    (With G. C. Shephard)
    Math. Magazine 53(1980), 139 - 161 and 313.

120.    Some remarks on mathematical taxonomy.
    (With G. C. Shephard)
    2. Kolloquium über diskrete Geometrie,
    Salzburg, Mai 1980, pp. 179 - 188.

121.    Some problems on plane tilings.
    (With G. C. Shephard)
    "The Mathematical Gardner", D. A. Klarner, ed.
    Prindle, Weber and Schmidt, Boston 1980, pp. 167 - 196.

122.    Tilings with congruent tiles.
    (With G. C. Shephard)
    Bull. Amer. Math. Soc. N.S. 3(1980), 951 - 973.


123.    Pavimentazioni con poligoni regolari.
    [Updated translation of #108]
    (With G. C. Shephard)
    Archimede 1980, 15 - 45.

124.    Two-coloring the faces of arrangements.
    Periodica Math. Hungar. 11(1980), 181 - 185.

125.    A hierarchy of classification methods for patterns.
    (With G. C. Shephard)
    Zeitschr. für Kristallographie 154(1981), 163 - 187.

126.    Global orcharding.
    Math. Magazine 54(1981), 41 - 42.

127.    Shouldn't we teach GEOMETRY?
    Zentralblatt für Didaktik der Mathematik 1981, No.1, pp. 7 -9
    (= Two-Year College Mathematics Journal 12(1981), 232 - 238).
    Japanese translation: Sugaku Seminar, 1981, No. 6, pp. 77 - 79.
    [A version subjected to editorial mutilation appeared in Proc. Fourth ICME,
    M. Zweng et al., eds. Birkhäuser, Boston 1983, pp. 165 - 167.]

128.    Some remarks on Fedotov's paper on discrete chronogeometry. [In Russian]
    (With G. C. Shephard)
    Sibirskii Matematiceski Zurnal 22(1981), 220 - 226.
    English version: Siberian Mathem. Journal 22(1981), 164 - 169.

129.    "Points on lines" revisited.
    Nieuw Tijdschrift voor Wiskunde 68(1981), 209 - 213.

130.    The geometry of planar graphs.
    (With G. C. Shephard)
    "Combinatorics", Proc. Eighth British Combinatorial Conference,
    Swansea 1981, H. N. V. Temperley, ed.
    London Math. Soc. Lecture Note Series vol. 52., pp. 124 - 150.
    Cambridge Univ. Press 1981.

131.    Patterns on the 2-sphere.
    (With G. C. Shephard)
    Mathematika 28(1981), 1 - 35.

132.    The theorems of Euler and Eberhard for tilings of the plane.
    (With G. C. Shephard)
    Resultate der Mathematik 5(1982), 19 - 44.

133.    The Geometric Vein - The Coxeter Festschrift.
    Chandler Davis, Branko Grünbaum and F. A. Sherk, eds.
    Springer-Verlag, New York - Heidelberg - Berlin 1982, viii + 598 pp.

134.    Uniform tilings with hollow tiles.
    (With J. C. P. Miller and G. C. Shephard)
    "The Geometric Vein - The Coxeter Festschrift",
    Chandler Davis, Branko Grünbaum and F. A. Sherk, eds.
    Springer-Verlag, New York - Heidelberg - Berlin 1982, pp. 17 - 64.

135.    Spherical tilings with transitivity properties.
    (With G. C. Shephard)
    "The Geometric Vein - The Coxeter Festschrift",
    Chandler Davis, Branko Grünbaum and F. A. Sherk, eds.
    Springer-Verlag, New York - Heidelberg - Berlin 1982, pp. 65 - 98.

136.    Can all tiles of a tiling have five-fold symmetry?
    (With L. Danzer and G. C. Shephard)
    Amer. Math. Monthly 89(1982), 568 - 570 and 583 - 585.

137.    Analogues for tilings of Kotzig's theorem on minimal weights of edges.
    (With G. C. Shephard)
    Annals of Discrete Math. 12(1982), 129 - 140.

138.    A Venn diagram of 5 triangles.
    (With P. Winkler)
    Math. Magazine 55(1982), 311.

139.    Intersection properties of boxes in Rd.
    (With L. Danzer)
    Combinatorica 2(1982), 237 - 246.

140.    Tilings, patterns, fabrics and related topics in discrete geometry.
    (With G. C. Shephard)
    Jahresber. Deutsch. Math.-Verein. 85(1983), 1 - 32.

141.    The 2-homeotoxal tilings of the plane and the 2-sphere.
    (With G. C. Shephard)
    (Combinatorial Theory B 34(1983), 113 - 150.

142    Does every type of polyhedron tile three-space?
    (With L. Danzer and G. C. Shephard)
    Structural Topology 8(1983), 3 - 14.

143.    Polyhedra with transitivity properties.
    (With G. C. Shephard)
    Math. Reports Acad. Sci. Canada 6(1984), 61 - 66.
   
144.    Tiling three-dimensional space with polyhedral tiles of a given
    isomorphism type.
    (With P. Mani-Levitska and G. C. Shephard)
    J. London Math. Soc. (2) 29(1984), 181 - 191.

145.    The construction of Venn diagrams.
    College Math. J. 15(1984), 238 - 247.

146.    The geometry of fabrics.
    (With G. C. Shephard)
    "Geometrical Combinatorics", F. C. Holroyd and R. J. Wilson, eds.
    Pitman, Boston-London-Melbourne 1984, pp. 77 - 98.

147.    The emperor's new clothes: full regalia, G string, or nothing?
    Mathematical Intelligencer 6(1984), 47 - 53.

148.    Simplicial arrangements in projective 3-space.
    (With G. C. Shephard)
    Mitteilungen Math. Seminar Univ. Giessen 166(1984), 49 - 101.

149.    On Venn diagrams and the counting of regions.
    College Math. J. 15(1984), 433 - 435.

150.    What should we teach as GEOMETRY?
    Washington Mathematics, Special Edition, Winter 1984/85, 8pp.

151.    Geometry strikes again.
    Math. Magazine 58(1985), 12 - 17.

152.    Patterns.
    (With G. C. Shephard)
    "Handbook of Applicable Mathematics", W. Ledermann, ed.
    Vol. V, "Combinatorics and Geometry", pp. 677 - 732.
    Wiley, Chichester (England) 1985.

153.    Symmetry groups of knots.
    (With G. C. Shephard)
    Math. Magazine 58(1985), 161 - 165.

154.    Patterns of circular disks on a 2-sphere.
    (With G. C. Shephard)
    3. Kolloq. über diskrete Geometrie, Salzburg, Mai 1985, pp. 243 - 251.

155.    Space filling with identical symmetrical solids.
    (With G. C. Shephard)
    Math. Gazette 69(1985), 117 - 120.

156.    A catalogue of isonemal fabrics.
    (With G. C. Shephard)
    "Discrete Geometry and Convexity", J. E. Goodman et al., eds.
    Ann. New York Acad. Sci 440(1985), 279 - 298.

157.    The enumeration of normal 2-homeohedral tilings.
    (With H.-D. Löckenhoff, G. C. Shephard and A. H. Temesvári)
    Geometriae Dedicata 19(1985), 109 - 174.

158.    Hypersymmetric tiles.
    (With G. C. Shephard)
    Congressus Numerantium 50(1985), 17 - 24.

159.    Symmetry in Moorish and other ornaments.
    (With Zdenka Grünbaum and G. C. Shephard)
    Computers and Mathematics with Applications 12B(1986), 641 - 653
    (= "Symmetry. Unifying Human Understanding." I. Hargittai, ed.
    Pergamon, New York 1986, pp. 641 - 653.)

160.    An extension to the catalogue of isonemal fabrics.
    (With G. C. Shephard)
    Discrete Math. 60(1986), 155 - 192.

161.    Tilings and Patterns.
    (With G. C. Shephard)
    W. H. Freeman and Co., New York 1986, ix + 700 pp.

162.    Is there an all-purpose tile ?
    (With G. C. Shephard)
    Amer. Math. Monthly 93(1986), 545 - 551.

163.    Mathematical challenges in Escher's geometry.
    "M. C. Escher -- Art and Science", H. S. M. Coxeter et al., eds.
    North-Holland, Amsterdam 1986, pp. 53 - 67.

164.    Circular disk patterns on a sphere.
    (With G. C. Shephard)
    Studia Sci. Math. Hungarica 21(1986), 303 - 327

165.    Equitransitive tilings, or how to discover new mathematics.
    (With L. Danzer and G. C. Shephard)
    Math. Magazine 60(1987), 67 - 89.

166.    Edge-transitive planar graphs.
    (With G. C. Shephard)
    J. Graph Theory 11(1987), 141 - 155.

167    Some problems on polyhedra.
    (With G. C. Shephard)
    J. of Geometry 29(1987), 182 - 190.

168.    A dual for Descartes' theorem on polyhedra.
    (With G. C. Shephard)
    Math. Gazette 71(1987), 214 - 216.

169.    Duality of polyhedra.
    (With G. C. Shephard)
    "Shaping Space: A Polyhedral Approach", Proc. "Shaping Space"
    Conference, Smith College, April 1984. M. Senechal and G. Fleck, eds.
    Birkhäuser, Boston 1988, pp. 205 - 211.

170.    Isonemal fabrics.
    (With G. C. Shephard)
    American Mathematical Monthly, 95(1988), 5 - 30.

171.    Diagrams Venn and How.
    (With J. C. Fisher and E. L. Koh)
    Mathematics Magazine 61(1988), 36 - 40.

172.    Rigid plate frameworks.
    (With G. C. Shephard)
    Structural Topology 14(1988), 1 - 8.

173.    The edge-density of 4-critical planar graphs.
    Combinatorica 8(1988), 137 - 139.

174.    Is selfduality involutory ?
    (With G. C. Shephard)
    American Mathematical Monthly 95(1988), 729 - 733.

175.    Tilings and Patterns -- An Introduction.
    (With G. C. Shephard)
    W. H. Freeman and Co., New York 1989, ix + 446 pp.

176.    Periodic ornamentation of the fabric plane: Lessons from Peruvian fabrics.
    Symmetry 1(1990), 45 - 68.

177.    The real configuration (214)
    (With J. Rigby)
    J. London Math. Soc .(2) 41(1990), 336 - 346.

178.    Some models of plane geometries.
    (With Jan Mycielski)
    Amer. Math. Monthly. 97(1990), 839 - 846.

179.    Rotation and winding numbers for planar polygons and curves.
    (With G. C. Shephard)
    Trans. Amer. Math. Soc. 322(1990), 169 - 187.

180.    Idiot-proof tiles.
    (With G. C. Shephard)
    Math. Gazette 75(1991), 143 - 147.

181.    Self-duality groups and ranks of selfdualities.
    (With J. Ashley, G. C. Shephard and W. Stromquist)
    Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift,
    P. Gritzmann and B. Sturmfels, eds.
    DIMACS Series in Discrete Mathematics and
    Theoretical Computer Science, Vol. 4, pp. 11 - 50.
    Amer. Mathematical Society 1991.

182.    Descartes' theorem in n dimensions.
    (With G. C. Shephard)
    L'Enseignement Mathématique 37(1991), 11 - 15.

182a.    Odd polyhedra.
    Geombinatorics 1(1991), No. 1, pp. 4 - 5.

183.    On Simmons' "Campaign Graphs".
    Ars Combinatoria 32(1991), 181 - 192.

183a.    Nets of polyhedra.
    Geombinatorics 1(1991), No. 2, pp. 5 - 9.

183b.    Nets of polyhedra II.
    Geombinatorics 1(1991), No. 3, pp. 5 - 10.

184.    Venn diagrams. I.
    Geombinatorics 1(1992), No.4, pp. 5 - 12.

185.    Are these figures oxymora?
    (With H. L. Dorwart)
    Mathematics Magazine 65(1992), 158 - 169.

186.    Aperiodic tilings.
    (With R. Ammann and G. C. Shephard)
    Discrete and Comput. Geometry 8(1992), 1 - 25

187.    Interlace patterns in Islamic and Moorish art.
    (With G. C. Shephard)
    Leonardo 25(1992), 331 - 339, color plate.
    Reprinted in: "The Visual Mind: Art and Mathematics", M. Emmer, ed.
    The MIT Press, Cambridge, MA, 1993, pp. 147 - 155, color plate.

188.    Venn diagrams II.
    Geombinatorics 2(1992), 25 - 32.

189.    Infinite uniform polyhedra
    Geombinatorics 2(1993), 53 - 60.

190.    Pick's Theorem.
    (With G. C. Shephard)
    Amer. Math. Monthly 100(1993), 150 - 161.

191.    Holey isogonal columns.
    Geombinatorics 2(1993), 75 - 78.

192.    Quadrangles, pentagons, and computers.
    Geombinatorics 3(1993), 4 - 9.

193.    Astral (nk) configurations.
    Geombinatorics 3(1993), 32 - 37.

194.    Hamiltonian polygons and polyhedra.
    Geombinatorics 3(1994), 83 - 89.

195.    A new look at Euler's theorem for polyhedra.
    (With G. C. Shephard).
    Amer. Math. Monthly 101(1994), 109 - 128.
    Response to comments by P. Hilton and J. Pedersen, ibid. pp. 961 - 962.

196.    Regular polyhedra.
    Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences,
    I. Grattan-Guinness, ed.  Routledge, London 1994.  Vol. 2, pp. 866 - 876.

197.    Stable colorings.
    Geombinatorics 3(1994),117 - 121.

198.    Quadrangles, pentagons, and computers, revisited.
    Geombinatorics 4(1994), 11 - 16.

199.    Uniform tilings of 3-space
    Geombinatorics 4(1994), 49 - 56.

200.    Polyhedra with hollow faces.
    "POLYTOPES: Abstract, Convex and Computational",
    Proc. NATO - ASI Conference, Toronto 1993.
    T. Bisztriczky, P. McMullen, R. Schneider and A. Ivic' Weiss, eds.
    Kluwer Acad. Publ., Dordrecht 1994.  Pp. 43 - 70.

201.    Metamorphoses of polygons.
    "The Lighter Side of Mathematics", Proc. Eugène Strens Memorial Conference,
    R. K. Guy and R. E, Woodrow, eds.
    Math. Assoc. of America, Washington, D.C. 1994  Pp. 35 - 48.

202.    The parabolic 3-space.
    Geombinatorics 4(1995), 77 - 79.

203.    The angle-side reciprocity of quadrangles.
    Geombinatorics  4(1995), 115 - 119.

204.    How to convexify a polygon
    Geombinatorics 5(1995), 24 - 30.

205.    Ceva, Menelaus, and the area principle.
    (With G. C. Shephard)
    Math. Magazine  68(1995), 254 - 268.

206.    Isogonal decagons.
    In: The Pattern Book. Fractals, Art, and Nature, C. A. Pickover, ed.
    World Scientific, Singapore 1995, pp. 251 - 253.   

207.    A new rhombic hexecontahedron.
    Geombinatorics 6(1996), 15 -18.

208.    A new rhombic hexecontahedron –– once more.
    Geombinatorics 6(1996), 55 - 59.

209.    A new Ceva-type theorem.
    (With G. C. Shephard)
    Math. Gazette 80(1996), 492 - 500.

210.    Erdös vignettes.
    Geombinatorics 6(1997), 79 - 81.

211.    Still more rhombic hexecontahedra.
    Geombinatorics 6(1997), 140 - 142.

212.    Ceva, Menelaus and Selftransversality.
    (With G. C. Shephard)
    Geometriae Dedicata 65(1997), 179 - 192.

213.    Isogonal prismatoids.
    Discrete and Comput. Geometry 18(1997), 13 - 52.

214.    On quadrangles derived from quadrangles.
    Geombinatorics 7(1997), 5 - 8.

215.    On  quadrangles  derived  from quadrangles -- Part 2.
    Geombinatorics 7(1997), 41 - 46.

216.    On  quadrangles  derived  from quadrangles -- Part 3.
    Geombinatorics 7(1998), 88 - 94.

217.    Which coronas are simple?
    American Mathematical Monthly 105(1998), 362 - 365.

218.    Cyclic ratio sums and products.
    Crux Mathematicorum 24(1998), 20 - 25.

219.    On the number of invariant straight lines for polynomial differential systems.
    (With J. C. Artés and Jaume Llibre)
    Pacific J. Math. 184(1998), 207 - 230.

220.    Face-transitive polyhedra with rectangular faces.
    (With H. S. M. Coxeter)
    Math. Reports Acad. Sci. Canada 20(1998), 16 - 21.

221.    Realizations of symmetric maps by symmetric polyhedra.
    Discrete & Comput. Geometry 20(1998), 19 - 33.

222.    Some new transversality properties.
    (With G. C. Shephard)
    Geometriae Dedicata 71(1998), 179 - 208.

223.    How many triangles ?
    Geombinatorics 8(1998), 154 - 159.

224.    Selfintersections of polygons.
    Geombinatorics 8(1998), 37 - 45.

225.    Acoptic polyhedra.
    In: "Advances in Discrete and Computational Geometry", B. Chazelle, J.E. Goodman and         R. Pollack, eds., Contemporary Mathematics, (1998) AMS, Providence, RI. Pp.163 - 199.

226.    Isohedra with nonconvex faces.
    (With G. C. Shephard).
    J. of Geometry  63(1998), 76-96.

227.    Selfintersections of polyarcs.
    Geombinatorics 8(1998), 78 - 85.

228.    The search for symmetric Venn diagrams.
    Geombinatorics 8(1999), 104 - 109.

229.    Monochromatic intersection points in families of colored lines.
    Geombinatorics 9(1999), 3 – 9.

230.    Omittable points.
    Geombinatorics 9(1999), 57 - 62.

231.    Convex drawings of intersecting families of simple closed curves.
    (With Bette Bultena and Frank Ruskey)
    11th Canadian Conference on Computational Geometry, 1999, 18-21.

232.    Astral (n4) configurations.
    Geombinatorics 9(2000), 127 - 134.

233.    Which (n4) configurations exist ?
    Geombinatorics 9(2000), 164 - 169.

234.    Parallelogram-faced isohedra with edges in mirror-planes.
    Discrete Math.  221(2000), 93 - 100.

235.    Connected (n4) configurations exist for almost all n.
    Geombinatorics 10(2000), 24 - 29.

236.    A relative of "Napoleon's theorem".
    Geombinatorics 10(2001), 116 - 121.

237.    Face-transitive polyhedra with rectangular faces and icosahedral symmetry.
    (With H. S. M. Coxeter)
    Discrete & Comput. Geometry 25(2001), 163 – 172.

238.    A convex polyhedron which is not equifacettable.
    Geombinatorics 10(2001), 165 – 171.

239.    A starshaped polyhedron with no net.
    Geombinatorics 11(2001), 43 – 48.

240.    Isohedra with dart-shaped faces.
    (With G. C. Shephard)
    Discrete Math. 241(2001), 313 - 332.

241.    Convexification of polygons by flips and by flipturns.
    (With J. Zaks)
    Discrete Math. 241(2001), 333 - 342.

242.    The Grunert point of pentagons.
    Geombinatorics 11(2002), 78 - 84.

243.    Levels of orderliness: global and local symmetry.
    Symmetry 2000, Proc. of a symposium at the Wenner–Gren Centre, Stockholm.
Hargitai and T. C. Laurent, eds. Portland Press, London 2002.  Vol. I, pp. 51 – 61.

244.    No-net polyhedra.
    Geombinatorics 11(2002), 111 – 114.

245.    Connected (n4) configurations exist for almost all n – an update.
    Geombinatorics 12(2002), 15 – 23.

246.    "New" uniform polyhedra.
    Discrete Geometry: In Honor of W. Kuperberg's 60th Birthday
    Monographs and Textbooks in Pure and Applied Mathematics, vol. 253. Marcel Dekker,
    New York, 2003.  Pp. 331 – 350.

247.    Convex Polytopes. 2nd ed., V. Kaibel, V. Klee and G. M. Ziegler, eds. Graduate Texts
    in Mathematics, vol. 221. Springer, New York 2003.

248.    Families of point-touching squares.  Geombinatorics 12(2003), 167 – 174.