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Given a family  C = {C1, C2, ..., Cn}  of  n  simple (Jordan)
curves which intersect pairwise in finitely many points, we say that it
is an independent family if each of the  2n  sets

   X1 « X2 « ... « Xn (*)

is not empty, where  Xj  denotes one of the two connected components
of the complement of  Cj  (that is, each  Xj  is either the interior or the
exterior of  Cj).  If, moreover, each of the sets in (*) is connected, we
say that the independent family  C   is a Venn diagram.  An
independent family or Venn diagram is called simple if no three
curves have a common point.

Introduced by the logician John Venn in 1880, Venn diagrams
with  n ≤ 3  curves have been the staple of many finite mathematics
and other courses.  Over the last decade the interest in Venn diagrams
for larger values of  n  has intensified (see, for example, Ruskey [9]
and the many references given there).  In particular, considerable
attention has been devoted to symmetric Venn diagrams.  A Venn
diagram with  n  curves is said to be symmetric if rotations through
360/n  degrees map the family of curves onto itself, so that the diagram
is not changed by the rotation.  This concept was introduced by
Henderson [8], who provided two examples of non-simple symmetric
Venn diagrams; one consists of pentagons, the other of quadrangles,
but both can be modified to consist of triangles.  A simple symmetric
Venn diagram consisting of five ellipses was given in [6].  As noted by
Henderson, symmetric Venn diagrams with  n  curves cannot exist for
values of  n  that are composite.  Hence  n = 7  is the next value for
which a symmetric Venn diagram might exist.  Henderson stated in [8]
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that such a diagram has been found; however, at later inquiry he could
not locate it, and it was conjectured in [6] that such diagrams do not
exist.

In fact, this conjecture was disproved by the examples of
simple Venn diagrams of seven curves given in [7], leading to the
diametrically opposite conjecture that symmetric Venn diagrams exist
for every prime  n.  By a curious coincidence, several additional
examples of symmetric Venn diagrams with seven curves were
produced shortly thereafter by other people (see, for example [2]).
Details of the history of these discoveries can be found in the paper by
Edwards [3] and the report by Ruskey [9].  The former presents a list
of six different self-complementary simple symmetric Venn diagrams
of seven sets, while that latter expands this and gives a list of 23
simple monotone symmetric Venn diagrams, as well as various other
enumerations.  (Self-complementary means that the Venn diagram is
isomorphic to the one in which "inclusion" and "exclusion" are
interchanged; by the result of [1], monotone is equivalent to saying
that the Venn diagram is isomorphic to one with convex curves.)
These results were obtained by exhaustive computer searches.

The next step towards clarifying the conjecture would be to
investigate whether there exist any symmetric Venn diagrams of  11
curves.  Despite claims (like the one in [2]; all such claims were later
withdrawn) by several people of having found diagrams of this kind,
none are known at this time.  The sheer size of the problem for  11
curves puts it beyond the reach of the available approaches through
exhaustive computer searches.  Hence it may be worthwhile to
investigate a more general problem which may be solvable for one or
two values beyond  n = 7,  in hope that new ideas will appear that may
be applicable to the elusive case of  n = 11.

Henderson's argument that symmetric Venn diagrams cannot
exist if the number of curves is a composite integer is based on the
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following fact from number theory:  if  n = r  s,  where  r  and  s  are
integers greater than  1  and  r  is a prime number, then the binomial
coefficient  Ë

Ê
¯
ˆn

r    is not divisible by  n.  On the other hand, this obstacle
disappears if instead of Venn diagrams one is considering independent
families of  n  sets –– however, such families seems to be of little
interest since it is very easy to generate them for every  n;  examples
for  n = 4  and  6  appear in [6].  But while it may seem, on number-
theoretical or combinatorial grounds, that such families must have a
very large number of regions, a closer investigation shows that as far
as combinatorics and number theory are concerned, the number of
regions could be not too much larger than in a Venn diagram.  This
happens because many of the types of regions occur in  n-tuples, and
only few require duplication in order to accommodate rotational
invariance.

Let us denote by  (a,b,...,f)  a selection of the elements  a, b, ... ,
f,  from the family of labels of the members of the independent family
of curves.  All selections that can be transformed into each other by
cyclic permutations of the labels are said to constitute a type of
selections.  Clearly, in a symmetric independent family of  n  curves,
each type (except the selections of none, or of all labels) must be
represented by  n  or a multiple of  n  regions.  A discussion of the case
n = 6  may illustrate this contention.  The  12  relevant selections here
are  (a),  (a,a+1),  (a,a+2),  (a,a+3),  (a,a+1,a+2),  (a,a+1,a+3),
(a,a+1,a+4),  (a,a+2,a+4),  (a,a+1,a+2,a+3),  (a,a+1,a+2,a+4),
(a,a+1, a+3, a+4),  (a,a+1,a+2,a+3,a+4).  Hence there must be at least
12 ⋅ 6 + 2 = 74  regions in any symmetric independent family of six
curves, instead of the 64 regions in a Venn diagram of  6  curves.

The above example can be generalized to obtain a lower bound
on the number of regions that must be present in any symmetric
independent family of  n  curves.  The resulting lower bound is
M(n) = 2 + n ⋅ (Cn – 2),  where  Cn  is the number of distinct 2-colored
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necklaces of  n  beads, provided rotationally equivalent necklaces are
not distinguished.  The numbers  Cn  have been studied by several
authors (see [4] Table I, [5] page 139, or [10] sequence M0564,  where
additional references can be found).  From explicit formulas for the
numbers  Cn  it it may be shown that the rate of growth of  M(n)  is
about  2n  for all  n,  and that if  n  is prime then  M(n) =  2n.

Thus one may reasonably pose the following question:

Is there for every  n  a symmetric independent family of  n
curves with only  M(n)  regions ?

This clearly generalizes the question about the existence of
symmetric Venn diagrams with prime numbers of curves.  The
advantage of the new question is that it can be answered affirmatively
for  n = 4  and  n = 6  (see Figures 1 and 2),  and the first open case,
n = 8,  with  C8 = 36  and  M(8) = 274,  would seem not to require
prohibitively large computational effort.  We venture the following
conjecture:

Figure 1.  A symmetric independent family of four equilateral
triangles, with  M(4) = 18  regions.
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Conjecture 1.  For every integer  n  there exists a symmetric
independent family of  n  curves with only  M(n)  regions.

A curious property of the known examples of minimal sym-
metric independent families for composite  n  is that none is simple.
While for  n = 4  it can be shown that no such family can be simple, it
is not clear whether the same is true for  n = 6  or higher values of  n.

Conjecture 2.  If  n  is not a prime, every symmetric independent
family with  M(n)  regions is non-simple.
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Figure 2.  A symmetric independent family of six polygons with
M(6) = 74  regions.  At each intersection point any two polygons cross
each other.  The polygons could have been selected to be convex, but
then many of the regions would have been very small.  The existence
of a convex representation is a consequence of a general result
established in [1].


