SOLUTIONS FOR THE SAMPLE SECOND EXAM FROM SPRING, 2003

QUESTION 1.
(a) We are given a set \(S = \{V_1, V_2, V_3\} \) of three vectors in \(\mathbb{R}^3 \). The set \(S \) will be a basis for \(\mathbb{R}^3 \) if and only if \(S \) is a linearly independent set. We check for linear independence by determining the rank of the matrix \([V_1 \ V_2 \ V_3] \). This is done by row-reduction:

\[
\begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 4 \\
1 & 7 & 5
\end{bmatrix}, \quad
\begin{bmatrix}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 5 & 2
\end{bmatrix}, \quad
\begin{bmatrix}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 0 & -3
\end{bmatrix}, \quad
\begin{bmatrix}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\]

The last matrix is in echelon form. The matrix \([V_1 \ V_2 \ V_3]\) therefore has rank 3. It follows that \(S \) is a linearly independent set and therefore a basis for \(\mathbb{R}^3 \).

(b) Linear independence doesn’t depend on the order of the vectors. Hence, using the result of part (a), the set \(\{V_2, V_3, V_1\} \) is also a linearly independent set. Therefore, the matrix \(A = [V_2 \ V_3 \ V_1] \) is a nonsingular matrix. Therefore, the matrix equation \(AX = 0 \) has just one solution, namely \(X = 0 \). Therefore,

\[
\mathcal{N}(A) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\]

(c) The set \(S \) of vectors given in part (a) is a basis for \(\mathbb{R}^3 \). If we add more vectors to the set, we will still obtain a spanning set for \(\mathbb{R}^3 \). However, the new set will no longer be a linearly independent set. As an example, consider the set

\[
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}, \quad
\begin{bmatrix}
2 \\
3 \\
7
\end{bmatrix}, \quad
\begin{bmatrix}
3 \\
4 \\
5
\end{bmatrix}, \quad
\begin{bmatrix}
1 \\
7 \\
8
\end{bmatrix}
\]

where the first three vectors are the vectors in the set \(S \) given in part (a). This new set consists of four vectors in \(\mathbb{R}^3 \). It must be a linearly dependent set. But it is also a spanning set for \(\mathbb{R}^3 \). This is an example of a spanning set for \(\mathbb{R}^3 \) which is not a basis for \(\mathbb{R}^3 \).

QUESTION 2.
(a) The matrix \(A = \begin{bmatrix} 1 & 2 & 0 & 1 & 1 \\ 2 & 4 & 0 & 5 & 8 \end{bmatrix} \) is row-equivalent to:

\[
\begin{bmatrix}
1 & 2 & 0 & 1 & 1 \\
0 & 0 & 0 & 3 & 6
\end{bmatrix}, \quad
\begin{bmatrix}
1 & 2 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 2
\end{bmatrix}, \quad
E = \begin{bmatrix}
1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2
\end{bmatrix}
\]
The matrix E is in reduced echelon form. The solutions to $AX = 0$ and $EX = 0$ are the same. Denoting the variables by x_1, x_2, x_3, x_4, x_5, the leading variables are x_1 and x_4, and the free variables are x_2, x_3 and x_5. The solutions to $EX = 0$ are described by the equations

\[
\begin{align*}
 x_1 + 2x_2 - x_5 &= 0 \\
 x_4 + 2x_5 &= 0
\end{align*}
\]

Thus, the solutions in vector form are given by

\[
X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 + x_5 \\ x_2 \\ x_3 \\ -2x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 1 \\ 0 \\ 0 \\ -2 \end{bmatrix}
\]

A basis for $\mathcal{N}(A)$ is:

\[
\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}
\]

(b) Since A is a 2×5 matrix, the null space of A is a subspace of \mathbb{R}^5. Thus, $t = 5$.

(c) The basis for $W = \mathcal{N}(A)$ found in part (a) of this question has three vectors in it. Hence dim(W) = 3. If B is a matrix such that $\mathcal{R}(B) = W$, then dim($\mathcal{R}(B)$) = 3. But, in general, we have dim($\mathcal{R}(B)$) = rank(B). Hence, rank(B) = 3.

(d) The range of a matrix B is spanned by the columns of B. Thus, we should choose the columns of B so that they span W. A basis for W was found in part (a). That set of vectors is certainly a spanning set for W. Thus, here is an example of a matrix B such that $\mathcal{R}(B) = W$:

\[
B = \begin{bmatrix} -2 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix}
\]
QUESTION 3. The information given about the 3×3 matrix C leads us to some conclusions about the range of C. First of all, $\mathcal{R}(C)$ is a subspace of \mathbb{R}^3 because C has 3 rows. Also, the matrix equation $CX = b$ has at least one solution when b is any one of the following vectors:

$$
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}, \quad
\begin{bmatrix}
2 \\
1 \\
3
\end{bmatrix}, \quad
\begin{bmatrix}
5 \\
3 \\
7
\end{bmatrix}
$$

It follows that $\mathcal{R}(C)$ contains each of those vectors. But $CX = b$ has no solutions when

$$
b = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}
$$

Therefore, that vector is not in $\mathcal{R}(C)$. Hence, $\mathcal{R}(C)$ is a subspace of \mathbb{R}^3, but not equal to \mathbb{R}^3. Thus, $\dim(\mathcal{R}(C)) < 3$. This implies that $\dim(\mathcal{R}(C)) = 0, 1, 2$. However, $\dim(\mathcal{R}(C))$ cannot be 0 or 1, because $\mathcal{R}(C)$ contains the following linearly independent set of vectors:

$$
S = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \right\}
$$

It follows that $\dim(\mathcal{R}(C)) = 2$ and that the set S is actually a basis for $\mathcal{R}(C)$. In particular, it follows that $\mathcal{R}(C) = \text{Sp}(S)$. This description of $\mathcal{R}(C)$ allows us to determine if the vector

$$
\begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix}
$$

is contained in $\mathcal{R}(C)$. We do this by considering the vector equation:

$$
x \begin{bmatrix} 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix}
$$

This vector equation corresponds to a system of equations with the following augmented matrix.

$$
\begin{bmatrix}
1 & 2 & 5 \\
1 & 1 & 2 \\
1 & 3 & 8
\end{bmatrix}
$$
Row-reduction gives:

\[
\begin{bmatrix}
1 & 2 & 5 \\
1 & 1 & 2 \\
1 & 3 & 8
\end{bmatrix}
, \quad
\begin{bmatrix}
1 & 2 & 5 \\
0 & -1 & -3 \\
0 & 1 & 3
\end{bmatrix}
, \quad
\begin{bmatrix}
1 & 2 & 5 \\
0 & 1 & 3 \\
0 & 1 & 3
\end{bmatrix}
, \quad
\begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{bmatrix}
\]

Hence, the vector equation does have a solution, namely \(x = -1, y = 3 \). Therefore, \(\mathcal{R}(C) \) contains the vector \(\begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix} \) and therefore the matrix equation \(CX = \begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix} \) has at least one solution. This matrix equation corresponds to a system of 3 equations in 3 unknowns. The coefficient matrix is \(C \). This matrix equation must have infinitely many solutions because \(\text{rank}(C) = \dim(\mathcal{R}(C)) = 2 \) and so \(\text{rank}(C) < 3 \).

QUESTION 4. Since \(u \) is a vector in the null space of \(A \), we have \(Au = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \). This implies that

\[
\begin{bmatrix}
1 & 2 & 0 & 1 & 1
\end{bmatrix} u = 0,
\quad
\begin{bmatrix}
2 & 4 & 0 & 5 & 8
\end{bmatrix} u = 0
\]

Notice that \(\begin{bmatrix}
2 & 4 & 0 & 5 & 8
\end{bmatrix} = v^T \). Hence, the second equation above implies that \(v^T u = 0 \). That is, the dot product of the vectors \(v \) and \(u \) is equal to 0. Therefore, the vectors \(u \) and \(v \) are indeed orthogonal to each other. The statement is true.