VECTOR SPACES.

DEFINITION: Suppose that F is a field. A vector space V over F is a nonempty set with two operations, “addition” and “scalar multiplication” satisfying certain requirements.

Addition is a map $V \times V \rightarrow V$: $(v_1, v_2) \mapsto v_1 + v_2$.

Scalar multiplication is a map $F \times V \rightarrow V$: $(f, v) \mapsto f v$.

The requirements are:

(i) V is an abelian group under the addition operation $+$.

(ii) $f(v_1 + v_2) = f v_1 + f v_2$ for all $f \in F$ and $v_1, v_2 \in V$.

(iii) $(f_1 + f_2)v = f_1 v + f_2 v$ for all $f_1, f_2 \in F$ and $v \in V$.

(iv) $f_1(f_2 v) = (f_1 f_2)v$ for all $f_1, f_2 \in F$ and $v \in V$.

(v) $1_F v = v$ for all $v \in V$.

Easy results:

1. $f 0_V = 0_V$ for all $f \in F$.
2. $0_F v = 0_V$ for all $v \in V$.
3. $(-f) v = -(fv)$ for all $f \in F$ and $v \in V$.
4. Assume that $f \in F$ and $v \in V$. The $fv = 0_V \implies f = 0_F$ or $v = 0_V$.

DEFINITION: Suppose that V is a vector space over a field F and that W is a subset of V. We say that W is a “subspace of V” if

1. W contains 0_V,
2. W is closed under addition, and
3. W is closed under scalar multiplication, i.e., $fw \in W$ for all $f \in F$ and $w \in W$.

DEFINITION: Suppose that V is a vector space over a field F and that $S = \{v_1, \ldots, v_n\}$ is a finite sequence of elements of V. We say that “S is a generating set for V over F” if, for every element $v \in V$, there exist elements $f_1, \ldots, f_n \in F$ such that $v = f_1 v_1 + \ldots + f_n v_n$. If such a finite sequence S exists, then we say that “V is a finitely generated vector space over F.” We then say that “S generates V over F.” One might also say that “S spans V over F” or that “S is a spanning set for V over F.”

DEFINITION: Suppose that V is a vector space over a field F and that $S = \{v_1, \ldots, v_n\}$ is a finite sequence of elements of V. We say that “S is linearly dependent over F” if there
exist elements $f_1, \ldots, f_n \in F$, not all equal to 0_F, such that $f_1v_1 + \ldots + f_nv_n = 0_V$. We say that “$S$ is linearly independent over F” if, for $f_1, \ldots f_n \in F$,

$$f_1v_1 + \ldots + f_nv_n = 0_V \implies f_1 = \ldots = f_n = 0_F.$$

DEFINITION: Suppose that $v_1, \ldots, v_n \in V$. Let $S = \{v_1, \ldots, v_n\}$. We say that S is a basis for V” if S is a generating set for V over F and S is also a linearly independent set over F.

DEFINITION: Suppose that V is a finitely generated vector space over a field F. Suppose that V has a generating set over F of cardinality d, but does not have a generating set over F of cardinality $d - 1$. We then say that “V has dimension d over F.” We will write $d = \dim F(V)$.

IMPORTANT PROPOSITIONS.

We assume that V is a finitely generated vector space over a field F.

Proposition 1. Suppose that S is a finite generating set for V over F and that T is a subset of V which is linearly independent over F. Then $|T| \leq |S|$.

Proposition 2. Let $d = \dim F(V)$. Every generating set for V over F has cardinality at least d. Every linearly independent subset of V over F has cardinality at most d.

Proposition 3. If S is a basis for V over F, then S has cardinality equal to d.

Proposition 4. Let $v_1, \ldots, v_n \in V$ and let $S = \{v_1, \ldots, v_n\}$. Consider the following three statements:

(a) S is linearly independent over F.

(b) S is a generating set for V over F.

(c) $n = d$.

Any two of these three statements imply the third and that S is a basis for V over F.

Proposition 5. Suppose that W is a subspace of V. Then W is also finitely generated over F. Furthermore, $\dim F(W) \leq \dim F(V)$ and equality holds if and only if $W = V$.