MATH 402A - Solutions for Assignment 2.

Page 47, problem 9: Assume that G is a group and that $a^2 = e$ for all $a \in G$. Suppose that a and b are arbitrary elements of G. Then ab is in G too. Hence, the assumption about G implies that $(ab)^2 = e$. That is, (ab)(ab) = e. We also have $a^2 = e$ and $b^2 = e$. Using these equations, we obtain the following equations:

$$e = (ab)(ab) = a(ba)b$$
 and $e = ee = a^{2}b^{2} = (aa)(bb) = a(ab)b$

It follows that a(ba)b = a(ab)b. We have used the associative law several times to derive some of the above equations. Now

$$a(ba)b = a(ab)b \implies (ba)b = (ab)b \implies ba = ab$$

We have used the cancellation law to derive these implications. It follows that ab = ba for all choices of a and b in G. This proves that G is abelian.

Page 47, problem 13: We start with some general remarks. Let G be a group and let e denote the identity element of G. We have ea = a and ae = a for all $a \in G$. Thus, ea = ae for all $a \in G$. Furthermore, suppose that $a, b \in G$ and ab = e. We have

$$ab = e \implies ab = aa^{-1} \implies b = a^{-1} \implies ba = a^{-1}a = e$$

We have used the cancellation law to derive the second implication. Therefore, if ab = e, then it follows that ba = e and hence that ab = ba.

Now suppose that G is a group of order 4. For all $a \in G$, we have ea = ae = a. Hence e commutes with every element of G. Now suppose that the other three elements of G are denoted by a, b and c. Thus, e, a, b, and c are all distinct and $G = \{e, a, b, c\}$.

Obviously, aa = aa. Hence a commutes with itself.

Now consider ab. We have $ab \in \{e, a, b, c\}$. We cannot have ab = b or ab = a. To explain this, notice that

$$ab = b \implies ab = eb \implies a = e, \qquad ab = a \implies ab = ae \implies b = e$$

However, $a \neq e$ and $b \neq e$. It therefore follows that $ab \neq b$ and $ab \neq a$. This leaves two possibilities: either ab = e or ab = c.

If we reverse the role of a and b in the previous paragraph, then we find that there are two possibilities for ba, namely either ba = e or ba = c.

If ab = e, then we showed above that ba = e and hence ab = ba. Similarly, reversing the role of a and b, if we have ba = e, then it follows that ab = e and hence that ab = ba. There

is only one case not yet covered, the case where ab and ba are both equal to c. But in that remaining case, we have ab = c and ba = c and so we have ab = ba. Hence a and b commute with each other in that case too.

The above argument can be applied to the pair of elements a and c. It shows that ac = ca. The argument applies to the pair b and c, showing that bc = cb. It follows that G is indeed an abelian group.

Now if |G| = 1, 2 or 3, a similar (and easier argument) works. Obviously, e commutes with all other elements of G. Thus, if $G = \{e\}$, nothing more needs to be proved. If |G| = 2, suppose $a \in G$ is the non-identity element. Now ae = ea = a and aa = aa and so a commutes with all elements of G, settling the case where |G| = 2. Finally, if |G| = 3, suppose $G = \{e, a, b\}$. The only non-obvious thing to prove is that ab = ba. Note that

$$ab = a \implies ab = ae \implies b = e, \qquad ab = b \implies ab = eb \implies a = e.$$

But $a \neq e$ and $b \neq e$. Therefore, ab = e. Similarly, ba = e. Hence ab = ba, finishing the case where |G| = 3.

Page 47, problem 15: As proven in class, $(a * b)^{-1} = (b^{-1}) * (a^{-1})$.

Page 47, problem 16: Suppose that $a, b \in G$, that $a = a^{-1}, b = b^{-1}$, and that $ab = (ab)^{-1}$. According to problem 15 (although we omit the *), we have $(ab)^{-1} = b^{-1}a^{-1}$. Hence

$$ba = b^{-1}a^{-1} = (ab)^{-1} = ab$$

Under the assumptions of the problem, this argument applies to all pairs of elements $a, b \in G$. Thus ab = ba for all $a, b \in G$. Hence G is abelian.

Note that this problem is virtually the same as problem 9. If G is a group and $a \in G$, then the equation $a^2 = e$ is equivalent to the equation $a^{-1} = a$. Thus, a group with the property stated in problem 9 is also a group with the property stated in this problem, and vice versa.

Page 54, problem 1: Let $C = A \cap B$. Let *e* denote the identity element of *G*. We assume that *A* and *B* are subgroups of *G*. First of all, we have $e \in A$ and $e \in B$. Hence $e \in C$.

Secondly, we show that C is closed under the operation of G. Suppose that $u, v \in C$. Then $u, v \in A$ and therefore, since A is closed, we have $uv \in A$. Similarly, $u, v \in B$ and therefore, since B is closed, we have $uv \in B$. Therefore, $uv \in C$.

Finally, suppose that $u \in C$. Let u^{-1} be the inverse of u in G. Then, $u \in A$ and since A is a subgroup of G, $u^{-1} \in A$. Similarly, $u \in B$ and since B is a subgroup of G, $u^{-1} \in B$. Therefore, $u^{-1} \in C$.

We have proved the three things that are needed to verify that C is a subgroup of G.

Page 54, problem 2: The subgroup of **Z** generated by -1 is the entire group **Z** itself. For if $n \in \mathbf{Z}$, then we can write n = (-n)(-1), an integral multiple of -1. Since the operation is +, we have proved that -1 generates **Z**.

Page 54, problem 4: First of all, Z(G) contains e. This is so because ea = a = ae for all $a \in G$. Hence ea = ae for all $a \in G$ and that means that $e \in Z(G)$.

Secondly, suppose that $u, v \in Z(G)$. This means that ua = au and va = av for all $a \in G$. Therefore,

$$(uv)a = u(va) = u(av) = (ua)v = (au)v = a(uv)$$

for all $a \in G$. This means that $uv \in Z(G)$. Hence Z(G) is closed under the operation for G.

Now assume that $u \in Z(G)$. This means that ua = au for all $a \in G$. Let u^{-1} be the inverse of u in G. Let b be an arbitrary element of G and let $a = b^{-1}$, an element of G. Hence

$$u^{-1}b = u^{-1}a^{-1} = (au)^{-1} = (ua)^{-1} = a^{-1}u^{-1} = bu^{-1}$$

and hence u^{-1} commutes with b for all $b \in G$. Thus, $u^{-1} \in Z(G)$.

We have proved the three things that are needed to verify that Z(G) is a subgroup of G.

Page 55, problem 6: Suppose that $a \in Z(G)$. Hence, for all $b \in G$, we have ab = ba. Therefore, for all $b \in G$, we have $b \in C(a)$. Therefore, C(a) = G.

Conversely, suppose C(a) = G. Then, if $b \in G$, we have $b \in C(a)$ and that means that ba = ab. Therefore, for all $b \in G$, we have ba = ab. Therefore, $a \in Z(G)$.

Page 55, problem 8: Let *e* denote the identity element of *G*. The subset *H* is defined by

$$H = \{a \in G \mid a^2 = e \}$$

First of all, $e^2 = ee = e$ and hence $e \in H$. Secondly, if $a, b \in H$, then

$$(ab)^2 = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a^2b^2 = ee = e$$

and therefore $ab \in H$. We have used the associative law (many times), the fact that ab = ba (which is true because G is assumed to be abelian), and the assumption that $a, b \in H$ (so that $a^2 = b^2 = e$). Therefore, $a, b \in H \implies ab \in H$. That is, H is closed under the group operation for G.

Finally, suppose that $a \in H$. Since $a^2 = e$, we have aa = e. That is, $a^{-1} = a$. Therefore, $a^{-1} \in H$.

We have proved the three things that are needed to verify that H is a subgroup of G.

Page 55, problem 9: One example is $G = S_3$. The identity element *e* for *G* is the identity map *i*. Consider the two elements

$$g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \qquad g' = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

which are in G. It is easy to verify that $g^2 = i$ and $(g')^2 = i$. Thus, both g and g' are in the subset H defined in problem 8. However,

$$gg' = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

and

$$(gg')^2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \neq i.$$

Thus, $gg' \notin H$. Therefore, H is not closed under the group operation for G and therefore is not a subgroup of G