MATH 402A - Solutions for Assignment 2.

Page 47, problem 9: Assume that G is a group and that $a^{2}=e$ for all $a \in G$. Suppose that a and b are arbitrary elements of G. Then $a b$ is in G too. Hence, the assumption about G implies that $(a b)^{2}=e$. That is, $(a b)(a b)=e$. We also have $a^{2}=e$ and $b^{2}=e$. Using these equations, we obtain the following equations:

$$
e=(a b)(a b)=a(b a) b \quad \text { and } \quad e=e e=a^{2} b^{2}=(a a)(b b)=a(a b) b
$$

It follows that $a(b a) b=a(a b) b$. We have used the associative law several times to derive some of the above equations. Now

$$
a(b a) b=a(a b) b \quad \Longrightarrow \quad(b a) b=(a b) b \quad \Longrightarrow \quad b a=a b .
$$

We have used the cancellation law to derive these implications. It follows that $a b=b a$ for all choices of a and b in G. This proves that G is abelian.

Page 47, problem 13: We start with some general remarks. Let G be a group and let e denote the identity element of G. We have $e a=a$ and $a e=a$ for all $a \in G$. Thus, $e a=a e$ for all $a \in G$. Furthermore, suppose that $a, b \in G$ and $a b=e$. We have

$$
a b=e \quad \Longrightarrow \quad a b=a a^{-1} \quad \Longrightarrow \quad b=a^{-1} \quad \Longrightarrow \quad b a=a^{-1} a=e \text {. }
$$

We have used the cancellation law to derive the second implication. Therefore, if $a b=e$, then it follows that $b a=e$ and hence that $a b=b a$.

Now suppose that G is a group of order 4. For all $a \in G$, we have $e a=a e=a$. Hence e commutes with every element of G. Now suppose that the other three elements of G are denoted by a, b and c. Thus, e, a, b, and c are all distinct and $G=\{e, a, b, c\}$.

Obviously, $a a=a a$. Hence a commutes with itself.
Now consider $a b$. We have $a b \in\{e, a, b, c\}$. We cannot have $a b=b$ or $a b=a$. To explain this, notice that

$$
a b=b \Longrightarrow a b=e b \Longrightarrow a=e, \quad a b=a \Longrightarrow a b=a e \Longrightarrow b=e .
$$

However, $a \neq e$ and $b \neq e$. It therefore follows that $a b \neq b$ and $a b \neq a$. This leaves two possibilities: either $a b=e$ or $a b=c$.

If we reverse the role of a and b in the previous paragraph, then we find that there are two possibilities for $b a$, namely either $b a=e$ or $b a=c$.

If $a b=e$, then we showed above that $b a=e$ and hence $a b=b a$. Similarly, reversing the role of a and b, if we have $b a=e$, then it follows that $a b=e$ and hence that $a b=b a$. There
is only one case not yet covered, the case where $a b$ and $b a$ are both equal to c. But in that remaining case, we have $a b=c$ and $b a=c$ and so we have $a b=b a$. Hence a and b commute with each other in that case too.

The above argument can be applied to the pair of elements a and c. It shows that $a c=c a$. The argument applies to the pair b and c, showing that $b c=c b$. It follows that G is indeed an abelian group.

Now if $|G|=1,2$ or 3 , a similar (and easier argument) works. Obviously, e commutes with all other elements of G. Thus, if $G=\{e\}$, nothing more needs to be proved. If $|G|=2$, suppose $a \in G$ is the non-identity element. Now $a e=e a=a$ and $a a=a a$ and so a commutes with all elements of G, settling the case where $|G|=2$. Finally, if $|G|=3$, suppose $G=\{e, a, b\}$. The only non-obvious thing to prove is that $a b=b a$. Note that

$$
a b=a \Longrightarrow a b=a e \Longrightarrow b=e, \quad a b=b \Longrightarrow a b=e b \Longrightarrow a=e .
$$

But $a \neq e$ and $b \neq e$. Therefore, $a b=e$. Similarly, $b a=e$. Hence $a b=b a$, finishing the case where $|G|=3$.

Page 47, problem 15: As proven in class, $(a * b)^{-1}=\left(b^{-1}\right) *\left(a^{-1}\right)$.
Page 47, problem 16: Suppose that $a, b \in G$, that $a=a^{-1}, b=b^{-1}$, and that $a b=(a b)^{-1}$. According to problem 15 (although we omit the $*$), we have $(a b)^{-1}=b^{-1} a^{-1}$. Hence

$$
b a=b^{-1} a^{-1}=(a b)^{-1}=a b
$$

Under the assumptions of the problem, this argument applies to all pairs of elements $a, b \in G$. Thus $a b=b a$ for all $a, b \in G$. Hence G is abelian.

Note that this problem is virtually the same as problem 9. If G is a group and $a \in G$, then the equation $a^{2}=e$ is equivalent to the equation $a^{-1}=a$. Thus, a group with the property stated in problem 9 is also a group with the property stated in this problem, and vice versa.

Page 54, problem 1: Let $C=A \cap B$. Let e denote the identity element of G. We assume that A and B are subgroups of G. First of all, we have $e \in A$ and $e \in B$. Hence $e \in C$.
Secondly, we show that C is closed under the operation of G. Suppose that $u, v \in C$. Then $u, v \in A$ and therefore, since A is closed, we have $u v \in A$. Similarly, $u, v \in B$ and therefore, since B is closed, we have $u v \in B$. Therefore, $u v \in C$.
Finally, suppose that $u \in C$. Let u^{-1} be the inverse of u in G. Then, $u \in A$ and since A is a subgroup of $G, u^{-1} \in A$. Similarly, $u \in B$ and since B is a subgroup of $G, u^{-1} \in B$. Therefore, $u^{-1} \in C$.

We have proved the three things that are needed to verify that C is a subgroup of G.
Page 54, problem 2: The subgroup of \mathbf{Z} generated by -1 is the entire group \mathbf{Z} itself. For if $n \in \mathbf{Z}$, then we can write $n=(-n)(-1)$, an integral multiple of -1 . Since the operation is + , we have proved that -1 generates \mathbf{Z}.

Page 54, problem 4: First of all, $Z(G)$ contains e. This is so because $e a=a=a e$ for all $a \in G$. Hence $e a=a e$ for all $a \in G$ and that means that $e \in Z(G)$.

Secondly, suppose that $u, v \in Z(G)$. This means that $u a=a u$ and $v a=a v$ for all $a \in G$. Therefore,

$$
(u v) a=u(v a)=u(a v)=(u a) v=(a u) v=a(u v)
$$

for all $a \in G$. This means that $u v \in Z(G)$. Hence $Z(G)$ is closed under the operation for G.

Now assume that $u \in Z(G)$. This means that $u a=a u$ for all $a \in G$. Let u^{-1} be the inverse of u in G. Let b be an arbitrary element of G and let $a=b^{-1}$, an element of G. Hence

$$
u^{-1} b=u^{-1} a^{-1}=(a u)^{-1}=(u a)^{-1}=a^{-1} u^{-1}=b u^{-1}
$$

and hence u^{-1} commutes with b for all $b \in G$. Thus, $u^{-1} \in Z(G)$.
We have proved the three things that are needed to verify that $Z(G)$ is a subgroup of G.
Page 55, problem 6: Suppose that $a \in Z(G)$. Hence, for all $b \in G$, we have $a b=b a$. Therefore, for all $b \in G$, we have $b \in C(a)$. Therefore, $C(a)=G$.

Conversely, suppose $C(a)=G$. Then, if $b \in G$, we have $b \in C(a)$ and that means that $b a=a b$. Therefore, for all $b \in G$, we have $b a=a b$. Therefore, $a \in Z(G)$.

Page 55, problem 8: Let e denote the identity element of G. The subset H is defined by

$$
H=\left\{a \in G \mid a^{2}=e\right\}
$$

First of all, $e^{2}=e e=e$ and hence $e \in H$. Secondly, if $a, b \in H$, then

$$
(a b)^{2}=(a b)(a b)=a(b a) b=a(a b) b=(a a)(b b)=a^{2} b^{2}=e e=e
$$

and therefore $a b \in H$. We have used the associative law (many times), the fact that $a b=b a$ (which is true because G is assumed to be abelian), and the assumption that $a, b \in H$ (so that $\left.a^{2}=b^{2}=e\right)$. Therefore, $a, b \in H \Longrightarrow a b \in H$. That is, H is closed under the group operation for G.

Finally, suppose that $a \in H$. Since $a^{2}=e$, we have $a a=e$. That is, $a^{-1}=a$. Therefore, $a^{-1} \in H$.

We have proved the three things that are needed to verify that H is a subgroup of G.
Page 55, problem 9: One example is $G=S_{3}$. The identity element e for G is the identity map i. Consider the two elements

$$
g=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \quad g^{\prime}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

which are in G. It is easy to verify that $g^{2}=i$ and $\left(g^{\prime}\right)^{2}=i$. Thus, both g and g^{\prime} are in the subset H defined in problem 8. However,

$$
g g^{\prime}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

and

$$
\left(g g^{\prime}\right)^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \neq i
$$

Thus, $g g^{\prime} \notin H$. Therefore, H is not closed under the group operation for G and therefore is not a subgroup of G

