
MATH 402A - Solutions for Assignment 2.

Page 47, problem 9: Assume that G is a group and that a2 = e for all a ∈ G. Suppose
that a and b are arbitrary elements of G. Then ab is in G too. Hence, the assumption about
G implies that (ab)2 = e. That is, (ab)(ab) = e. We also have a2 = e and b2 = e. Using
these equations, we obtain the following equations:

e = (ab)(ab) = a(ba)b and e = ee = a2b2 = (aa)(bb) = a(ab)b .

It follows that a(ba)b = a(ab)b. We have used the associative law several times to derive
some of the above equations. Now

a(ba)b = a(ab)b =⇒ (ba)b = (ab)b =⇒ ba = ab .

We have used the cancellation law to derive these implications. It follows that ab = ba for
all choices of a and b in G. This proves that G is abelian.

Page 47, problem 13: We start with some general remarks. Let G be a group and let e

denote the identity element of G. We have ea = a and ae = a for all a ∈ G. Thus, ea = ae

for all a ∈ G. Furthermore, suppose that a, b ∈ G and ab = e. We have

ab = e =⇒ ab = aa−1 =⇒ b = a−1 =⇒ ba = a−1a = e .

We have used the cancellation law to derive the second implication. Therefore, if ab = e,
then it follows that ba = e and hence that ab = ba.

Now suppose that G is a group of order 4. For all a ∈ G, we have ea = ae = a. Hence
e commutes with every element of G. Now suppose that the other three elements of G are
denoted by a, b and c. Thus, e, a, b, and c are all distinct and G = {e, a, b, c}.

Obviously, aa = aa. Hence a commutes with itself.

Now consider ab. We have ab ∈ {e, a, b, c}. We cannot have ab = b or ab = a. To explain
this, notice that

ab = b =⇒ ab = eb =⇒ a = e, ab = a =⇒ ab = ae =⇒ b = e .

However, a 6= e and b 6= e. It therefore follows that ab 6= b and ab 6= a. This leaves two
possibilities: either ab = e or ab = c.

If we reverse the role of a and b in the previous paragraph, then we find that there are
two possibilities for ba, namely either ba = e or ba = c.

If ab = e, then we showed above that ba = e and hence ab = ba. Similarly, reversing the
role of a and b, if we have ba = e, then it follows that ab = e and hence that ab = ba. There



is only one case not yet covered, the case where ab and ba are both equal to c. But in that
remaining case, we have ab = c and ba = c and so we have ab = ba. Hence a and b commute
with each other in that case too.

The above argument can be applied to the pair of elements a and c. It shows that ac = ca.
The argument applies to the pair b and c, showing that bc = cb. It follows that G is indeed
an abelian group.

Now if |G| = 1, 2 or 3, a similar (and easier argument) works. Obviously, e commutes
with all other elements of G. Thus, if G = {e}, nothing more needs to be proved. If
|G| = 2, suppose a ∈ G is the non-identity element. Now ae = ea = a and aa = aa and
so a commutes with all elements of G, settling the case where |G| = 2. Finally, if |G| = 3,
suppose G = {e, a, b}. The only non-obvious thing to prove is that ab = ba. Note that

ab = a =⇒ ab = ae =⇒ b = e, ab = b =⇒ ab = eb =⇒ a = e.

But a 6= e and b 6= e. Therefore, ab = e. Similarly, ba = e. Hence ab = ba, finishing the case
where |G| = 3.

Page 47, problem 15: As proven in class, (a ∗ b)−1 = (b−1) ∗ (a−1).

Page 47, problem 16: Suppose that a, b ∈ G, that a = a−1, b = b−1, and that ab = (ab)−1.
According to problem 15 (although we omit the ∗), we have (ab)−1 = b−1a−1. Hence

ba = b−1a−1 = (ab)−1 = ab .

Under the assumptions of the problem, this argument applies to all pairs of elements a, b ∈ G.
Thus ab = ba for all a, b ∈ G. Hence G is abelian.

Note that this problem is virtually the same as problem 9. If G is a group and a ∈ G,
then the equation a2 = e is equivalent to the equation a−1 = a. Thus, a group with the
property stated in problem 9 is also a group with the property stated in this problem, and
vice versa.

Page 54, problem 1: Let C = A∩B. Let e denote the identity element of G. We assume
that A and B are subgroups of G. First of all, we have e ∈ A and e ∈ B. Hence e ∈ C.

Secondly, we show that C is closed under the operation of G. Suppose that u, v ∈ C. Then
u, v ∈ A and therefore, since A is closed, we have uv ∈ A. Similarly, u, v ∈ B and therefore,
since B is closed, we have uv ∈ B. Therefore, uv ∈ C.

Finally, suppose that u ∈ C. Let u−1 be the inverse of u in G. Then, u ∈ A and since A

is a subgroup of G, u−1 ∈ A. Similarly, u ∈ B and since B is a subgroup of G, u−1 ∈ B.
Therefore, u−1 ∈ C.



We have proved the three things that are needed to verify that C is a subgroup of G.

Page 54, problem 2: The subgroup of Z generated by -1 is the entire group Z itself. For
if n ∈ Z, then we can write n = (−n)(−1), an integral multiple of -1. Since the operation is
+, we have proved that -1 generates Z.

Page 54, problem 4: First of all, Z(G) contains e. This is so because ea = a = ae for all
a ∈ G. Hence ea = ae for all a ∈ G and that means that e ∈ Z(G).

Secondly, suppose that u, v ∈ Z(G). This means that ua = au and va = av for all a ∈ G.
Therefore,

(uv)a = u(va) = u(av) = (ua)v = (au)v = a(uv)

for all a ∈ G. This means that uv ∈ Z(G). Hence Z(G) is closed under the operation for G.

Now assume that u ∈ Z(G). This means that ua = au for all a ∈ G. Let u−1 be the inverse
of u in G. Let b be an arbitrary element of G and let a = b−1, an element of G. Hence

u−1b = u−1a−1 = (au)−1 = (ua)−1 = a−1u−1 = bu−1

and hence u−1 commutes with b for all b ∈ G. Thus, u−1 ∈ Z(G).

We have proved the three things that are needed to verify that Z(G) is a subgroup of G.

Page 55, problem 6: Suppose that a ∈ Z(G). Hence, for all b ∈ G, we have ab = ba.
Therefore, for all b ∈ G, we have b ∈ C(a). Therefore, C(a) = G.

Conversely, suppose C(a) = G. Then, if b ∈ G, we have b ∈ C(a) and that means that
ba = ab. Therefore, for all b ∈ G, we have ba = ab. Therefore, a ∈ Z(G).

Page 55, problem 8: Let e denote the identity element of G. The subset H is defined by

H = {a ∈ G | a2 = e }

First of all, e2 = ee = e and hence e ∈ H. Secondly, if a, b ∈ H, then

(ab)2 = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a2b2 = ee = e

and therefore ab ∈ H. We have used the associative law (many times), the fact that ab = ba

(which is true because G is assumed to be abelian), and the assumption that a, b ∈ H (so
that a2 = b2 = e ). Therefore, a, b ∈ H =⇒ ab ∈ H. That is, H is closed under the group
operation for G.



Finally, suppose that a ∈ H. Since a2 = e, we have aa = e. That is, a−1 = a. Therefore,
a−1 ∈ H.

We have proved the three things that are needed to verify that H is a subgroup of G.

Page 55, problem 9: One example is G = S3. The identity element e for G is the identity
map i. Consider the two elements

g =

(

1 2 3
3 2 1

)

, g′ =

(

1 2 3
1 3 2

)

which are in G. It is easy to verify that g2 = i and (g′)2 = i. Thus, both g and g′ are in the
subset H defined in problem 8. However,

gg′ =

(

1 2 3
3 2 1

)(

1 2 3
1 3 2

)

=

(

1 2 3
3 1 2

)

and

(gg′)2 =

(

1 2 3
3 1 2

)(

1 2 3
3 1 2

)

=

(

1 2 3
2 3 1

)

6= i.

Thus, gg′ 6∈ H. Therefore, H is not closed under the group operation for G and therefore is
not a subgroup of G


