SECTION 1.8.

PROBLEM 4. We want to find a polynomial \(p(t) = a + bt + ct^2 \) such that
\[
p(1) = 5, \quad p(3) = 11, \quad p(4) = 14
\]
Equivalently, we want to find \(a, b, \) and \(c \) such that
\[
a + b + c = 5
a + 3b + 9c = 11
a + 4b + 16c = 14
\]
The augmented matrix for this system of equations is
\[
\begin{bmatrix}
1 & 1 & 1 & 5 \\
1 & 3 & 9 & 11 \\
1 & 4 & 16 & 14
\end{bmatrix}
\]
Row-reduction transforms this as follows:
\[
\begin{bmatrix}
1 & 1 & 1 & 5 \\
0 & 2 & 8 & 6 \\
0 & 3 & 15 & 9
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & 1 & 5 \\
0 & 1 & 4 & 3 \\
0 & 3 & 15 & 9
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & 3 \\
0 & 0 & 3 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]
Thus, the solution is \(a = 2, \ b = 3, \ c = 0. \) That is, the polynomial we want is
\[
p(t) = 2 + 3t.
\]
It turns out to be just a linear polynomial because the three points \((1,5), (3,11)\) and \((4,14)\) happen to lie on a line.

SECTION 3.1.

PROBLEM 16. This should be graphed as the line through the origin of the \(xy \)-plane which has slope equal to 3. That is, it is the line defined by \(y = 3x. \)

PROBLEM 22. This subset \(W \) can be described as follows:
\[
W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : \ x - 2y = 1 \right\}
\]

SECTION 3.2.

PROBLEM 2. The zero vector
\[
0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
is not in W because $0 - 0 \neq 2$. Hence W is not a subspace of \mathbb{R}^2.

PROBLEM 6. The only solution to the equation $|x_1| + |x_2| = 0$ is $x_1 = x_2 = 0$. That is,

$$W = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

This subset W of \mathbb{R}^2 is a subspace of \mathbb{R}^2. It satisfies all three of the subspace requirements.

PROBLEM 8. This subset W of \mathbb{R}^2 is not a subspace of \mathbb{R}^2. W is not closed under addition. Here is a counterexample. Let

$$u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Then both u and v are in W because $1 \times 0 = 0$ and $0 \times 1 = 0$. But

$$u + v = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

is certainly not in W because $1 \times 1 \neq 0$.

PROBLEM 10. W is a subspace of \mathbb{R}^3. Here is the verification.

(a) The zero vector 0 of \mathbb{R}^3 is in W because $0 = 0 + 0$.

(b) Suppose that u and v are in W. Then

$$u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}, \quad v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

where $u_2 = u_3 + u_1$ and $v_2 = v_3 + v_1$. Consider $u + v$. We have

$$u + v = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}$$

We have

$$u_2 + v_2 = (u_3 + u_1) + (v_3 + v_1) = (u_3 + v_3) + (u_1 + v_1)$$

Thus $u + v$ is a vector in \mathbb{R}^3 whose entries x_1, x_2, x_3 satisfy the equation $x_2 = x_3 + x_1$ defining the set W. Thus, $u + v$ is in W. This verifies that the set W is closed under addition.
(c) Suppose that \(\mathbf{u} \) is in \(W \). Let \(c \) be any real number. Then

\[
\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}
\]

where \(u_2 = u_3 + u_1 \). Consider the vector

\[
\mathbf{c}\mathbf{u} = \begin{bmatrix} cu_1 \\ cu_2 \\ cu_3 \end{bmatrix}
\]

We have \(cu_2 = c(u_3 + u_1) = cu_3 + cu_1 \). Therefore, \(\mathbf{c}\mathbf{u} \) is a vector in \(\mathbb{R}^3 \) whose entries \(x_1, x_2, x_3 \) satisfy the equation \(x_2 = x_3 + x_1 \) defining the set \(W \). This verifies that the set \(W \) is closed under scalar multiplication.

We have verified that \(W \) satisfies the three subspace requirements. Hence \(W \) is a subspace of \(\mathbb{R}^3 \).

SECTION 3.3.

PROBLEM 4. We must consider the vector equation

\[
x \begin{bmatrix} 1 \\ -1 \end{bmatrix} + y \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}
\]

The corresponding augmented matrix is

\[
\begin{bmatrix} 1 & 2 & b_1 \\ -1 & -3 & b_2 \end{bmatrix}
\]

This matrix is row-equivalent to

\[
\begin{bmatrix} 1 & 2 & b_1 \\ -1 & -3 & b_2 \end{bmatrix}, \quad \begin{bmatrix} 1 & 2 & b_1 \\ 0 & -1 & b_1 + b_2 \end{bmatrix}, \quad \begin{bmatrix} 1 & 2 & b_1 \\ 0 & 1 & -b_1 - b_2 \end{bmatrix}
\]

It is clear that the vector equation being considered has a solution. This is true for every choice of the numbers \(b_1, b_2 \). Hence \(\text{Sp}(S) = \mathbb{R}^2 \).

PROBLEM 6. We must consider the vector equation

\[
x \begin{bmatrix} 1 \\ -1 \end{bmatrix} + y \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}
\]
The corresponding augmented matrix is

\[
\begin{bmatrix}
1 & -2 & b_1 \\
-1 & 2 & b_2
\end{bmatrix}
\]

This matrix is row-equivalent to

\[
\begin{bmatrix}
1 & -2 & b_1 \\
-1 & 2 & b_2
\end{bmatrix}, \quad \begin{bmatrix}
1 & -2 & b_1 \\
0 & 0 & b_1 + b_2
\end{bmatrix}
\]

It follows that the vector equation under consideration has a solution if and only if \(b_1 + b_2 = 0 \). This is the algebraic specification of \(\text{Sp}(S) \). The subspace \(\text{Sp}(S) \) of \(\mathbb{R}^2 \) is a line through the origin with slope equal to -1.

PROBLEM 10. In problem 4, we found that \(\text{Sp}\{\mathbf{a}, \mathbf{b}\} = \mathbb{R}^2 \). If \(\mathbf{e} \) is any vector whatsoever in \(\mathbb{R}^2 \), then \(\text{Sp}\{\mathbf{a}, \mathbf{b}, \mathbf{e}\} \) will be a subspace of \(\mathbb{R}^2 \). But it will also contain \(\text{Sp}\{\mathbf{a}, \mathbf{b}\} = \mathbb{R}^2 \). Therefore, \(\text{Sp}\{\mathbf{a}, \mathbf{b}, \mathbf{e}\} = \mathbb{R}^2 \).

PROBLEM 12. Since \(\mathbf{v} \) is a nonzero vector in \(\mathbb{R}^3 \), it is clear that \(\text{Sp}\{\mathbf{v}\} \) is a certain line through the origin. To find an algebraic specification, we must consider the vector equation

\[
\begin{bmatrix}
x \\
x \\
x
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}
= \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}
\]

The corresponding augmented matrix is

\[
\begin{bmatrix}
1 & b_1 \\
2 & b_2 \\
0 & b_3
\end{bmatrix}
\]

which is row-equivalent to

\[
\begin{bmatrix}
1 & b_1 \\
0 & b_2 - 2b_1 \\
0 & b_3
\end{bmatrix}
\]

Thus the algebraic specification for \(\text{Sp}\{\mathbf{v}\} \) is:

\[b_2 - 2b_1 = 0, \quad b_3 = 0 \]

As we already stated, this describes a line through the origin.
PROBLEM 14. We must consider the vector equation

\[
x \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}
\]

The corresponding augmented matrix is

\[
\begin{bmatrix}
1 & 0 & b_1 \\
2 & -1 & b_2 \\
0 & 1 & b_3 \\
\end{bmatrix}
\]

This is row-equivalent to

\[
\begin{bmatrix}
1 & 0 & b_1 \\
0 & 1 & 2b_1 - b_2 \\
0 & 1 & b_3 \\
\end{bmatrix} ,
\begin{bmatrix}
1 & 0 & b_1 \\
0 & 1 & 2b_1 - b_2 \\
0 & 0 & b_3 - (2b_1 - b_2) \\
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & b_1 \\
0 & 1 & 2b_1 - b_2 \\
0 & 0 & -2b_1 + b_2 + b_3 \\
\end{bmatrix}
\]

Thus the vector equation being considered has at least one solution if and only if the equation

\[-2b_1 + b_2 + b_3 = 0\]

is satisfied. This is the algebraic specification for \(\text{Sp}\{v, w\}\). Thus \(\text{Sp}\{v, w\}\) is the plane through the origin with equation \(-2x + y + z = 0\).

PROBLEM 16. We must consider the vector equation

\[x_1v + x_2w + x_3x = b\]

where

\[
b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}
\]

This vector equation corresponds to a system of 3 equations in the 3 unknowns \(x_1, x_2, x_3\). The augmented matrix for this system is

\[
\begin{bmatrix}
1 & 0 & 1 & b_1 \\
2 & -1 & 1 & b_2 \\
0 & 1 & -1 & b_3 \\
\end{bmatrix}
\]

This matrix is row equivalent to

\[
\begin{bmatrix}
1 & 0 & 1 & b_1 \\
0 & -1 & -1 & b_2 - 2b_1 \\
0 & 1 & -1 & b_3 \\
\end{bmatrix} ,
\begin{bmatrix}
1 & 0 & 1 & b_1 \\
0 & 1 & 1 & 2b_1 - b_2 \\
0 & 1 & -1 & b_3 \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
1 & 0 & 1 & b_1 \\
0 & 1 & 1 & 2b_1 - b_2 \\
0 & 0 & -2 & b_3 - (2b_1 - b_2)
\end{bmatrix},
\begin{bmatrix}
1 & 0 & 1 & b_1 \\
0 & 1 & 1 & 2b_1 - b_2 \\
0 & 0 & 1 & -1/2b_3 + 1/2(2b_1 - b_2)
\end{bmatrix}
\]

It is clear that the vector equation being considered has a solution. This is true for every choice of the numbers \(b_1, b_2, b_3\). Hence \(\text{Sp}(S) = \mathbb{R}^3\).

PROBLEM 18. We must consider the vector equation

\[x_1 \mathbf{v} + x_2 \mathbf{w} + x_3 \mathbf{z} = \mathbf{b}\]

where

\[
\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}
\]

This vector equation corresponds to a system of 3 equations in the 3 unknowns \(x_1, x_2, x_3\). The augmented matrix for this system is

\[
\begin{bmatrix}
1 & 0 & 1 & b_1 \\
2 & -1 & 0 & b_2 \\
0 & 1 & 2 & b_3
\end{bmatrix}
\]

This matrix is row equivalent to

\[
\begin{bmatrix}
1 & 0 & 1 & b_1 \\
0 & -1 & -2 & b_2 - 2b_1 \\
0 & 1 & 2 & b_3
\end{bmatrix},
\begin{bmatrix}
1 & 0 & 1 & b_1 \\
0 & 1 & 2 & 2b_1 - b_2 \\
0 & 1 & 2 & b_3
\end{bmatrix},
\begin{bmatrix}
1 & 0 & 1 & b_1 \\
0 & 1 & 2 & 2b_1 - b_2 \\
0 & 0 & 0 & b_3 - (2b_1 - b_2)
\end{bmatrix}
\]

The last matrix simplifies to

\[
\begin{bmatrix}
1 & 0 & 1 & b_1 \\
0 & 1 & 2 & 2b_1 - b_2 \\
0 & 0 & 0 & -2b_1 + b_2 + b_3
\end{bmatrix}
\]

It follows that the system of equations, and hence the equivalent vector equation, has a solution if and only if \(-2b_1 + b_2 + b_3 = 0\). That is the algebraic specification for \(W\). The subspace \(\text{Sp}\{\mathbf{v}, \mathbf{w}, \mathbf{z}\}\) of \(\mathbb{R}^3\) is a plane defined by the equation \(-2x + y + z = 0\).

PROBLEM 20. This problem is a continuation of problem 14. The algebraic specification for \(\text{Sp}(S)\), where \(S = \{\mathbf{v}, \mathbf{w}\}\), is \(-2b_1 + b_2 + b_3 = 0\). We can use this to test the specified vectors.

(a): \(-2 \times 1 + 1 + 1 = 0\)
(b): \(-2 \times 1 + 1 + (-1) \neq 0\)
(c): \(-2 \times 1 + 2 + 0 = 0\)
(d): \(-2 \times 2 + 3 + 1 = 0\)
(e): \(-2 \times (-1) + 2 + 4 \neq 0\)
(f): \(-2 \times 1 + 1 + 3 \neq 0\)

Thus, the vectors in (a), (c), and (d) are in \(\text{Sp}(S)\). They can be expressed as linear combinations of the vectors \(v\) and \(w\). That is, the vector equation considered in problem 14 has at least one solution. We can find a solution by considering the augmented matrix in problem 14. Assuming that \(-2b_1 + b_2 + b_3 = 0\), that matrix is row-equivalent to

\[
\begin{bmatrix}
1 & 0 & b_1 \\
0 & 1 & 2b_1 - b_2 \\
0 & 0 & 0
\end{bmatrix}
\]

Thus the solution is given by \(x = b_1, y = 2b_1 - b_2\). For the vector in (a), we have \(b_1 = b_2 = 1\) and so \(x = 1, y = 1\). For the vector in (c), \(b_1 = 1, b_2 = 2\) and so \(x = 1, y = 0\). For the vector in (d), \(b_1 = 2, b_2 = 3\) and so \(x = 2, y = 1\). Thus, for the three vectors in (a), (c), and (d), we find the following expressions for those vectors as linear combinations of \(v\) and \(w\):

\[
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} = v + w,
\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix} = v,
\begin{bmatrix}
2 \\
3 \\
1
\end{bmatrix} = 2v + w
\]

PROBLEM A. A vector \(X\) lies on the plane of reflection if and only if \(X\) satisfies the equation \(SX = X\), This equation is equivalent to \(AX = 0\), where \(A\) is the following matrix

\[
A = S - I_3 = \begin{bmatrix}
1/3 & 2/3 & 2/3 \\
2/3 & 1/3 & -2/3 \\
2/3 & -2/3 & 1/3
\end{bmatrix} - \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
-2/3 & 2/3 & 2/3 \\
2/3 & -2/3 & -2/3 \\
2/3 & -2/3 & -2/3
\end{bmatrix}
\]

We can find the solutions to \(AX = 0\) by considering the augmented matrix \([A|0]\). This matrix is row-equivalent to

\[
\begin{bmatrix}
-2/3 & 2/3 & 2/3 & 0 \\
2/3 & -2/3 & -2/3 & 0 \\
2/3 & -2/3 & -2/3 & 0
\end{bmatrix}, \begin{bmatrix}
1 & -1 & -1 & 0 \\
2/3 & -2/3 & -2/3 & 0 \\
2/3 & -2/3 & -2/3 & 0
\end{bmatrix}, \begin{bmatrix}
1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
Thus the solutions to $AX = 0$ are precisely the solutions to the equation $x - y - z = 0$. That is the equation for the plane of reflection.

PROBLEM B. We must solve the vector equation stated in this problem. The corresponding augmented matrix is:

$$
\begin{bmatrix}
3 & 1 & 3 & 150,000 \\
4 & 0 & -4 & 100,000 \\
1 & -1 & 1 & 50,000
\end{bmatrix}
$$

This matrix is row-equivalent to the following matrices:

$$
\begin{bmatrix}
1 & -1 & 1 & 50,000 \\
4 & 0 & -4 & 100,000 \\
3 & 1 & 3 & 150,000
\end{bmatrix},
\begin{bmatrix}
1 & -1 & 1 & 50,000 \\
0 & 4 & -8 & -100,000 \\
3 & 1 & 3 & 150,000
\end{bmatrix},
\begin{bmatrix}
1 & -1 & 1 & 50,000 \\
0 & 4 & -8 & -100,000 \\
0 & 4 & 0 & 0
\end{bmatrix}
$$

Thus the solution is given by $c_1 = 37,500$, $c_2 = 0$, $c_3 = 12,500$. That is, we have:

$$
\begin{bmatrix}
150,000 \\
100,000 \\
50,000
\end{bmatrix} = 37,500 \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + 12,500 \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix}
$$