THE RANGE AND THE NULL SPACE OF A MATRIX

Suppose that A is an $m \times n$ matrix with real entries. There are two important subspaces associated to the matrix A. One is a subspace of \mathbb{R}^m. The other is a subspace of \mathbb{R}^n. We will assume throughout that all vectors have real entries.

THE RANGE OF A.

The range of A is a subspace of \mathbb{R}^m. We will denote this subspace by $\mathcal{R}(A)$. Here is the definition:

$$\mathcal{R}(A) = \{ Y : \text{there exists at least one } X \text{ in } \mathbb{R}^n \text{ such that } AX = Y \}$$

THEOREM. If A is an $m \times n$ matrix, then $\mathcal{R}(A)$ is a subspace of \mathbb{R}^m.

Proof. First of all, notice that if Y is in $\mathcal{R}(A)$, then $Y = AX$ for some X in \mathbb{R}^n. Since A is $m \times n$ and X is $n \times 1$, $Y = AX$ will be $m \times 1$. That is, Y will be in \mathbb{R}^m. This shows that the set $\mathcal{R}(A)$ is a subset of \mathbb{R}^m.

Now we verify the three subspace requirements. Let $W = \mathcal{R}(A)$.

(a) Let 0_m denote the zero vector in \mathbb{R}^m and 0_n denote the zero vector in \mathbb{R}^n. Notice that $A0_n = 0_m$. Hence $AX = 0_m$ is satisfied by at least one X in \mathbb{R}^n, namely $X = 0_n$. Thus, 0_m is indeed in W and hence requirement (a) is valid for W.

(b) Suppose that Y_1 and Y_2 are in W. This means that each of the matrix equations $AX = Y_1$ and $AX = Y_2$ has at least one solution. Suppose that $X = X_1$ is a vector in \mathbb{R}^n satisfying the first equation. That is, $AX_1 = Y_1$. Suppose that $X = X_2$ is a vector in \mathbb{R}^n satisfying the second equation. That is, $AX_2 = Y_2$. Now consider the matrix equation $AX = Y_1 + Y_2$. Let $X = X_1 + X_2$, a vector in \mathbb{R}^n. Then we have

$$AX = A(X_1 + X_2) = AX_1 + AX_2 = Y_1 + Y_2$$

Therefore, $Y_1 + Y_2$ is in W. This shows that W is closed under addition and so requirement (b) is valid for W.

(c) Suppose that Y_1 is in W. Let c be any scalar. Since Y_1 is in W, there exists a vector X_1 in \mathbb{R}^n such that $AX_1 = Y_1$. Now consider the matrix equation $AX = cY_1$. Let $X = cX_1$, a vector in \mathbb{R}^n. Then we have

$$AX = A(cX_1) = c(AX_1) = cY_1$$
Therefore, cY_1 is in W. Therefore, $Y_1 + Y_2$ is in W. This shows that W is closed under scalar multiplication and so requirement (c) is valid for W.

We have proved that $W = \mathcal{R}(A)$ is a subset of \mathbb{R}^m satisfying the three subspace requirements. Hence $\mathcal{R}(A)$ is a subspace of \mathbb{R}^m.

THE NULL SPACE OF A.

The null space of A is a subspace of \mathbb{R}^n. We will denote this subspace by $\mathcal{N}(A)$. Here is the definition:

$$\mathcal{N}(A) = \{ X : AX = 0_m \}$$

THEOREM. If A is an $m \times n$ matrix, then $\mathcal{N}(A)$ is a subspace of \mathbb{R}^n.

Proof. First of all, notice that if X is in $\mathcal{N}(A)$, then $AX = 0_m$. Since A is $m \times n$ and AX is $m \times 1$, it follows that X must be $n \times 1$. That is, X is in \mathbb{R}^n. Therefore, $\mathcal{N}(A)$ is a subset of \mathbb{R}^n.

Now we verify the three subspace requirements. Let $W = \mathcal{N}(A)$.

(a) Notice that $A0_n = 0_m$. Hence the equation $AX = 0_m$ is satisfied by $X = 0_n$. It follows that 0_n is indeed in W.

(b) Suppose that X_1 and X_2 are in W. This means that $AX_1 = 0_m$ and $AX_2 = 0_m$. Let $X = X_1 + X_2$. Then

$$AX = A(X_1 + X_2) = AX_1 + AX_2 = 0_m + 0_m = 0_m$$

Therefore, $X = X_1 + X_2$ is in W. This shows that W is closed under addition and so requirement (b) is valid for W.

(c) Suppose that X_1 is in W. Let c be any scalar. Since X_1 is in W, we have $AX_1 = 0_m$. Let $X = cX_1$. Then

$$AX = A(cX_1) = c(AX_1) = c0_m = 0_m$$

Therefore, $X = cX_1$ is in W. This shows that W is closed under scalar multiplication and so requirement (c) is valid for W.

We have proved that $W = \mathcal{N}(A)$ is a subset of \mathbb{R}^n satisfying the three subspace requirements. Hence $\mathcal{N}(A)$ is a subspace of \mathbb{R}^n.

THE DIMENSION THEOREM: If A is an $m \times n$ matrix, then $\dim(\mathcal{N}(A)) + \dim(\mathcal{R}(A)) = n$.