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Abstract. This paper shows that properties of projective modules over a group ring Zp[∆],
where ∆ is a finite Galois group, can be used to study the behavior of certain invariants
which occur naturally in Iwasawa theory for an elliptic curve E. Modular representation
theory for the group ∆ plays a crucial role in this study. It is necessary to make a certain
assumption about the vanishing of a µ-invariant. We then study λ-invariants λE(σ), where σ
varies over the absolutely irreducible representations of ∆. We show that there are non-trivial
relationships between these invariants under certain hypotheses.
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1 Introduction

Let F be a finite extension of Q. Fix a prime p and let F∞ denote the unique subfield of
F (µp∞) such that Γ = Gal(F∞/F ) is isomorphic to Zp, the additive group of p-adic integers.
One refers to F∞ as the cyclotomic Zp-extension of F . Suppose that K is a finite Galois
extension of F such that K ∩ F∞ = F . Let K∞ = KF∞, the cyclotomic Zp-extension
of K. Then K∞ is Galois over F and G = Gal(K∞/F ) is isomorphic to ∆ × Γ, where
∆ = Gal(K/Q). Iwasawa theory is often concerned with a compact Zp-module X which has
a natural action of such a Galois group G. The questions that we will consider in this paper
concern the structure of X just as a Zp[∆]-module. The structure of X as a module over
the Iwasawa algebra Λ = Zp[[Γ]] will not play a significant role.

Assume thatX is a finitely generated, torsion-free Zp-module and hence a free Zp-module.
This turns out to be so in many interesting cases. Let λ(X) denote its Zp-rank. One can
study the action of ∆ onX by considering V = X⊗ZpQp, a vector space over Qp of dimension
λ(X) and a representation space for the group ∆. The module X will be a ∆-invariant Zp-
lattice in V . If the order of ∆ is not divisible by p, then one sees easily that X is determined
up to isomorphism as a Zp[∆]-module by V . Furthermore, X will be projective as a Zp[∆]-
module. However, if p

∣∣|∆|, then V can have non-isomorphic ∆-invariant Zp-lattices and it
is possible that none will be projective. If X happens to be a projective Zp[∆]-module, then
its isomorphism class is again determined by V .

Let IrrF(∆) denote the set of irreducible representations of ∆ (up to isomorphism) over a
field F . We choose F to be a finite extension of Qp containing all m-th roots of unity where
m ≥ 1 is divisible by the order of all elements of ∆. Then all σ ∈ IrrF(∆) are absolutely
irreducible. For each such σ, let Wσ denote the corresponding F -representation space for ∆
and let n(σ) = dimF(Wσ). One can decompose VF = V ⊗Qp F as a direct sum of the Wσ’s,
each occurring with a certain multiplicity. We denote this multiplicity by λ(X, σ). We then
have the obvious formula

(1.0.a) λ(X) = dimF

(
VF
)

=
∑

σ

n(σ)λ(X, σ)

where σ runs over IrrF(∆). The representation space V is determined by the λ(X, σ)’s. One
simple relationship that they satisfy is that λ(X, σ) = λ(X, σ′) for σ, σ′ ∈ IrrF(∆) if their
characters χσ and χσ′ are conjugate over Qp. We refer to these equalities as the conjugacy
relations.

Our primary objective in this paper is to study another more subtle type of relationship
involving the λ(X, σ)’s which arises when the order of ∆ is divisible by p and X is projective
as a Zp[∆]-module. These new relationships, which we refer to as congruence relations,
owe their existence to the fact that there are more irreducible representations for ∆ in
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characteristic 0 than in characteristic p when p
∣∣|∆|. To be precise, the cardinality of IrrF(∆)

is equal to the number of conjugacy classes in the group ∆, which we denote by s. Let O
denote the ring of integers of F , m denote the maximal ideal of O, and f denote the residue
field O/m, a finite extension of the prime field Fp. Let Irrf(∆) denote the set of irreducible
representations of ∆ over f. These representations are absolutely irreducible because of the
choice of F . The cardinality of Irrf(∆), which we denote by t, is equal to the number of
conjugacy classes in ∆ of elements whose order is not divisible by p. And so, obviously,
t ≤ s. This inequality is strict if p

∣∣|∆|.
We will use the notation IrrF(G) and Irrf(G) throughout this paper, where G is a finite

group. Irreducible representations are always assumed to be absolutely irreducible, unless
otherwise mentioned, and it is implicit in the above notation that F is a finite extension of
Qp and is sufficiently large so that all irreducible representations of G in characteristic 0 are
realizable over F and all irreducible representations in characteristic p are realizable over its
residue field f. As mentioned earlier, it suffices to have the roots of unity of a certain order
in F . We prefer F to be a finite extension because sometimes it is useful for the ring O to
be compact and Noetherian. This notation is also a simple way of indicating whether the
representations being considered are over a field of characteristic 0 or of characteristic p.

1.1 Congruence Relations.

Let XO = X ⊗Zp O. We can view XO as an O[∆]-module. If we assume that |∆| is not
divisible by p, then formula (1.0.a) is reflected in the following decomposition of XO:

(1.1.a) XO
∼=
⊕

σ

Lλ(X,σ)
σ

where Lσ is a ∆-invariant O-lattice in Wσ. Note that XO and each of the Lσ’s are projective
O[∆]-modules. The isomorphism class of Lσ is uniquely determined by σ.

The situation is not as simple if p divides |∆|. However, under the assumption that X is
projective, there is a decomposition of XO which can be viewed as a natural generalization
of (1.1.a). For each τ ∈ Irrf(∆), let Uτ denote the underlying f-representation space for τ
and let n(τ) = dimf(Uτ ). We can view Uτ as a simple O[∆]-module. There is a projective
O[∆]-module Pτ which is characterized (up to isomorphism) as follows: Pτ has a unique
maximal O[∆]-submodule and the corresponding quotient module is isomorphic to Uτ . One
often refers to Pτ as the projective hull of Uτ as an O[∆]-module. The Pτ ’s are precisely
the indecomposable, projective O[∆]-modules. Now suppose that X is a projective Zp[∆]-
module. Then XO will be a projective O[∆]-module and we will have a decomposition

(1.1.b) XO
∼=
⊕

τ

Pw(X,τ)
τ
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where τ varies over Irrf(∆) and w(X, τ) ≥ 0. This decomposition coincides with that in
(1.1.a) if we assume that |∆| is not divisible by p. Under that assumption, we have s = t and,
for every τ ∈ Irrf(∆), there is a unique σ ∈ IrrF(∆) such that Lσ/mLσ ∼= Uτ . Furthermore,
Pτ ∼= Lσ and w(X, τ) = λ(X, σ).

The values of the w(X, τ)’s can be determined from the representation space XO/mXO

for ∆ over the field f. The action of ∆ on this vector space may be non-semisimple, but
there is a unique, maximal semisimple quotient space. The characterization of Pτ implies
that w(X, τ) is equal to the multiplicity of τ in that semisimple quotient. We will refer
to w(X, τ) as the weight of τ in X. The structure of X as a Zp[∆]-module is completely
determined by the w(X, τ)’s.

As an illustration, suppose that X is a free Zp[∆]-module of rank 1. Of course, X is
then projective and one can show that w(X, τ) = n(τ) for each τ ∈ Irrf(∆). Thus, the Pτ ’s
are direct summands in XO, which is a free O[∆]-module of rank 1. Each Pτ occurs with
multiplicity n(τ). Note that if t > 1, then Pτ itself will not be free. If t = 1, then ∆ is a
p-group, and projective modules must be free. We will return to this very special case below.

Now consider Pτ ⊗O F , a representation space for ∆ over F . Each σ ∈ IrrF(∆) occurs
with a certain multiplicity in Pτ ⊗O F . We denote this multiplicity by d(σ, τ). We have
VF ∼= XO ⊗O F and the multiplicity λ(X, σ) of σ in the ∆-representation space VF is
obviously given by

(1.1.c) λ(X, σ) =
∑

τ

d(σ, τ)w(X, τ)

where τ runs over Irrf(∆). Thus, assuming that one can determine the d(σ, τ)’s, formula
(1.1.c) shows that the w(X, τ)’s determine the λ(X, σ)’s. The converse is also true, as we
will explain below.

Note that the quantities d(σ, τ) are purely group-theoretic in nature and do not depend
on X. For each σ ∈ IrrF(∆), let Lσ denote any ∆-invariant O-lattice in Wσ. Then Lσ/mLσ
is a representation space for ∆ over f. We denote the corresponding representation by σ̃. It
depends on the choice of Lσ, but its semisimplification σ̃ss is determined up to isomorphism
by σ. One of the basic results in modular representation theory is that d(σ, τ), as defined
above, coincides with the multiplicity of τ in σ̃ss. That is, in a composition series for the
O[∆]-module Lσ/mLσ, the number of composition factors isomorphic to Uτ is d(σ, τ). Later
in this paper we will use the notation 〈σ̃ss, τ〉 instead of d(σ, τ) to denote this multiplicity.

Suppose that ρ is any representation of ∆. We may assume that ρ is defined over F .
Just as above, we can realize ρ on a free O-module Lρ of rank n(ρ). The reduction of ρ
modulo m, which we denote by ρ̃, gives the action of ∆ on Lρ/mLρ. Its semisimplification

3



ρ̃ss is uniquely determined by ρ and will be isomorphic to a direct sum of the τ ’s with certain
multiplicities. Now suppose that we have two representations ρi, i = 1, 2. For each i, ρi is
isomorphic to a direct sum:

ρi ∼=
⊕

σ

σmi(σ)

for certain multiplicities mi(σ), where σ varies over IrrF(∆). Assuming that X is a pro-
jective Zp[∆]-module, a congruence relation arises whenever we have ρ̃1

ss ∼= ρ̃2
ss. Such an

isomorphism amounts to the set of equalities:
∑

σm1(σ)d(σ, τ) =
∑

σm2(σ)d(σ, τ) for all
τ ∈ Irrf(∆). Formula (1.1.c) then has the following consequence:

(1.1.d)
∑

σ

m1(σ)λ(X, σ) =
∑

σ

m2(σ)λ(X, σ) .

This is a nontrivial equation if ρ1 6∼= ρ2.
We call (1.1.d) a congruence relation because it arises from an isomorphism ρ̃1

ss ∼= ρ̃2
ss,

which we think of as a kind of congruence modulo m between the two representations ρ1 and
ρ2. Just as the conjugacy relation mentioned previously arises whenever two representations
are conjugate over Qp and something which we call a duality relation (mentioned in section
1.3) arises whenever two representations are dual to each other, a congruence relation arises
whenever two representations are congruent to each other in the above sense.

Such nontrivial congruence relations will obviously occur if t < s. Indeed, let us denote
the Grothendieck group of finite-dimensional representations of ∆ over F by RF(∆), which
can be defined to be the free Z-module on IrrF(∆). We define Rf(∆) in the same way. One
defines a homomorphism d : RF(∆) → Rf(∆) by sending the class [ρ] to the class [ρ̃ss].
An isomorphism ρ̃1

ss ∼= ρ̃2
ss simply means that [ρ1] − [ρ2] ∈ ker(d). It is obvious that the

Z-rank of ker(d) is at least s−t. The congruence relations that are described by (1.1.d) state
that the homomorphism λX : RF(∆) → Z defined by λX(σ) = λ(X, σ) for all σ ∈ IrrF(∆)
factors through the map d. To be precise, define a homomorphism wX : Rf(∆) → Z by
wX(τ) = w(X, τ) for all τ ∈ Irrf(∆). Then, λX = wX ◦ d. In essence, this is just formula
(1.1.c).

A theorem of Brauer asserts that d is surjective. (See [Se77], theorem 33.) It follows that
ker(d) has Z-rank equal to s − t. Now RF(∆) and Rf(∆) are free Z-modules with bases
IrrF(∆) and Irrf(∆), respectively. Let Dp(∆) denote the matrix for d with respect to those
bases, which we refer to as the decomposition matrix for ∆ and p. Indexing the rows of
Dp(∆) by Irrf(∆) and the columns by IrrF(∆), it is a t × s matrix and d(σ, τ) is the entry
on row τ , column σ. Since d is surjective, it follows that Dp(∆) has rank t. Hence one can
use (1.1.c) for a certain set of σ’s (of cardinality t) to determine, in principle, the values of
the w(X, τ)’s. Thus, all of the λ(X, σ)’s are then determined. A similar remark concerns
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the parity of these invariants. Since the reduction of Dp(∆) modulo 2 also has rank t, one
can determine the parity of λ(X, σ) for all σ’s if one knows that parity for a suitable subset
consisting of t of the σ’s.

The form of congruence relations depends on the group ∆. We will always denote the
trivial representations for ∆ over F by σ0, and the trivial representation over f by τ0, re-
spectively. Of course, σ̃0 = τ0. As the first and simplest example, suppose that ∆ is a
p-group. One can take F = Qp(µpa), where pa is the maximal order of elements in ∆. Then

f = Fp, t = 1, and Irrf(∆) = {τ0}. If σ ∈ IrrF(∆), then σ̃ss ∼= τ
n(σ)
0 and d(σ, τ0) = n(σ).

If we assume that X is a projective Zp[∆]-module, then we have the congruence relation
λ(X, σ) = n(σ)λ(X, σ0) for each σ ∈ IrrF(∆). However, in this case, it is not hard to show
that Zp[∆] is a local ring and hence that any projective module X must be free. The above
congruence relation is then obvious.

Another relatively simple situation occurs if ∆ is a p-solvable group, i.e., if ∆ has a
composition series in which each simple subquotient is either of order p or of order prime to
p. According to the Fong-Swan theorem (theorem 38 in [Se77]), every τ ∈ Irrf(∆) is then of
the form τ = σ̃ for some σ ∈ IrrF(∆). That σ may not be uniquely determined by τ , but
we will let στ denote one such lifting. Formula (1.1.c) becomes λ(X, στ ) = w(X, τ). For an
arbitrary σ ∈ IrrF(∆), we then have

σ̃ss ∼=
⊕

τ

σ̃τ
d(σ,τ) and λ(X, σ) =

∑

τ

d(σ, τ)λ(X, στ ),

assuming that X is a projective Zp[∆]-module. The above equation for λ(X, σ) is precisely
the congruence relation (1.1.d) which results from the above isomorphism for σ̃ss. Thus, the
λ(X, στ )’s determine all of the λ(X, σ)’s.

For example, consider ∆ = D2pr , the dihedral group of order 2pr, where p is an odd prime
and r ≥ 0. Then ∆ is clearly p-solvable. We have t = 2. The elements of Irrf(∆) are τ0 and
another 1-dimensional representation τ1. There are two 1-dimensional representations of ∆
over F , σ0 and σ1, whose reductions modulo m are τ0 and τ1, respectively. Those liftings are
unique in this case and are the irreducible representations which factor through the unique
quotient ∆0 of ∆ of order 2. All other representations σ in IrrF(∆) are of dimension 2 and
one has d(σ, τ) = 1 for both τ ’s in Irrf(∆). For any such σ and any projective module X,
we obtain the congruence relation

λ(X, σ) = λ(X, σ0) + λ(X, σ1) .

However, we should point out that if we use the fact that such a σ is induced from a 1-
dimensional representation π of the Sylow p-subgroup Π of ∆, then this relation is an easy
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consequence of a congruence relation for the p-group Π. To see this, note that X is also a
projective Zp[Π]-module and so λ(X, π) = λ(X, π0), where π0 is the trivial character of Π.
We have σ ∼= Ind∆

Π(π) and σ0 ⊕ σ1
∼= Ind∆

Π(π0). Then, using the Frobenius reciprocity law,
we have

λ(X, σ) = λ(X, π) = λ(X, π0) = λ(X, σ0) + λ(X, σ1).

A useful general observation is that if ∆ contains a normal p-subgroup Π, then every
element τ of Irrf(∆) must factor through ∆/Π. This is clear since UΠ

τ is a nontrivial subspace
of Uτ which is ∆-invariant and hence must coincide with Uτ . The groups D2pr provides a
simple illustration. As another interesting example (and one of our main guiding examples
for this study), suppose that p is an odd prime and that ∆ ∼= PGL2(Z/p

r+1Z) for some
r ≥ 0. Let ∆0 = PGL2(Z/pZ). The kernel Π of the obvious homomorphism ∆ → ∆0 is
a normal p-subgroup of ∆. Hence the irreducible representations of ∆ over a finite field of
characteristic p factor through ∆0. They are easily described and all are defined over Fp.
One has t = p + 1. If p ≥ 5, then ∆ is not p-solvable, although it turns out that four of
the τ ’s can be lifted to representations in characteristic 0. We will return to this example in
some detail in chapter 7, along with other examples.

Before turning to the arithmetic side of this paper, we make the following important
remark. It will be useful to have a larger class of Zp[∆]-modules for which the congruence
relations (1.1.d) hold. We consider only finitely-generated Zp[∆]-modules. If X is such a
module, then one can still define the λ(X, σ)’s for all σ ∈ IrrF(∆) since they are determined
by the ∆-representation space V = X ⊗Zp F . Thus, it would actually be sufficient to know
that V contains a ∆-invariant Zp-lattice Y which is projective as a Zp[∆]-module. If that is
so, we will then say that X is strictly quasi-projective. Equivalently, this means that there is
a ∆-homomorphism X → Y with finite kernel and cokernel. We then have λ(X, σ) = λ(Y, σ)
for all σ ∈ IrrF(∆) and so by applying formula (1.1.c) to Y , we will obtain precisely the same
congruence relations (1.1.d) for the λ(X, σ)’s. Furthermore, if we have an exact sequence

0 −→ X1 −→ X2 −→ X −→ 0

of finitely-generated Zp[∆]-modules where X1 and X2 are strictly quasi-projective, then
we will say that X is quasi-projective. Since the congruence relations (1.1.d) hold for the
λ(X1, σ)’s and the λ(X2, σ)′s, it is clear that they will also hold for the λ(X, σ)’s.

1.2 Selmer groups for elliptic curves.

There are situations where a suitably defined module X of arithmetic interest does turn
out to be projective or, at least, quasi-projective. We will illustrate the ideas that we have
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described above when X is the Pontryagin dual of a Selmer group associated to an elliptic
curve E defined over F . We assume that E has good, ordinary reduction at all primes of
F lying above p. Most of the results of this paper will concern this particular example.
However, it will be clear that the methods are rather general and could be applied to other
“Selmer groups.” We will discuss some more general situations in section 3.4.

Let SelE(K∞)p denote the p-primary subgroup of the Selmer group for E over K∞. This
can be defined as the kernel of a global-to-local map:

γK∞ : H1(K∞, E[p∞]) −→
⊕

v

Hv(K∞, E)

where v varies over all the primes of F . We recall the definition of the local factors Hv(K∞, E)
when v is a non-archimedean prime of F . The factors corresponding to archimedean primes
are trivial except possibly when p = 2. We will give the definition of those factors for p = 2
in chapter 3. For a non-archimedean prime v, define

Hv(K∞, E) =
∏

η|v

H1(K∞,η, E[p∞])
/
im(κη)

where η runs over the finite set of primes of K∞ lying over v, K∞,η is the union of the
η-adic completions of all the finite extension of F contained in K∞, and κη is the Kummer
homomorphism for E over K∞,η. Each such prime η lies over a prime w of K and a prime
ν of F∞, both of which, in turn, lie over v.

There is a natural action of Gal(K∞/F ) on H1(K∞, E[p∞]) and on each of the groups
Hv(K∞, E). Thus, we have commuting actions of both Γ and ∆ on those group. They are
abelian, p-primary groups and so we can regard them as discrete Λ-modules. The map γK∞
is a Λ-module homomorphism and is ∆-equivariant. Hence we can regard SelE(K∞)p as a
discrete Λ-module which has a Λ-linear action of ∆. It is known that SelE(K∞)p is cofinitely
generated as a Λ-module and it is a conjecture of Mazur [Ma72] that it is Λ-cotorsion. That
is, its Pontryagin dual is finitely generated as a Λ-module and should be a torsion Λ-module.

If v ∤ p, the definition becomes simple because we then have im(κη) = 0, as is easily seen.
Note that any cocycle class c ∈ H1(K∞, E[p∞]) will be unramified at all but a finite number
of non-archimedean primes of K∞. If v ∤ p and η|v, then K∞,η is the unramified Zp-extension
of Kv. It is therefore clear that if c is unramified at η, then c is trivial. This is why the
image of γK∞ is contained in the direct sum. Also, it turns out that

H1(K∞,η, E[p∞]) ∼= (Qp/Zp)
δη

for some δη ≥ 0. Thus the Pontryagin dual of Hv(K∞, E) is a free Zp-module. Its rank is
simply the product of δη and the number of primes of K∞ lying above v. It follows that
Hv(K∞, E) is a cotorsion Λ-module and that its µ-invariant is zero.
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If v|p, then Hv(K∞, E) is quite large; its corank as a Λ-module (i.e. the rank over Λ
of its Pontryagin dual) is equal to [K : F ]. Let Ev denote the reduction of E modulo v,
an ordinary elliptic curve defined over the residue field fv for v. For each prime η of K∞

dividing v, one has the corresponding reduction map E[p∞] −→ Ev[p
∞]. (This map depends

on choosing a prime of Q above η, but the choice doesn’t matter.) As shown in [CoGr] and
[Gr89], these maps induce an isomorphism

(1.2.a) Hv(K∞, E)
∼−→
∏

η|v

H1(K∞,η, Ev[p
∞])

The action of GK∞,η on Ev[p
∞] is unramified and is induced by the above reduction map.

Our theorems concern primarily the “non-primitive” Selmer group obtained by omitting
the local condition for the primes v ∈ Σ0, where Σ0 is a finite set of non-archimedean primes
not including primes above p. We denote this group by SelΣ0

E (K∞)p. Since Hv(K∞, E) is a
cotorsion Λ-module for v ∤ p, the Λ-coranks of SelE(K∞)p and SelΣ0

E (K∞)p will be the same.
Hence the non-primitive Selmer groups should also be Λ-cotorsion for any such choice of Σ0.

Let XE(K∞) denote the Pontryagin dual of SelE(K∞)p. For any Σ0 as above, we let
XΣ0
E (K∞) denote the Pontryagin dual of SelΣ0

E (K∞)p. Assuming these Λ-modules are torsion,
we will denote their λ-invariants (i.e., their Zp-ranks) by λE(K∞) and λΣ0

E (K∞), respectively.
Furthermore, for any σ ∈ IrrF(∆), we let λE(σ) denote λ(XE(K∞), σ). We will use a similar
notation below for the non-primitive Selmer groups too, indicating the Σ0 as a superscript.
Thus, we have the general formula

(1.2.b) λE(K∞) =
∑

σ

n(σ)λE(σ) ,

where σ varies over IrrF(∆). This is just (1.0.a) applied to XE(K∞). A similar formula is
valid for λΣ0

E (K∞). One sees easily that λE(σ0) = corankZp

(
SelE(F∞)p

)
, which we denote by

λE(F∞). It is one of the terms in (1.2.b).
We are interested in relationships between the λE(σ)’s occurring in formula (1.2.b). Apart

from the conjugacy relations which result when the character for σ has values outside of Qp,
there is another somewhat deep and quite useful type of relationship which we will refer to
as the duality relation. This is the equality λE(σ̌) = λE(σ), where σ̌ is the contragredient of
σ, another irreducible representation for ∆. We will prove it in chapter 10. However, our
main results in this paper concern congruence relations and we discuss this now.

Various sets of non-archimedean primes will be singled out in our theorems. If v is a
prime of F , we denote the ramification index of v in the extension K/F by ev(K/F ). First
of all, consider the primes which don’t divide p. The following subset of the primes which
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are ramified in the extension K/F plays an especially important role:

ΦK/F = {v | v is a prime of F such that p|ev(K/F ), v ∤ p, and v ∤ ∞}

We will let ΨE denote the set of primes of F where E has bad reduction. Now consider the
set of primes of F dividing p, which we denote by Σp. For each v ∈ Σp, let w be a prime of
K lying above v and let kw denote the residue field. The field kw and the finite group Ev(kw)
depend only on v, E, and K. We say that v is anomalous for E/K if |Ev(kw)| is divisible by
p; otherwise, we say that v is non-anomalous for E/K. If all v ∈ Σp are non-anomalous for
E/K, then we say that p is non-anomalous for E/K. This concept and terminology is due
to Mazur [Ma72] who first discussed its role in the Iwasawa theory for elliptic curves. Note
that if η is a prime of K∞ lying over w, then the residue field kη is a finite p-extension of kw.
Therefore, p divides |Ev(kη)| if and only if p divides |Ev(kw)|.

We will prove the following theorem.

Theorem 1. Suppose that E(K)[p] = 0 and that p is non-anomalous for E/K. Suppose also
that SelE(K∞)[p] is finite. Let Σ0 be a finite set of non-archimedean primes of F containing
ΦK/F , but not containing primes above p. Then the Pontryagin dual of SelΣ0

E (K∞)p is a
projective Zp[∆]-module.

The finiteness of SelE(K∞)[p] is equivalent to the two-fold assertion that XE(K∞) is Λ-
torsion (as conjectured) and also that the µ-invariant for that torsion Λ-module is zero. The
same statements then follow for the Pontryagin dual XΣ0

E (K∞) of SelΣ0
E (K∞)p. It is quite

unfortunate that we must make such an assumption, but our arguments depend crucially
on it. Although the vanishing of the µ-invariant is usually conjectured to hold (with certain
exceptions), the known results and even the methods to verify it in special cases are extremely
limited. The exceptions may not be a serious problem, however. In most cases where the
µ-invariant is positive, one can replace E by an isogenous elliptic curve for which the µ-
invariant is zero, or at least expected to be zero.

Concerning the other assumptions, we have the following remarks. Assume that p is
odd. In that case, if one omits the two assumptions in the first sentence of theorem 1,
then we will still prove that XΣ0

E (K∞) is quasi-projective. (See proposition 3.2.1.) As we
mentioned before, this is good enough for proving the congruence relations. The proofs will
make it clear how the various assumptions determine whether XΣ0

E (K∞) is projective, quasi-
projective, or neither. In particular, the requirement that ΦK/F ⊆ Σ0 cannot be weakened
in any significant way, even just for quasi-projectivity. (See proposition 3.3.1)

The prime p = 2 requires special attention. Assuming that E has good, ordinary reduc-
tion at a prime v ∈ Σ2, we have Ev[2

∞] ∼= Q2/Z2 and so Ev will have a unique point of order
2. That point must be Galois-invariant and hence rational over the residue field for v. Thus,
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the prime 2 is anomalous for E/F , and hence certainly for E/K, and therefore is automati-
cally excluded in theorem 1. However, we will still prove a result about quasi-projectivity if
we make the extra assumption that E(Fv) is connected for each archimedean prime v of F .
This is certainly satisfied if F is totally complex. For a real prime v, the assumption that
E(Fv) is connected means that E(Fv)[2] has order 2.

1.3 Behavior of Iwasawa invariants.

We now describe how theorem 1 can be used for studying the invariants λE(σ). First of all,
if one assumes that SelE(K∞)p is Λ-cotorsion, then the global-to-local map γK∞ is known to
be surjective. It follows that

(1.3.a) SelΣ0
E (K∞)p

/
SelE(K∞)p ∼=

⊕

v∈Σ0

Hv(K∞, E)

Let Ĥ(K∞, E,Σ0) denote the Pontryagin dual of the right side in (1.3.a). Then for each
σ ∈ IrrF(∆), we have

(1.3.b) λΣ0
E (σ) = λE(σ) + δΣ0

E (σ)

where we denote λ
(
Ĥ(K∞, E,Σ0), σ

)
by δΣ0

E (σ), a quantity which can be determined by a
purely local calculation. That calculation depends on knowing the restrictions of σ to the
decomposition subgroups ∆η of ∆ = Gal(K∞/Q∞) for each v ∈ Σ0, where η is a prime of
K∞ lying over v. We will discuss that in chapter 5. Thus, in principle, one can determine
the difference λΣ0

E (σ) − λE(σ) for any σ ∈ IrrF(∆).

Now if XΣ0
E (K∞) is projective, or even just quasi-projective, as a Zp[∆]-module, then one

can apply formula (1.1.c). This reduces the determination of λΣ0
E (σ) to evaluating d(σ, τ)

and wΣ0
E (τ) = w

(
XΣ0
E (K∞), τ

)
for each τ ∈ Irrf(∆). As remarked before, all of the wΣ0

E (τ)’s

can be determined if one knows the λΣ0
E (σ)’s for a suitable set of t of the σ’s. One can

then obtain relationships between the λE(σ)’s by using the congruence relations between the
λΣ0
E (σ)’s together with (1.3.b).

Consider, for example, the case where ∆ is a p-group. Assuming that Σ0 is suitably
chosen, we then have wΣ0

E (τ0) = λΣ0
E (σ0). Also, λΣ0

E (σ) = n(σ)λΣ0
E (σ0) for any σ ∈ IrrF(∆).

From (1.3.b), one then obtains

(1.3.c) λE(σ) = n(σ)λE(σ0) + n(σ)δΣ0
E (σ0) − δΣ0

E (σ)

for any σ ∈ IrrF(∆). As mentioned above, λE(σ0) = λE(F∞). The relationship between
λE(K∞) and λE(F∞) which is derived from (1.3.c) and (1.2.b) is precisely the Riemann-
Hurwitz formula proved in [HaMa]. We explain this in chapter 6, using the calculation of
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the quantity δΣ0
E (σ) from chapter 5. The assumptions in [HaMa] are weaker than what we

need for projectivity, but sufficient for quasi-projectivity and that is enough to prove the
formula. In fact, the arguments in chapters 2 and 3 of this paper follow closely those in
[HaMa]. That paper is, in turn, inspired by arguments of Iwasawa [Iwa] concerning the
invariants that occur in the study of ideal class groups, specifically Iwasawa’s proof of a
formula of Kida [Kid].

We certainly expect the congruence relations that we have discussed to be valid even if
µE(K∞) 6= 0. Assume that XE(K∞) is a torsion Λ-module and that Σ0 is chosen to con-
tain ΦK/F . If p = 2, assume also that E(Fv) is connected for all v|∞. Let ZΣ0

E (K∞) be

the Zp-torsion submodule of XΣ0
E (K∞) and let Y Σ0

E (K∞) = XΣ0
E (K∞)

/
ZΣ0
E (K∞). Tensoring

XΣ0
E (K∞) and Y Σ0

E (K∞) by Qp gives isomorphic ∆-representation spaces and so the invari-
ants λΣ0

E (σ) are determined by Y Σ0
E (K∞). It is reasonable to conjecture that Y Σ0

E (K∞) is
quasi-projective as a Zp[∆]-module. That quotient is the Pontryagin dual of the maximal
divisible subgroup of SelΣ0

E (K∞)p. For some small results in this direction, see remark 3.2.3.

1.4 Selmer atoms.

Another useful description of the wΣ0
E (τ)’s involves the Galois module E[p] ⊗Fp Uτ , a vector

space over f of dimension 2n(τ) and a representation space for GF , which we denote more
briefly by E[p]⊗ τ . This description will require an additional assumption about the choice
of Σ0. First of all, we need to define Selmer groups for such a Galois module. Consider, more
generally, an arbitrary finite-dimensional representation α of ∆ over f and let Uα denote the
underlying f-vector space. We denote E[p] ⊗Fp Uα by E[p] ⊗ α. Assume, as before, that Σ0

is a finite set of primes of F not including primes above p or ∞. We define a “Selmer group”
over F∞ for this Galois module by

SelΣ0

E[p]⊗α(F∞) = ker

(
H1(F∞, E[p] ⊗ α) −→

⊕

v 6∈Σ0

Hv(F∞, E[p] ⊗ α)

)

where one defines Hv(F∞, E[p] ⊗ α) for a non-archimedean prime v by

Hv(F∞, E[p] ⊗ α) =
∏

ν|v

H1(F∞,ν , E[p] ⊗ α) if v ∤ p ,

Hv(F∞, E[p] ⊗ α) =
∏

ν|v

H1(F∞,ν , Ev[p] ⊗ α) if v | p .
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In both products, ν varies over the finite set of primes of F∞ lying over v. For v | p, we
define Ev[p] ⊗ α = Ev[p] ⊗Fp Uα, considered as an f-representation space for GFv . The
group Hv(F∞, E[p] ⊗ α) for archimedean v’s will be defined later. As a special case, we
can define SelE[p]⊗α(F∞) by just taking Σ0 to be empty. We like to refer to the f-vector

spaces SelΣ0

E[p]⊗τ (F∞) for τ ∈ Irrf(∆) as “Selmer atoms”, either “primitive” if Σ0 is empty,
or “non-primitive” otherwise. Under certain assumptions, one can prove the surjectivity of
the global-to-local map defining SelE[p]⊗α(F∞) and thereby obtain a relationship analogous
to (1.3.b) between the f-dimensions of the primitive and non-primitive Selmer atoms. (See
corollary 4.2.3.)

Chapter 4 will discuss Selmer atoms. The objective is to relate the λ-invariants associated
with the Selmer group for E over the field K∞ to Selmer groups over the field F∞ associated
with certain finite Galois modules. Formula (1.4.a) below gives such a relationship. The main
result is the following theorem which gives a formula for wΣ0

E (τ) in terms of the dimension
of the corresponding non-primitive Selmer atom. It will be necessary to make the extra
assumption that Σ0 contains ΨE, the set of primes of F where E has bad reduction.

Theorem 2. Suppose that Σ0 contains both ΦK/F and ΨE, but no prime lying above p or
∞. Suppose also that the following assumptions are satisfied for all τ ∈ Irrf(∆):

(i) H0(F,E[p] ⊗ τ) = 0,

(ii) H0(Fv, Ev[p] ⊗ τ) = 0 for all v|p,
(iii) SelE[p]⊗τ (F∞) is finite.

Then the Pontryagin dual of SelΣ0

E (K∞)p is a projective Zp[∆]-module and, for all τ ∈ Irrf(∆),
we have wΣ0

E (τ) = dimf

(
SelΣ0

E[p]⊗τ (F∞)
)
.

Each of the assumptions (i) - (iii) in theorem 2 turns out to be equivalent to the corre-
sponding one in theorem 1. That is, (i) holds for all τ if and only if E(K)[p] = 0, (ii) holds
for all τ if and only if p is non-anomalous for E/K, and (iii) holds for all τ if and only if
SelE(K∞)[p] is finite. These equivalences can be found in propositions 4.1.3, 4.1.9, and 4.2.5,
respectively. Therefore, the conclusion about SelΣ0

E (K∞)p follows from theorem 1. It is the
formula for wΣ0

E (τ) that requires the additional assumption that Σ0 contain ΨE.
Theorem 2 and formula (1.1.c) establish a relationship between λΣ0

E (σ) and the f-dimensions
of the non-primitive Selmer atoms SelΣ0

E[p]⊗τ (F∞) for the τ ’s that occur in σ̃ss with positive
multiplicity, provided that Σ0 is chosen to contain ΦK/F ∪ ΨE. Under the assumptions of
theorem 2, we have

(1.4.a) λΣ0
E (σ) =

∑

τ

d(σ, τ)dimf

(
SelΣ0

E[p]⊗τ (F∞)
)
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The proof that we give in chapter 4 gives a direct connection between the non-primitive
Selmer atoms, the d(σ, τ)’s, and the λΣ0

E (σ)’s. Here is a sketch of the argument.
Consider the Galois module E[p∞] ⊗Zp Lσ. This is a divisible O-module with O-corank

equal to 2n(σ) and has an action ofGF on it. We denote it more briefly by E[p∞]⊗σ, although
it does depend on the choice of Lσ and not just on σ. We can again define a natural Selmer
group over F∞ for this Galois module, essentially just as before. The notation we will use is
SelE[p∞]⊗σ(F∞), and SelΣ0

E[p∞]⊗σ(F∞) for the non-primitive version. We will give the precise
definition later.

The first steps are to show the equalities

(1.4.b) λΣ0
E (σ) = corankO

(
SelΣ0

E[p∞]⊗σ(F∞)
)

= dimf

(
SelΣ0

E[p∞]⊗σ(F∞)[m]
)
.

The first equality is rather easy and is valid for any choice of Σ0, even the empty set.
The second equality depends on showing that if assumptions (i) and (iii) in theorem 2 are
satisfied, then SelΣ0

E[p∞]⊗σ(F∞) is a divisible O-module. This is again valid for any Σ0. The
next steps are to show the isomorphisms

(1.4.c) SelΣ0

E[p∞]⊗σ(F∞)[m] ∼= SelΣ0

(E[p∞]⊗σ)[m](F∞) ∼= SelΣ0

E[p]⊗eσ(F∞) .

under the assumptions of theorem 2. The first isomorphism is a kind of control theorem for
the Galois O-module E[p∞] ⊗ σ and multiplication by a generator of the ideal m. Now one
sees easily that (E[p∞] ⊗ σ)[m] ∼= E[p] ⊗ σ̃ and the second isomorphism follows from that.

The most interesting step is to show that if one has an exact sequence

0 → Uα → Uβ → Uγ → 0

of f-representation spaces for ∆, then one obtains an exact sequence for the corresponding
non-primitive Selmer groups

(1.4.d) 0 −→ SelΣ0

E[p]⊗α(F∞) −→ SelΣ0

E[p]⊗β(F∞) −→ SelΣ0

E[p]⊗γ(F∞) −→ 0

under the assumptions of theorem 2. Since each τ occurs with multiplicity d(σ, τ) in a
composition series for σ̃, one deduces formula (1.4.a) from (1.4.b), (1.4.c), and (1.4.d).

In one type of example, which we discuss in detail in chapters 7 and 8, we take ∆ to be
isomorphic to PGL2(Z/p

r+1Z). If r is large, then an irreducible representation σ of ∆ in
characteristic zero can have large dimension (in comparison to p), but its reduction modulo
m will give a representation over a field of characteristic p which is highly reducible, with
composition factors of dimension at most p. Thus, useful information about the Selmer group
associated to the twist of E[p∞] by σ can, in principle, be derived from information about
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the Selmer atoms associated to the twists of E[p] by irreducible τ ’s. This is a philosophy
that we wanted to bring out in this paper. However, in practice, it is often easier to infer the
same kind of information by exploiting the congruence relations between various σ’s directly.
Also, the hypotheses that are needed can be weaker.

Assume that p is odd and that all the primes of F lying above p are ramified in the
extension F (µp)/F . The Selmer atom SelΣ0

E[p]⊗τ (F∞) is then determined by Σ0, τ , and E[p].
This is almost clear from the definition. The only point to explain concerns the quotients
Ev[p] for the primes v of F lying above p that occur in that definition. Of course, one must
choose a prime of F (E[p]) above v to define that quotient. Having made such a choice for
each v, one can characterize Ev[p] as the maximal unramified quotient of the GFv -module
E[p]. This is because of the ramification assumption which implies that the inertia subgroup
ofGFv acts nontrivially on the kernel of the reduction map E[p] → Ev[p]. Thus, if we consider
two elliptic curves E1 and E2 which are defined over F , which have good ordinary reduction
at the primes of F lying over p, and such that E1[p] ∼= E2[p] as Fp-representation spaces for
GF , then the Selmer atoms SelΣ0

E1[p]⊗τ (F∞) and SelΣ0

E2[p]⊗τ (F∞) corresponding to any choice of
Σ0 and τ will be isomorphic. In particular, if we choose Σ0 to contain ΦK/F ∪ ΨE1 ∪ ΨE2 ,
then one can apply theorem 2 to either elliptic curve. If assumptions (i), (ii), and (iii) are
satisfied for E1, then they are also satisfied for E2. Under all these assumptions, one can
then conclude that λΣ0

E1
(σ) = λΣ0

E2
(σ) for all σ ∈ IrrF(∆). A very similar kind of theorem is

proved in [GrVa] for the special case σ = σ0.

1.5 Parity questions.

One of our original motivations for this project was to study parity questions. We denote
the contragredient of a representation ρ of any group by ρ̌. If ρ̌ ∼= ρ, then we say that ρ is
self-dual. Let Irr

(sd)
F (∆) denote the subset of IrrF(∆) consisting of the irreducible, self-dual

representations σ of ∆ over F . Ideally, the goal would be to derive results concerning the
multiplicity rE(σ) of such a σ in the ∆-representation space E(K)⊗ZF . Conjecturally, rE(σ)
should equal the order of vanishing at s = 1 for the L-function L(E/F, σ, s), the Hasse-Weil
L-function for E over F , twisted by the Artin representation σ. Consequently, the parity of
rE(σ) should agree with the sign in the functional equation for L(E/F, σ, s). Of course, one
must view σ as a representation over C in some way in order to define L(E/F, σ, s). The
analytic continuation and functional equation for that L-function is still just conjectural in
general, but there is a precise prediction of the sign in the functional equation which is due
to Deligne. We will think of that sign as a factor of ±1 and denote that predicted factor by
WDel(E, σ).
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A more approachable question concerns the multiplicity of σ in the ∆-representation
space XE(K) ⊗Zp F , where XE(K) is the Pontryagin dual of the p-Selmer group SelE(K)p.
We denote that multiplicity by sE,p(σ). Assuming the finiteness of XE(K)p, the p-primary
subgroup of the Tate-Shafarevich group for E over K, one would have sE,p(σ) = rE(σ) for
all primes p. Thus, at the very least, the parity of sE,p(σ) should certainly agree with the
value of WDel(E, σ). That question has received considerable attention over the years and
significant progress has been made by a number of authors. In recent years, this would include
Nekovář [Nek1,2,3,4,5], Kim [Kim1,2], Mazur and Rubin [MR07,08], Coates, Fukaya, Kato,
and Sujatha [CFKS], and T. and V. Dokchitser [Dok1,2,3,4,5]. Some of the older papers
include those of Birch and Stephens [BiSt], Kramer and Tunnell [KrTu], and Monsky [Mon].
However, the approach of this paper is rather different than the ones just mentioned. It is
perhaps most closely related to [CFKS]. We will say more about some of the results of the
above authors when we discuss various examples in chapter 13.

To describe our contribution to parity questions, consider an arbitrary (possibly re-
ducible) self-dual representation ρ of ∆ over F . For each σ ∈ IrrF(∆), let mρ(σ) denote
the multiplicity of σ in ρ. Thus, mρ(σ̌) = mρ(σ). Define

WDel(E, ρ) =
∏

σ

(sd)
WDel(E, σ)mρ(σ) ,

where the product is over just the σ’s in Irr
(sd)
F (∆). In effect, we have made a definition

which is multiplicative for direct sums and where we just regard WDel(E, ρ) to be equal to
1 if ρ ∼= σ ⊕ σ̌ for some non-self-dual σ ∈ IrrF(∆). Of course, the sign in the functional
equation for the L-function L(E/F, ρ, s) = L(E/F, σ, s)L(E/F, σ̌, s) should certainly be 1.

Continuing to assume that ρ is self-dual, we define an analogous function in terms of the
Iwasawa invariants λE(σ), namely

WIwp
(E, ρ) =

∏

σ

(sd)
(−1)λE(σ)mρ(σ) ,

assuming that SelE(K∞)p is Λ-cotorsion so that the λ-invariants can be defined. Thus,

WIwp
(E, ρ) is also multiplicative for direct sums and WIwp

(E, σ) = (−1)λE(σ) if σ ∈ Irr
(sd)
F (∆).

Again, we have implicitly defined WIwp
(E, ρ) to be 1 if ρ ∼= σ⊕ σ̌. This is reasonable since it

turns out that λE(σ) = λE(σ̌) for any σ ∈ IrrF(∆), a result we will prove in chapter 10, and
therefore λE(σ) + λE(σ̌) is even. With this notation, we will prove the following theorem in
chapter 12.

Theorem 3. Assume that p is an odd prime, that E has good ordinary reduction at the
primes of F lying above p, that E has semistable reduction at the primes of F lying above 2
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or 3, and that SelE(K∞)[p] is finite. Suppose that ρ1 and ρ2 are self-dual representations of
∆ over F and that ρ̃1

ss ∼= ρ̃2
ss. Then WIwp

(E, ρ1) = WDel(E, ρ1) if and only if WIwp
(E, ρ2) =

WDel(E, ρ2).

The assumption about reduction at primes v lying over 2 or 3 should not be needed. It is
there because the existing formulas for the local root number at such primes don’t cover all
cases. However, we can weaken the assumption considerably. For example, an alternative
assumption would be that v 6∈ ΦK/F .

One interesting special case concerns extensionsK/F where ∆ = Gal(K/F ) is isomorphic
to PGL2(Z/p

r+1Z) for some r ≥ 1 and an odd prime p. We will denote this ∆ by ∆r from
here on and the corresponding field of definition will be denoted by Fr. It turns out that all
representations of ∆r are self-dual and orthogonal, i.e., realizable by orthogonal matrices over
a sufficiently large field. We prove this in proposition 9.1.1. There is a Galois extension K0 of
F contained in K such that ∆0 = Gal(K0/F ) is isomorphic to PGL2(Z/pZ). The hypothesis
that SelE(K∞)[p] is finite turns out to be satisfied if one just assumes that SelE(K0,∞)[p] is
finite, where K0,∞ denotes the cyclotomic Zp-extension of K0. If one makes that assumption
and the other stated assumptions, then theorem 3 has the following consequence:

Suppose that WIwp
(E, σ) = WDel(E, σ) for all σ ∈ IrrF0

(∆0). Then WIwp
(E, σ) = WDel(E, σ)

for all σ ∈ IrrFr(∆r).

To study the relationship of the WDel(E, σ)’s to XE(K) which was mentioned before, one
uses the Cassels-Tate pairing and the orthogonality to show that the multiplicities of σ
in XE(K) ⊗Zp F and in XE(K∞) ⊗Zp F have the same parity under certain assump-
tions. (See proposition 10.2.1.) We express this as an equality WSelp

(E, σ) = WDel(E, σ),
where WSelp

(E, σ) is defined in terms of the multiplicity of σ in the ∆-representations space
XE(K) ⊗Zp F .

1.6 Other situations.

We now discuss another aspect of Iwasawa theory. On the analytic side of the theory,
which concerns p-adic L-functions, one may consider a Zp-valued measure on the group G.
Such a measure corresponds to an element θ in the completed group ring ΛG = Zp[[G]].
Starting from θ, one can then consider its image under various ring homomorphisms. For
example, suppose that σ ∈ IrrF(∆). We obtain a Zp-algebra homomorphism from Zp[∆] to
the ring Mn(σ)(O) of n(σ) × n(σ) matrices over O, which we also denote by σ. Since ΛG is
isomorphic to Λ[∆] = Zp[∆] ⊗Zp Λ, one can extend σ to a Λ-algebra homomorphism from

16



ΛG to Mn(σ)(ΛO), where ΛO = O[[Γ]]. Thus, σ(θ) is a matrix with entries in ΛO. Let us
define

Lθ,σ = det
(
σ(θ)

)
,

an element of ΛO. This definition makes sense for an arbitrary representation σ of ∆ over F ,
and is multiplicative for direct sums of such representations. If we fix a topological generator
γo of Γ, then Λ is isomorphic to a formal power series ring Zp[[T ]] in one variable and ΛO is
isomorphic to O[[T ]], where these isomorphisms are defined by sending γo− idΓ to T . If Lθ,σ
is a nonzero element of ΛO, then we can define its λ- and µ-invariants as usual. We denote
those invariants by λ(θ, σ) and µ(θ, σ)

Similarly, we can consider an Fp-valued measure on G. This would correspond to an

element ϕ of the ring Λ̃G = Fp[[G]]. We often think of that ring as ΛG/pΛG. Let Λ̃ = Λ/pΛ.

Then Λ̃G can be identified with Λ̃[∆]. Suppose that τ is a representation of ∆ over f, not
necessarily irreducible. Then τ defines a homomorphism from Fp[[∆]] to Mn(τ)(f). We can

extend τ to a Λ̃-algebra homomorphism from Λ̃G to the matrix ring Mn(τ)

(
f[[Γ]]

)
. Thus,

τ(ϕ) is a matrix with entries in f[[Γ]]. We define

Lϕ,τ = det
(
τ(ϕ)

)

which is an element of f[[Γ]]. This ring is isomorphic to the formal power series ring f[[T ]], a
discrete valuation ring. Assuming that Lϕ,τ is nonzero, we define w(ϕ, τ) to be its valuation
(normalized so that the valuation of T is 1). It is clear from the definition and properties
of determinants that Lϕ,τ depends only on the semisimplification τ ss of τ and that it is
multiplicative for direct sums.

Suppose that θ ∈ ΛG and σ ∈ IrrF(∆). Let π be a generator of m. Assume that

µ(θ, σ) = 0. This means that Lθ,σ is not divisible by π in ΛO. Let θ̃ denote the image of θ

under the natural homomorphism ΛG → Λ̃G. Then it is not difficult to verify that the image
of Lθ,σ under the homomorphism O[[Γ]] → f[[Γ]] defined by reduction modulo m is

(1.6.a) Leθ,eσ =
∏

τ

Ld(σ,τ)
eθ,τ

,

where the product is over all τ ∈ Irrf(∆). As a consequence, Leθ,τ is nonzero for all τ ’s
occurring in σ̃ss with positive multiplicity and we have

(1.6.b) λ(θ, σ) =
∑

τ

d(σ, τ)w(θ̃, τ)

The similarity between (1.6.b) and (1.1.c) can be explained as follows. Consider the cyclic
ΛG-module Xθ = ΛG/ΛGθ. We make the assumption that Leθ,τ is nonzero for all τ ∈ Irrf(∆).
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That assumption is equivalent to the statement that µ(θ, σ) is zero for all σ ∈ IrrF(∆), as
follows from (1.6.a). We will then show that Xθ is a free Zp-module of finite rank and is
projective as a Zp[∆]-module. Furthermore,

(1.6.c) λ(Xθ, σ) = λ(θ, σ), w(Xθ, τ) = w(θ̃, τ)

for all σ ∈ IrrF(∆) and τ ∈ Irrf(∆). (See section 2.3.) We will also show that any cyclic
ΛG-module X which is projective as a Zp[∆]-module is isomorphic to Xθ for some θ ∈ ΛG

satisfying the above assumption. A more general result can be found in corollary 2.4.3.
Note that under the assumptions of the previous paragraph, one will have the congruence

relation (1.1.d) for the Zp[∆]-module Xθ whenever one has two representations ρ1 and ρ2

of ∆ satisfying ρ̃1
ss ∼= ρ̃2

ss. Therefore, (1.6.c) implies that one will have a corresponding
congruence relation for the quantities λ(θ, σ). This relation also follows easily from (1.6.b).
Furthermore, if X is any finitely generated ΛG-module which is torsion as a Λ-module and
projective as a Zp[∆]-module, then there exists a θ ∈ ΛG with the following property: For
all σ ∈ IrrF(∆), we have µ(θ, σ) = 0 and λ(θ, σ) = λ(X, σ). The easy justification will be
given in remark 2.4.4.

It is natural to try to extend the kinds of results we study in this paper to the case
where K is an infinite Galois extension of F . We intend to discuss this in a future paper
[Gr09b]. One would want to assume that only finitely many primes of F are ramified in K/F ,
that K ∩ F∞ = F , and also that ∆ = Gal(K/F ) is essentially a pro-p group. Of special
interest is the case where ∆ is a p-adic Lie group. Then ∆ has a normal pro-p subgroup
Π of finite index. Every irreducible representation of ∆ over a finite field of characteristic
p factors through the finite quotient group ∆0 = ∆/Π. There are only finitely many such
irreducible representations. Under our assumptions, one still has Gal(K∞/F ) ∼= ∆ × Γ,
where K∞ = KF∞. Thus, Gal(K∞/F ) is also a p-adic Lie group. The Pontryagin dual
XE(K∞) of SelE(K∞)p is a module over the completed group ring Zp[[Gal(K∞/F )]]. One
kind of result which can be proved is that, under suitable hypotheses, one can make a very
precise statement about the structure of XE(K∞) as a Zp[[∆]]-module.

There is another more general setting which we will consider in this paper. Much of what
we have described is valid if we just assume that K∞ is a finite Galois extension of F∞. We
can then let ∆ = Gal(K∞/F∞). Nothing is really lost if we assume in addition that K∞

is Galois over F . Then ∆ will be a normal subgroup of Gal(K∞/F ). One then sees easily
that there is a finite Galois extension K of F such that K∞ = KF∞. But, in general, one
can’t assume that K ∩F∞ = F . That assumption is too restrictive for certain purposes. For
example, the quantities WSelp

(E, σ) and WDel(E, σ) are defined for all irreducible, self-dual
Artin representations σ of GF . Such a σ will be a faithful representation of Gal(K/F ) for
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a certain field K, but it can happen that K ∩ F∞ 6= F . We will discuss this situation in
section 3.5, in the illustration in section 8.4, in chapters 10 and 12, and in section 13.3. We
will tend to denote Gal(K/F ) by D. Thus, the restriction map identifies ∆ with a normal
subgroup of D.

1.7 Organization and acknowledgements.

Let us briefly summarize the organization of this long paper. Chapters 2 and 3 give the
proof of theorem 1. The rather long chapter 4 proves a number of basic results about Selmer
atoms. The main objective is to prove theorem 2. The determination of δΣ0

E (σ) is discussed
in chapter 5. Chapters 6 and 8 study special situations and illustrate how the ideas of this
paper can be applied. Chapter 7 discusses a wide range of groups which come up naturally
as Galois groups and which occur in the illustrations of chapters 8 and 13. Chapter 9 deals
with group theoretic questions that are needed for the proof of theorem 3. A fundamental
duality theorem is proved in chapter 10. Finally, chapter 11 prepares the way for the proof
of theorem 3 which is given in chapter 12. We close with chapter 13 which continues the
arithmetic illustrations from chapter 8, but emphasizes parity questions.

This research has been partially supported by a grant from the National Science Foun-
dation. I also want to thank IHES for its hospitality during the summer of 2002. Some
of the ideas in this paper began to develop during that visit. One important inspiration
was the thesis of Alexandra Nichifor [Nic], where the freeness of certain Iwasawa modules
in classical Iwasawa theory is proved when ∆ is cyclic of order p. A remark of Cornelius
Greither suggesting that a cohomological argument could be used to prove such a freeness
result also served as an important hint for me. I am very grateful to David Rohrlich for
several helpful discussions concerning root numbers as well as providing most of the proof
of Lemma 12.1.2. I have also benefited from various conversations with John Coates, Julia
Pevtsova, Robert Pollack, and Karl Rubin. Finally, I want to thank the referee for many
valuable suggestions which led to improvements in the organization and exposition of this
paper.

2 Projective and quasi-projective modules.

Our main objective in this chapter is to give cohomological criteria for the projectivity or
quasi-projectivity of a Zp[∆]-module X. This is done in section 2.1. In addition, in sections
2.2, 2.3, and 2.4, we will discuss some important points concerning the structure of X as a
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ΛG-module, where G is the direct product ∆ × Γ, or even (in section 2.4) just a semidirect
product ∆ ⋊ Γ.

2.1 Criteria for projectivity and quasi-projectivity.

We discuss these criteria in sections A and B. Some useful remarks will be in section C.

A. Projectivity. Suppose that X is a free Zp-module of finite rank and that ∆ is a finite
group which has a Zp-linear action on X. Let S = Hom(X,Qp/Zp), a divisible Zp-module
of finite corank. Of course, ∆ acts on S and the cohomology groups H i(∆, S) for i ≥ 1 are
finite and have p-power order. We first give a criterion for projectivity. It is not at all a new
result. It is very close to Théorème 7 in [Se68]. That result concerns modules over Z[∆], but
the argument found there works for modules over Zp[∆] as well. The proof below is rather
different.

Proposition 2.1.1. Suppose that H i(∆′, S) = 0 for i = 1, 2 and for every subgroup ∆′ of
∆. Then X is projective as a Zp[∆]-module.

Proof. Let Π denote a Sylow p-subgroup of ∆. We will give an inductive proof to show that
X is a free Zp[Π]-module. Suppose at first that Π is cyclic of order p. In that case, there
are three non-isomorphic indecomposable Zp[Π]-modules which are free as Zp-modules: the
free module Zp[Π], the augmentation ideal IΠ in Zp[Π], and the quotient Zp[Π]/IΠ ∼= Zp

which has a trivial action of Π. We refer the reader to [Rei] for the proof. That article
considers Z[Π]-modules which are free as Z-modules, but the argument applies without
change to Zp[Π]-modules. The result is simpler in that case because Zp[µp] is a PID. The
corollary in that article shows that there are just three non-isomorphic, finitely-generated,
indecomposable Zp[Π]-modules which are torsion-free as Zp-modules.

Consequently, X is a direct sum of copies of the above indecomposable modules. We
denote their Pontryagin duals by T, S1, and S0, respectively. Thus, T has Zp-corank p, S1

has Zp-corank p− 1, and S0 has Zp-corank 1. We have an isomorphism

S ∼= Sa0 × Sb1 × T c

as a Zp[Π]-module, where a, b, c ≥ 0. One sees easily that

H1(Π, S0) ∼= Z/pZ, H2(Π, S1) ∼= Z/pZ

Since we are assuming that H1(Π, S) and H2(Π, S) are both trivial, it follows that a = b = 0
and hence that X ∼= Zp[Π]c, proving freeness if |Π| = p.
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Now suppose that |Π| = pn, where n ≥ 2. Let Π′ be a normal subgroup of Π of order p.
Since X must be Zp[Π

′]-free, as we just argued, it follows that SΠ′ is a divisible Zp-module,
that corankZp(S) = p · corankZp(S

Π′), and that H i(Π′, S) = 0 for all i ≥ 1. Also, for any
subgroup Π′′ of Π containing Π′, we have exact sequences

0 −→ H1(Π′′/Π′, SΠ′) −→ H1(Π′′, S), 0 −→ H2(Π′′/Π′, SΠ′) −→ H2(Π′′, S),

where the exactness of the second sequence follows from the fact that H1(Π′, S) = 0. The
assumptions in the proposition then imply that H i(Π′′/Π′, SΠ′) = 0 for i = 1, 2 and for
every such Π′′. We can therefore assume inductively that the Pontryagin dual of SΠ′ is a
free Zp[Π/Π

′]-module. This Pontryagin dual is isomorphic to XΠ′ , the maximal quotient of
X on which Π′ acts trivially, and so we have

XΠ′
∼= Zp[Π/Π

′]c

for some c ≥ 0. By Nakayama’s lemma, it follows that X can be generated by c elements as
a Zp[Π]-module. That is, X ∼= Zp[Π]c/Y where Y is a submodule of Zp[Π]c. However, we
have

rankZp(X) = p · rankZp(XΠ′) = p · c · |Π/Π′| = c · |Π|
and this implies that Y = 0. Thus, X ∼= Zp[Π]c, as we wanted.

To finish the proof, we recall a standard argument (found in [Alp]) to deduce that X
is a projective Zp[∆]-module. Let m = [∆ : Π] and choose a set {δj}1≤j≤m of left coset
representatives for Π in ∆. Note that p ∤ m. There is a surjective ∆-homomorphism

ψ : Zp[∆]r −→ X

for some r. Since X is a free Zp[Π]-module, and hence projective, there exists a splitting
map φ : X −→ Zp[∆]r which is a Π-homomorphism. We have (ψ ◦ φ)(x) = x for all x ∈ X.
Define

(2.1.a) φ′ =
1

m

m∑

j=1

δj ◦ φ ◦ δ−1
j

which is a map from X to Zp[∆]r since m ∈ Z×
p . One verifies easily that φ′ is a ∆-

homomorphism and that (ψ ◦ φ′)(x) = x for all x ∈ X. Thus, φ′ is a splitting map for
ψ. This shows that X is projective as a Zp[∆]-module. �

Remark 2.1.2. The converse of proposition 2.1.1 is obvious. If X is projective, then it is a
direct summand in Zp[∆]r for some r. Hence S is a direct summand in T r, where T denotes
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the Pontryagin dual of Zp[∆]. Since Zp[∆] is a free Zp[∆
′]-module for any subgroup ∆′ of ∆,

it follows that H i(∆′, T ) = 0 for any i ≥ 1. Hence H i(∆′, S) clearly vanishes for i ≥ 1. ♦

B. Quasi-projectivity. Assume that X is a finitely generated Zp[∆]-module, but not nec-
essarily torsion-free as a Zp-module. We defined the notion of quasi-projectivity in the in-
troduction. To state the definition somewhat differently, we say that X is a quasi-projective
Zp[∆]-module if the representation space V = X ⊗Zp Qp for ∆ fits into an exact sequence

0 −→ V1 −→ V2 −→ V −→ 0

where V1 = Y1 ⊗Zp Qp, V2 = Y2 ⊗Zp Qp and both Y1 and Y2 are projective Zp[∆]-modules.
One verifies easily that this is equivalent to the definition in the introduction. The character
χ of the representation space V for ∆ satisfies the following property:

(QP) χ(δ) = 0 for all δ ∈ ∆ of order divisible by p.

This is easy to see. It suffices to check this when X is projective. Suppose δ ∈ ∆ has order
divisible by p. Let C be a cyclic subgroup of ∆ containing δ. Then X is projective as a
Zp[C]-module. Let C = PQ, where P is a nontrivial p-group and Q has order prime to p. Let
O be the extension of Zp generated by roots of unity of order |Q|, let ε be any 1-dimensional
character ofQ, and let eε be the idempotent for ε in O[Q]. ThenXO = X⊗ZpO is a projective
O[C]-module and is isomorphic to the direct sum of the modules X(ε) = eεXO, each of which
is also projective as an O[C]-module. It follows that X(ε) is projective and hence free as
a Zp[P ]-module. Let F be the fraction field of O, VF = V ⊗Qp F , and V (ε) = eεVF , the
ε-component of V as a representation space for Q. Then V (ε) is a representation space for
C, and its restriction to P is a multiple of the regular representation for P . The projection
of δ to P is nontrivial and therefore the trace of δ acting on V (ε) is 0. Since this is so for
every ε, it indeed follows that χ(δ) = 0.

The converse is also true: If the character of the representation space V = X ⊗Zp Qp has
the property (QP), then X is quasi-projective. This is proved in [Se77], theorem 36. One
of the ingredients in the argument is that the characters of the representations Pτ ⊗Zp F are
Q-linearly independent and must be a basis for the Q-vector space of characters satisfying
property (QP), which clearly has dimension t. Thus, (QP) is a necessary and sufficient
condition for X to be quasi-projective. We will use this to prove a criterion for quasi-
projectivity in terms of the Zp[∆]-module S = Hom(X,Qp/Zp). We will use the same
notation C = PQ as above for any cyclic subgroup C of ∆. We let S(ε) = eεSO. Here
SO = S⊗ZpO, which can be defined for any Zp[∆]-module S. Let hP (A) denote the Herbrand
quotient |H2(P,A)|

/
|H1(P,A)|. In the following, we assume that X is finitely-generated as

a Zp-module.

22



Proposition 2.1.3. The Zp[∆]-module X is quasi-projective if and only if the following
criterion is satisfied: For every cyclic subgroup C = PQ of ∆ and every character ε of Q,
we have hP (S(ε)) = 1.

Proof. The implication in one direction is straightforward. If X is quasi-projective as a
Zp[∆]-module, then there exist finitely-generated, projective Zp[∆]-modules Y1 and Y2 and
a sequence

0 −→ Y1 −→ Y2 −→ −→ X −→ 0

which exactness at each step only fails by a finite group. If C = PQ is a cyclic subgroup
of ∆, then Y1 and Y2 are projective Zp[C]-modules. It follows that the ε−1-components of
both Y1 ⊗Zp O and Y2 ⊗Zp O are free O[P ]-modules. The fact that the Herbrand quotient
is 1 for finite modules and behaves multiplicatively in exact sequences, then implies that
hP (S(ε)) = 1.

For the other implication, we assume the triviality of all the Herbrand quotients. First
consider the special case where ∆ is itself a cyclic p-group. Let |∆| = pn. For each j, 0 ≤
j ≤ n, let Pj denote the subgroup of ∆ of order pj. For each k, 0 ≤ k ≤ n, let Wk denote
the irreducible representation space for ∆ over Qp whose kernel is the subgroup of index pk,
i.e., the subgroup Pn−k. Thus, W0 is the trivial representation space for ∆, W1 is a faithful
representation of ∆/∆p of dimension p− 1, etc.. One can identify Wk with Qp[µpk ], where a
generator of ∆ acts by multiplication by a generator of µpk . Let nk = dimQp(Wk). We have
nk = pk−1(p − 1) if k ≥ 1 and n0 = 1. Choose a ∆-invariant Zp-lattice Lk in Wk and let
Sk = Wk/Lk. Then V ∼=

⊕n
k=0W

λk
k , say. Therefore,

S ≈
n⊕

k=0

Sλk
k

where ≈ means that there is a ∆-equivariant map with finite kernel and cokernel (which
implies that the map is surjective here).

Our assumption is that hPj
(S) = 1, or equivalently,

∏n
k=0 hPj

(Sk)
λk = 1 for all j’s. Note

that
∏n

k=0 Sk ≈ Zp[∆]⊗Zp (Qp/Zp), a cohomologically trivial module. Hence
∏n

k=0 hPj
(Sk) =

1 for each j. For 1 ≤ j ≤ n, 0 ≤ k ≤ n, we let hPj
(Sk) = pajk , where ajk ∈ Z. With this

notation, our assumption is that the λk’s satisfy the linear equations

(2.1.b)
n∑

k=0

ajkλk = 0

for 1 ≤ j ≤ n (ignoring the trivial equation corresponding to j = 0). One solution to these
equations is λ0 = λ1 = ... = λn = 1. We want to prove that every solution to these equations
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is a scalar multiple of that solution. That will imply that S ≈
(
Zp[∆] ⊗Zp (Qp/Zp)

)λ
for

some integer λ ≥ 0 and hence that X will indeed be quasi-projective.
We will prove that the coefficient matrix A = [ajk] for the above system of equations

has rank n and so the solutions are just constant multiples of the solution given by λk = 1
for 0 ≤ k ≤ n, as we want. We can see this by applying some column operation to that
n× (n+ 1) matrix. For any k, 0 ≤ k ≤ n, suppose that j satisfies j + k ≤ n. Then Pj acts
trivially on Wk and hence on Sk. Hence H1(Pj, Sk) = Hom(Pj, Sk) and this has order pjnk ,
where nk is as defined above. Also, it is clear that H2(Pj, Sk) = 0. Thus, ajk = −jnk for
such j and k. On the other hand, if k ≥ 1 and j + k = n + 1, then Pj acts non-trivially on

Sk (through the quotient group of order p), H1(Pj, Sk) = 0, and H2(Pj, Sk) ∼= S
Pj

k , a finite
group isomorphic to Zp[µpk ]/(ζp − 1), where ζp is a generator of µp. This finite group has

order pp
k−1

and therefore ajk = pk−1. Note that this is positive and so is not equal to −jnk.
Denote the columns in A by A0, A1, ..., An. The first column A0 in A has entries

−1, ...,−n. For each k ≥ 1, the j-th entry in Bk = Ak − nkA0 is 0 if j + k ≤ n, but
the j-th entry is nonzero when j + k = n + 1. Thus, B1, ..., Bn are linearly independent
and so, indeed, A has rank n. We remark that for odd p, one can give a somewhat simpler
argument. Namely, note that the nk’s are even for k ≥ 1. Thus, the j-th entry in Ak is even
if j + k ≤ n, but is odd if j + k = n + 1. Hence the matrix with columns A1, ..., An clearly
has odd determinant, assuming p is odd, and hence that matrix is nonsingular.

Now assume that ∆ is arbitrary and that C = PQ is a cyclic subgroup of ∆ as notated
above. We can apply the result just proved to the cyclic p-group P and to S(ε) for any
character ε of Q. It follows that the Pontryagin dual of S(ε) is quasi-projective as a Zp[P ]-
module. Let V = X ⊗Zp Qp, VF = V ⊗Qp F , as before, and let χ be the corresponding
character (of C or of ∆). Regarding VF as a representation space for C, we now know that

V
(ε-1)
F = eε-1VF is isomorphic to the tensor product of the representation ε-1 of Q and some

multiple of the regular representation of P . Thus, the character of this representation of C
is identically 0 on the elements of order divisible by p. Since this is so for every ε, it follows
that χ|C has the same property. Consequently, since C is arbitrary, χ satisfies the property
(QP) and therefore X is indeed quasi-projective. �

Remark 2.1.4. It is proved in [Se77] (corollary 2 to theorem 34) that if Y is a finitely-
generated, projective Zp[∆]-module, then the isomorphism class of Y is determined by the
∆-representation space V = Y ⊗Zp Qp. We already mentioned this fact at the beginning of
the introduction. Consequently, if X is a ∆-invariant Zp-lattice in V which is not isomorphic
to Y as a Zp[∆]-module, then X cannot be projective. However, it is clear from the definition
that X will be quasi-projective. Such examples are easy to give. In the special case where
∆ is a p-group, a Zp[∆]-module Y is projective if and only if it is free, and so one would just
need to check that X is not free.

24



As a simple example, suppose that ∆ is cyclic of order p and that Y is a free Zp[∆]-module
of rank 1. Then V is just the regular representation for ∆ over Qp. Using the notation in
the proof of proposition 2.1.3, we have V ∼= W0 ⊕W1 and X = L0 ⊕ L1 is a ∆-invariant
Zp-lattice in V . Thus, X is quasi-projective, but X 6∼= Y because Y is a cyclic Zp[∆]-module,
but X requires two generators. Hence X is quasi-projective, but not projective. One finds
similar examples if one takes ∆ to be cyclic of order pn. In fact, the number of isomorphism
classes of ∆-invariant Zp-lattices increases with n.

If ∆ is a p-group, then a finitely-generated Zp[∆]-module X is quasi-projective if and only
ifX⊗ZpQp is a free Qp[∆]-module. This follows easily from the definition. Consequently,X is
quasi-projective if and only if there exists a free Zp[∆]-module Y and a Zp[∆]-homomorphism
X → Y with finite kernel and cokernel. In general, for an arbitrary finite group ∆, a strictly
quasi-projective module (as defined at the end of section 1.1) is certainly quasi-projective.
However, the converse is not always true. The issue is whether or not property (QP) implies
that a representation space V contains a ∆-invariant Zp-lattice which is projective as a
Zp[∆]-module. We refer the reader to chapter 16.3 in [Se77] for a discussion of this issue.
Theorem 38 there shows that quasi-projectivity and strict quasi-projectivity are equivalent
if ∆ is a p-solvable group. ♦

Suppose that X is a finitely-generated Zp[∆]-module. As in the introduction, we can
define λX : RF(∆) → Z to be the unique group homomorphism satisfying λX(σ) = λ(X, σ)
for all σ ∈ IrrF(∆). Recall that λ(X, σ) is the multiplicity of σ in the representation space
VF = X ⊗Zp F for ∆. The next proposition gives another criterion for quasi-projectivity.
The first part was already pointed out in the introduction. For brevity, we let RepF(∆)
denote the set of representations for ∆ over F , considered as a subset of RF(∆).

Proposition 2.1.5. Suppose that X is a quasi-projective Zp[∆]-module. Then the following
statement is true:

If ρ1, ρ2 ∈ RepF(∆) and ρ̃1
ss ∼= ρ̃2

ss, then λX(ρ1) = λX(ρ2) .

Conversely, if this statement is true, then X is quasi-projective.

Proof. We just need to consider the converse. So suppose that the function λX has the
stated property. This means that λX factors through the decomposition homomorphism
d : RF(∆) → Rf(∆) and so there is a function wX : Rf(∆) → Z such that λX = wX ◦ d. We
can assume that wX(τ) ≥ 0 for all τ ∈ Irrf(∆) without loss of generality just by replacing
X by X ⊕ Zp[∆]t for a sufficiently large value of t, if necessary. Making that assumption,

consider Y = ⊕τP
wX(τ)
τ , a projective Zp[∆]-module. Then

λ(Y, σ) =
∑

τ

wX(τ)d(σ, τ) = λ(X, σ)
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for all σ ∈ IrrF(∆) and hence Y ⊗Zp F ∼= X ⊗Zp F as F -representation spaces for ∆. It
follows that X ⊗Zp Qp and Y ⊗Zp Qp are isomorphic as Qp-representation spaces for ∆,
proving that X is indeed quasi-projective. �

C. Useful remarks. Suppose that we have finitely-generated Zp-modules Xj for j = 1, 2, 3
which have Zp-linear actions of ∆. Let Sj = Hom(Xj,Qp/Zp). Suppose that these discrete
modules fit into an exact sequence

0 −→ S1 −→ S2 −→ S3 −→ 0

of Zp[∆]-modules. Then proposition 2.1.3 together with the multiplicativity of Herbrand
quotients in exact sequences implies the following result:

Remark 2.1.6. If any two of the modules Xj are quasi-projective, then so is the third.

This is also obvious from considering the characters of the representation spaces Xj ⊗Zp Qp.
If two of the characters satisfy property (QP), then so does the third. ♦

Assume now that Xj is a free Zp-module of finite rank for j = 1, 2, 3 and that the
Pontryagin duals Sj fit into an exact sequence as above. Of course, the Xj’s also fit into a
similar exact sequence, but in the reverse order. Then the following result is true:

Remark 2.1.7. If any two of the modules Xj are projective as Zp[∆]-modules, then so is
the third.

By definition, if X1 is assumed to be projective, then the exact sequence splits and we have
an isomorphism X2

∼= X1 ⊕X3. Therefore, X2 is projective if and only if X3 is projective.
Assume instead that X3 is a projective Zp[∆]-module. Then, for any subgroup ∆′ of ∆, we
have H i(∆′, S3) = 0 for i ≥ 1. Also, X3 will be a direct summand in a free Zp[∆

′]-module.
It follows easily that H0(∆′, S3) is a divisible Zp-module. Using this together with the fact
that H1(∆′, S1) is finite, we see that the map H0(∆′, S2) → H0(∆′, S3) must be surjective.
Consequently, one has H i(∆′, S1) ∼= H i(∆′, S2) for all i ≥ 1. Thus, by proposition 2.1.1 and
remark 2.1.2, the projectivity of X1 and X2 as Zp[∆]-modules will be equivalent. ♦

Remark 2.1.8. This concerns induction from a subgroup ∆∗ of ∆. Suppose that X∗ is a free
Zp-module with a Zp-linear actions of ∆∗. Let X = X∗⊗Zp[∆∗] Zp[∆]. It is easy to see that if
X∗ is a projective Zp[∆∗]-module, then X is a projective Zp[∆]-module. As a consequence, a
similar statement is true for strictly quasi-projective modules. Using the fact that induction
is an exact functor for representation spaces, the same statement follows for quasi-projective
modules. One can also easily justify this assertion by using property (QP). In particular,
suppose that |∆∗| is not divisible by p. Let V∗ = X∗ ⊗Zp Qp and let V = Ind∆

∆∗(V∗) be the
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induced representation of ∆. Then every ∆-invariant Zp-lattice in V will be quasi-projective
as a Zp[∆]-module.

One other simple remark concerning induction has nothing to do with projectivity. Sup-
pose that X is a finitely generated Zp[∆]-module and that σ∗ ∈ IrrF(∆∗). Suppose that

Ind∆
∆∗(σ∗)

∼=
⊕

σ

σm(σ) ,

where σ varies over IrrF(∆) and m(σ) ≥ 0. Then

∑

σ

m(σ)λ(X, σ) = λ(X, σ∗) ,

where λ(X, σ∗) is defined by viewing X as a Zp[∆∗]-module. This equality is an immediate
consequence of Frobenius reciprocity. In particular, if σ ∈ IrrF(∆) and σ ∼= Ind∆

∆∗(σ∗), then
λ(X, σ) = λ(X, σ∗). ♦

Remark 2.1.9. This remark also concerns induction. Suppose that C = PQ is a finite cyclic
group as in proposition 2.1.3 and that C∗ is a subgroup of C. We then have C∗ = P∗Q∗,
where P∗ = P ∩C∗ and Q∗ = Q∩C∗, cyclic groups of p-power order and of order prime to p,
respectively. Suppose that A∗ is a Zp[C∗]-module which has the discrete topology and is a
torsion Zp-module. We will assume that the cohomology groups H i(P∗,A∗) for i ≥ 1 are all
finite. Let A = IndCC∗(A∗). Let ε be an O×-valued character of Q and let ε∗ = ε|Q∗ . Then

(2.1.c) hP
(
A(ε)

)
= hP∗

(
A(ε∗)

∗

)
.

We will later apply this equality in a situation where C is a Galois group, C∗ is the decompo-
sition subgroup of C for some prime, and A∗ may have infinite Zp-corank. Thus, proposition
2.1.3 may not be useful in such a situation.

For the justification, we may assume that A∗ is already an O-module. Furthermore, for
a fixed ε, the ε-components for the action of Q on A and on IndCC∗(A(ε∗)) are isomorphic
as O[C]-modules. Hence we can simply reduce to the case where Q∗ acts on A∗ by the
character ε∗. Also, if we let B∗ = A∗ ⊗ ε−1

∗ , then B = IndCC∗(B∗) is isomorphic to A ⊗ ε−1.
The ε-component of A is isomorphic to the ε0-component of B for the action of P , where
ε0 is the trivial character of Q. Hence the corresponding Herbrand quotients are equal. A
similar statement is true for the action of P∗ on the corresponding components of A∗ and
B∗. Thus, by replacing A∗ by B∗ if necessary, we can simply consider the case where Q∗ acts
trivially on A∗. Then, by replacing C by C/Q∗ and C∗ by C∗/Q∗, we can therefore reduce
to the case where Q∗ is trivial and C∗ = P∗.
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Let AP = IndPP∗(A∗). Shapiro’s lemma states that H i(P,AP ) ∼= H i(P∗,A∗) for all i.

Let ε be any character of Q. Since A = IndCP (AP ), one sees easily that A(ε) ∼= AP as an
O[P ]-module. It follows that H i(P,A(ε)) ∼= H i(P∗,A∗) for all i. The stated equality of the
Herbrand quotients follows from this. ♦

2.2 Nonzero µ-invariant.

We have assumed so far in this chapter that X is a finitely-generated, free Zp-module (in
proposition 2.1.1) or just finitely-generated as a Zp-module (in proposition 2.1.3), and that
there is a Zp-linear action of ∆ on X. Our primary interest is in examples where X is also
a Λ-module and the action of ∆ on X is Λ-linear. Here Λ = Zp[[Γ]], as in the introduction,
and such a module X can be regarded as a ΛG-module, where G = ∆ × Γ and ΛG is the
corresponding completed Zp-group algebra. We have ΛG

∼= Λ[∆].
It would be useful to be able to consider any finitely-generated, torsion Λ-module X with

such an action of ∆. For such a Λ-module, the Zp-torsion subgroup is a Λ-submodule and
has bounded exponent. More precisely, for any m ≥ 1, let X[pm] = {x ∈ X | pmx = 0 }.
Then, for some m, the Zp-torsion subgroup of X is X[pm] and the quotient X/X[pm] is a free
Zp-module of finite rank. If the µ-invariant µ(X) is positive (or equivalently, if the Zp-torsion
submodule of X is infinite), then X[p] will be infinite and X will not be finitely-generated as
a Zp-module. The propositions in section 2.1 will fail in general. However, it is still possible
for X/X[pm] to be projective or quasi-projective as a Zp[∆]-module. If that is so, then
we will obtain the same congruence relations for the invariants λ(X, σ). Those invariants
depend only on V = X ⊗Zp Qp. The only positive result we can prove is the following.

Proposition 2.2.1. Suppose that X is a Λ[∆]-module which is finitely-generated and torsion
as a Λ-module. Let S denote the Pontryagin dual of X. Assume that X/X[p] is finitely-
generated as a Zp-module and that H1(P, S) and H2(P, S) are finite for every cyclic p-
subgroup P of ∆. Then X/X[p] is quasi-projective as a Zp[∆]-module if and only if the
following criterion is satisfied: hP (S(ε)) = 1 for every P and ε (as in proposition 2.1.3).

It turns out that an extremely similar result was proved in [HaSh]. (See the lemmas for the
proof of their theorem 2.1. ) Our proof is somewhat different, although close in its essential
idea.

Proof. Our assumptions imply that, for all P ’s and ε’s, H1(P, S(ε)) and H2(P, S(ε)) are both
finite. This is because S(ε) is a direct summand in SO, which in turn is a direct sum of a
finite number of copies of S, all considered as Zp[P ]-modules. Hence hP (S(ε)) is defined.
Consider the Λ[∆]-submodule pS of S. Then pS is isomorphic to the Pontryagin dual of
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X/X[p] and, by assumption, is a cofinitely-generated Zp-module. Thus, hP (pS(ε)) is also
defined for all P and ε. We can apply proposition 2.1.3: X/X[p] is quasi-projective if and
only if hP (pS(ε)) = 1 for all P ’s and ε’s. Thus, we must just prove that hP (pS(ε)) = hP (S(ε)).
Equivalently, we must show that hP (U (ε)) = 1, where U = S/pS. Note that U is isomorphic
to the Pontryagin dual of X[p].

Fix a P and ε. Let n = |P |, a power of the prime p. It is easy to see that H i(P, pS(ε))
is finite for all i ≥ 1. This is simply because pS(ε) has only finitely many elements killed
by n. It follows that H i(P,U (ε)) is also finite for i = 1, 2. We will study the corresponding
Herbrand quotient.

The Pontryagin dual of U (ε) is X[p](ε
−1), which is a finitely-generated module over the

ring Fp[[Γ × P ]]. Now P is a cyclic p-group. Let g be a generator for P and let γ be a
topological generator for Γ. Thus, γ and g generate Γ × P topologically. We can regard
X[p](ε

−1) as a finitely-generated module over the formal power series ring R = Fp[[x, y]] by
letting x act as γ−idΓ and y act as g−idP . Since g has order n, this module is annihilated by
yn and hence is a torsion R-module. The standard classification theorem for torsion modules
over R (which is a regular local ring of Krull dimension 2 and residue field Fp) implies that
X[p](ε

−1) is pseudo-isomorphic to a direct sum of modules of the form Ea = R/(ya), where
1 ≤ a ≤ n. Pseudo-null R-modules are finite in this case. Thus, for some t ≥ 0 and a1, ..., at
satisfying 0 ≤ aj ≤ n, there is an R-module homomorphism

(2.2.a) U (ε) −→
t⊕

j=1

Hom(Eaj
,Fp)

of discrete R-modules with finite kernel and cokernel. (In fact, the cokernel must be trivial.)
Our assumptions imply that H i(P,U (ε)) is finite for i = 1, 2, as we mentioned above.

It follows that H i
(
P,Hom(Eaj

,Fp)
)

is also finite for i = 1, 2 and for each j. By taking
Pontryagin duals, this implies that, for each of the summands Ea occurring above, the
groups H i(P,Ea) are also finite. Note that the map defined by g − idP is multiplication by
y and the norm map for P corresponds to multiplication by yn−1. Hence, we have

H1(P,Ea) = Ker(yn−1 : Ea → Ea)
/
yEa , H2(P,Ea) = Ker(y : Ea → Ea)

/
yn−1Ea .

If a < n, then both of these groups will be infinite. Thus, we must have aj = n for
1 ≤ j ≤ t. But En is a free module of rank 1 over the ring R/(yn) ∼= Fp[[x]][P ] and both
of the cohomology groups will be trivial in that case. Hence, the Herbrand quotient will be
1. The Herbrand quotients for the kernel and cokernel of the map (2.2.a) will be 1 too. It
follows that we indeed have hP (U (ε)) = 1. This will be so for all choices of P and ε. �

Remark 2.2.2. The kind of result just proved can fail if X[p2]/X[p] is infinite. We have
no substitute in such a case. Consider the following specific example (which can also be
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found in [HaSh]). Suppose that ∆ = P is cyclic of order p. Identify Λ with Zp[[T ]]. Suppose
that X = Λ/(p2T ). Let the generator g for P act on X as multiplication by 1 + pT , which
is indeed an automorphism of X of order p. One sees easily that X/X[p2] ∼= Zp and that
P acts trivially on that quotient. Thus, X/X[p2] is not quasi-projective as a Zp[P ]-module.
In fact, one has λ(X, σ0) = 1, but λ(X, σ) = 0 for the other irreducible representations σ of
P . However, if S = Hom(X,Qp/Zp), then it turns out that H1(P, S) = H2(P, S) = 0. To
see this, note that g − 1 acts on X as multiplication by pT and the norm NP acts on X as
multiplication by

p−1∑

j=0

(1 + pT )j = pu

where u ∈ Λ×. Hence ker(NP ) = (pT )/(p2T ) = im(g − 1). This implies that H2(P, S) = 0.
Also, im(NP ) = (p)/(p2T ) = ker(g − 1), which implies that H1(P, S) = 0. ♦

2.3 The structure of ΛG

/
ΛGθ.

The module X occurring in remark 2.2.2 can alternatively be described as follows. Let
θ = g − 1 − pT , viewed as an element of ΛG for G = ∆ × Γ. Then X = ΛG

/
ΛGθ. Now we

discuss modules of this same form, justifying the statements made in section 1.6. Suppose
that θ is any nonzero element of ΛG and let X = ΛG

/
ΛGθ. This ΛG-module was denoted by

Xθ in the introduction. It is obviously finitely-generated as a Λ-module.

Recall that ΛO = O[[Γ]]. We identify ΛG ⊗Zp O with ΛO[∆]. Let σ ∈ IrrF(∆). Then
we have an O-algebra homomorphism O[∆] −→Mn(σ)(O). Tensoring with ΛO, we obtain a
continuous ΛO-algebra homomorphism which we also denote by σ:

σ : ΛO[∆] −→ Mn(σ)(ΛO) ,

The image of σ is a ΛO-subalgebra of Mn(σ)(ΛO) which we denote by Rσ. The cokernel
of σ is a torsion-group of exponent dividing |∆| which we denote by Zσ. It is a two-sided
Rσ-module. As in the introduction, we will denote det

(
σ(θ)

)
by Lθ,σ. One sees easily that

X is a torsion Λ-module if and only if Lθ,σ 6= 0 for all σ ∈ IrrF(∆).
Let Iσ = ker(σ), an ideal in ΛO[∆]. Let XO = X ⊗Zp O ∼= ΛO[∆]

/
ΛO[∆]θ. We define

Xσ = XO

/
IσXO, Sσ = Hom∆(X, Wσ/Lσ),

where Wσ is the underlying F -representation space for σ and Lσ is a ∆-invariant O-lattice in
Wσ. Assume that X is a torsion Λ-module. Then, as ΛO-modules, Xσ is finitely-generated

30



and torsion, Sσ is cofinitely-generated and cotorsion. The elements of Sσ factor through Xσ.
We have the following isomorphism:

Xσ
∼= Rσ

/
Rσσ(θ) .

Assume that Lθ,σ 6= 0. Right multiplication by σ(θ) defines ΛO-module endomorphisms of
Rσ,Mn(σ)(ΛO), and Zσ, considered as left modules. The snake lemma then gives an exact
sequence of ΛO-modules

0 −→ Zσ[σ(θ)] −→ Rσ

/
Rσσ(θ) −→Mn(σ)(ΛO)

/
Mn(σ)(ΛO)σ(θ) −→ Zσ

/
Zσσ(θ) −→ 0

from which one easily deduces that the ΛO-modules Mn(σ)(ΛO)
/
Mn(σ)(ΛO)σ(θ) and Xσ have

the same characteristic ideals. However, Mn(σ)(ΛO) is a direct sum of n(σ) right ideals, each

isomorphic to Λ
n(σ)
O as right Mn(σ)(ΛO)-modules. If A ∈Mn(σ)(ΛO) and has rank n(σ), then

the cokernel of right multiplication by the matrix A on Λ
n(σ)
O is a torsion ΛO-module and the

characteristic ideal of that module is generated by det(A). These remarks imply that the

characteristic ideal of Xσ is generated by Ln(σ)
θ,σ .

The O-rank of Xσ is equal to n(σ)λ(X, σ) by definition. On the other hand, that O-rank
is also equal to n(σ)λ(θ, σ). The first equality in (1.6.c) follows. Note also that the O-corank
of Sσ is equal to λ(X, σ).

Let X̃ = X/pX ∼= Λ̃G

/
Λ̃Gθ̃. If τ ∈ Irrf(∆), then τ is absolutely irreducible and hence

the f-algebra homomorphism f[∆] → Mn(τ)(f) is surjective. This extends to a continuous
f[[Γ]]-algebra homomorphism

τ : f[[Γ]][∆] −→ Mn(τ)(f[[Γ]])

which is also surjective. Let Iτ denote its kernel. Define X̃f = X̃ ⊗Fp f. Then we have an
isomorphism

X̃τ = X̃f

/
IτX̃f

∼= Mn(τ)(f[[Γ]])
/
Mn(τ)(f[[Γ]])τ(θ̃)

of f[[Γ]]-modules. This quotient is a torsion f[[Γ]]-module, and hence finite, if and only if

Leθ,τ = det
(
τ(θ̃)

)
6= 0.

In fact, µ(X) = 0 (i.e., X̃ is finite) if and only if Leθ,τ 6= 0 for all τ ∈ Irrf(∆). One

direction is clear. For the other direction, the nonvanishing of all the Leθ,τ ’s implies that X̃τ

is finite for all τ . It is not difficult to deduce that X̃ is finite and hence that indeed µ(X) = 0.
The argument is in the proof of proposition 4.1.6. The part about an f-representation space
X for ∆ is applicable here. Now ΛG is a free Λ-module of rank |∆|, and therefore so is ΛGθ.
It follows that the corresponding quotient module X has no nonzero, finite Λ-submodules.
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Assuming that µ(X) = 0, it follows that X must be torsion-free and therefore free as a
Zp-module. Furthermore, by propositions 2.1.1 and 2.4.1 (to be proved below), it follows
that X is a projective Zp[∆]-module.

We want to now justify the second equality in (1.6.c). Since X is projective as a Zp[∆]-
module, the weight w(X, τ) can be defined as the multiplicity of τ in the maximal semisimple

quotient of X̃f, viewed as an f-representation space for ∆. The τ -component of that repre-

sentation space is the maximal quotient annihilated by Iτ , which is X̃τ and is isomorphic to
Mn(τ)(f[[Γ]])

/
Mn(τ)(f[[Γ]])τ(θ̃) as a left Mn(τ)(f)-module. Now Mn(τ)(f[[Γ]]) is isomorphic to

a direct sum of n(τ) right ideals, all isomorphic to f[[Γ]]n(τ) as right Mn(τ)(f[[Γ]])-modules. If
A ∈Mn(τ)(f[[Γ]]) and has rank n(τ), then the cokernel of right multiplication by the matrix
A on f[[Γ]]n(τ) is a torsion f[[Γ]]-module and hence is finite. Its characteristic ideal is gen-

erated by det(A), and that determines its f-dimension. Taking A = τ(θ̃), that cokernel has

f-dimension w(θ̃, τ). These remarks imply that the f-dimension of X̃τ is n(τ)w(θ̃, τ). Thus,

the multiplicity of τ in X̃τ is w(θ̃, τ), which therefore indeed is equal to w(X, τ).

2.4 Projective dimension.

A module X of the form considered in the previous section obviously has a free resolution
of length 1 because X is isomorphic to the cokernel of the map ΛG → ΛG defined by
multiplication by θ on the right. Regarding ΛG as a left ΛG-module, it is free and the above
map is a ΛG-module homomorphism. The results in this section give such a free resolution
under certain assumptions. We will consider a somewhat more general situation. We still
assume that Γ ∼= Zp and that ∆ is finite, but we just suppose that G is an extension of Γ by
∆. That is, we have an exact sequence

1 −→ ∆ −→ G −→ Γ −→ 1

and so ∆ is a normal subgroup of G. This group extension is easily seen to be split. Hence
G ∼= ∆⋊Γ, where the semidirect product corresponds to a certain unspecified homomorphism
Γ → Aut(∆). Thus, we can regard Γ as a subgroup of G and any ΛG-module can also be
regarded as a Λ-module.

The following result gives a direct relationship between the cohomological triviality (with
respect to ∆) of a ΛG-module (or its dual) and the projective dimension of the module (as
a ΛG-module), specifically whether or not that projective dimension is 1. A rather different
proof of such a relationship (at least in the case where G is abelian) can be found in a paper
by Greither. It is part of the proof of proposition 2.4 in [Gre].
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Proposition 2.4.1. Suppose that X is a finitely-generated ΛG-module. Assume that X
is a torsion Λ-module and that X has no nonzero, finite Λ-submodules. Let S denote the
Pontryagin dual of X. Then X has a free resolution of length 1 as a ΛG-module if and only
if H i(∆′, S) = 0 for every subgroup ∆′ of ∆ and for all i ≥ 1.

Proof. We start with some general remarks about cofree, cofinitely-generated ΛG-modules,
where G is any profinite group. Assume that A is such a module. That means that its
Pontryagin dual Â is isomorphic to Λr

G for some r ≥ 0. Note that the Pontryagin dual of

A[p] is isomorphic to Λ̃r
G, where Λ̃G

∼= ΛG

/
pΛG, the completed group algebra for G over Fp.

It follows that for every closed subgroup G′ of G and for all i ≥ 1, we have

H i(G′, A) = 0, H i(G′, A[p]) = 0 .

Furthermore, H0(G′, A) is a divisible group. The vanishing statements are easily reduced
to the case where G is finite. In that case, it suffices to note that Zp[G] and Fp[G] are
free-modules over Zp[G

′] and Fp[G
′], respectively. Hence their Pontryagin duals are coho-

mologically trivial as G′-modules, as is any direct sum of those modules. If G is profinite
and N is an open, normal subgroup of G, then AN and A[p]N are cofree modules over the
rings Zp[G/N ] and Fp[G/N ], respectively. Hence the cohomology groups H i(G′N/N,AN)
and H i(G′N/N,A[p]N) vanish for all i ≥ 1. Since G′ is the inverse limit of groups of the
form G′N/N , the above vanishing statements follow simply by taking direct limits. Now
A is a divisible group and so we obtain the divisibility of H0(G′, A) from the fact that
H1(G′, A[p]) = 0.

Now assume that X is a finitely-generated ΛG-module which has a free resolution of
length 1. This means that there is an exact sequence

(2.4.a) 0 −→ S −→ S1 −→ S2 −→ 0

of cofinitely-generated, discrete ΛG-modules where S1 and S2 are cofree ΛG-modules. If G′

is any closed subgroup of G, then it follows that H i(G′, S) = 0 for all i ≥ 2. Also, since
H0(G′, S2) is a divisible group, it follows that the same is true for H1(G′, S). In particular,
if G′ is a finite subgroup of G, then H1(G′, S) must have finite exponent and therefore we
have H1(G′, S) = 0. The “only if” part of the proposition follows from these remarks.

For the converse, we assume G = ∆ ⋊ Γ. We think of Γ as a subgroup of G as well as
a quotient group. For some k ≥ 0, the action of Γk on ∆ is trivial. Thus, Γk is a subgroup
of the center of G. It is an open, normal subgroup of G. We assume the vanishing of
the cohomology groups H i(∆′, S) = 0 for all ∆′ and i, as stated. Suppose that X can be
generated by m elements as a ΛG-module. Then S fits into an exact sequence (2.4.a), where
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S1 is the Pontryagin dual of Λm
G . We will prove the same statement about the Pontryagin

dual of S2, which we denote by Y . We regard Y as a ΛG-submodule of Λm
G . Thus we have

X ∼= Λm
G

/
Y

as ΛG-modules. Since ΛG is a free Λ-module and X has no nonzero, finite Λ-submodules,it
follows that Y is a reflexive Λ-module. Hence Y is free and S2 is cofree as Λ-modules. It
follows that H i(Γk, S2) = 0 for all i ≥ 1 and that H0(Γk, S2) is a divisible group.

Suppose that G′ is a closed subgroup of G such that Γk ⊆ G′. Let ∆′ = G′ ∩ ∆, a
normal subgroup of G′, and let Γ′ = G′/∆′, which is isomorphic to a subgroup of Γ. Since
H i(∆′, S) = 0 for all i ≥ 1, the inflation map

H i(Γ′, S∆′) −→ H i(G′, S)

is an isomorphism for all i ≥ 1 and hence H i(G′, S) = 0 for all i ≥ 2. It follows that
H i(G′, S2) = 0 for all i ≥ 1. In particular, H i(Γk, S2) = 0 and consequently the inflation
map

H i(G′/Γk, S
Γk
2 ) −→ H i(G′, S2)

is an isomorphism for all i ≥ 1. Now SΓk
2 is cofree as a Zp-module and we have

corankZp

(
SΓk

2 )
)

= pkcorankΛ

(
S2

)
= pkrankΛ(Y ) = m|∆|pk .

We can apply proposition 2.1.1 to conclude that the Pontryagin dual YΓk
of SΓk

2 is a projective
module for the group ring Zp[G/Γk]. Note that G/Γk has order |∆|pk.

We now show that YΓk
is a free Zp[G/Γk]-module. Since it is a projective, it is sufficient

to show that YΓk
⊗Zp Qp is a free Qp[G/Γk]-module. We have an exact sequence

0 −→ SΓk −→ SΓk
1 −→ SΓk

2 −→ H1(Γk, S) −→ 0 .

The maps are equivariant for the action of G/Γk. Let γk be a topological generator for Γk
(which is isomorphic to Zp). Then we have H1(Γk, S) ∼= S

/
(γk− 1)S. The Pontryagin duals

of SΓk and S
/
(γk−1)S are X

/
(γk−1)X and XΓk , respectively. Tensoring those Zp-modules

with Qp gives V
/
(γk−1)V and V Γk , respectively, where V = X⊗Zp Qp, a finite-dimensional

Qp-representation space for G.
Since γk is in the center of G, the map v → (γk − 1)v is a G-homomorphisms from V to

itself. Consequently, the kernel and cokernel of that map have the same composition factors.
This implies that V Γk and V

/
(γk−1)V are isomorphic as Qp-representation spaces for G/Γk.

Therefore, it follows that the Qp-representations spaces YΓk
⊗Zp Qp and

(
Ŝ1

)
Γk

⊗Zp Qp for
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G/Γk are isomorphic. But the latter representation space is isomorphic to Qp[G/Γk]
m.

Therefore, YΓk
⊗Zp Qp is a direct sum of m copies of the regular representation for G/Γk.

The above observations imply that YΓk
∼= Zp[G/Γk]

m as a Zp[G/Γk]-module. Therefore,
YΓk

can be generated by m elements as a Zp[G/Γk]-module. One can then apply Nakayama’s
lemma (for Λ-modules) to conclude that Y can be generated by m elements as a ΛG-module.
Thus, Y is a quotient of a free ΛG-module of rank m. Now X is a torsion Λ-module and so
Y and Λm

G have the same Λ-rank. Consequently, it is clear that we actually have Y ∼= Λm
G .

Therefore, X indeed has a free resolution of length 1 as a ΛG-module. �

Remark 2.4.2. The following well-known properties of Λ-modules can be found in [NSW],
propositions 5.3.20 and 5.5.3: (a) If X is a finitely-generated Λ-module, then X has
projective dimension at most 2, and (b) If X has no nonzero, finite Λ-submodules, then its
projective dimension is at most 1. In (b), X will have a free resolution of length 1 as a
Λ-module since any finitely-generated projective Λ-module must be free. This result is the
special case of proposition 2.4.1 where ∆ is trivial. The essential ingredient in the proof is
the fact that any reflexive Λ-module must be free, which we also used in a crucial way in the
above argument. ♦

The following corollary follows immediately from proposition 2.4.1. Note that m = 1 if
X is a cyclic ΛG-module.

Corollary 2.4.3. Suppose that X is a ΛG-module which is finitely-generated and projective
as a Zp[∆]-module. Then X has a free resolution of length 1 as a ΛG-module. In particular,
if X is a cyclic ΛG-module, then X ∼= ΛG

/
ΛGθ for some nonzero element θ ∈ ΛG.

Remark 2.4.4. Suppose that τ is an irreducible representation of ∆ over Fp. For this
remark, we don’t want to assume τ is absolutely irreducible. It is still true that there is an
indecomposable, projective Zp[∆]-module Pτ that has Uτ , the underlying Fp-representation
space for τ , as its unique simple quotient. Furthermore, Pτ is a direct summand in Zp[∆]
(as a module) and hence is a cyclic Zp[∆]-module. All of this follows from proposition 41
in [Se77]. Let G = ∆ × Γ. We let G act on Pτ by letting Γ act trivially. Then Pτ becomes
a cyclic ΛG-module. Corollary 2.4.3 implies that Pτ ∼= ΛG

/
ΛGθτ , where θτ is in ΛG. By

section 2.3, we have µ(θτ , σ) = 0 and λ(θτ , σ) = λ(Pτ , σ) for all σ ∈ IrrF(∆) (where F is
sufficiently large as usual). Now if X is any finitely-generated ΛG-module which is torsion
as a Λ-module and projective as a Zp[∆]-module, we can forget the action of Γ and express
X as a direct sum of the Pτ ’s with certain multiplicities. Let θ ∈ ΛG be the corresponding
product of the θτ ’s. Then, by definition, we have µ(θ, σ) = 0 and λ(θ, σ) = λ(X, σ) for all
σ ∈ IrrF(∆).
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We would like to find such a θ ∈ ΛG which reflects the action of G on X more fully, not
just the action of ∆. An illustration of what we mean by this is contained in remark 3.1.3,
which only concerns the case where G is commutative. We have not succeeded in finding a
way to do this when G is non-commutative. ♦

3 Projectivity or quasi-projectivity of XΣ0

E (K∞).

We take F,K, F∞, K∞, Σ0, and E exactly as in the introduction. Let ∆ = Gal(K∞/F∞). In
this chapter we will apply propositions 2.1.1 and 2.1.3 to the Zp[∆]-module XΣ0

E (K∞). This
requires verifying the appropriate hypotheses for SelΣ0

E (K∞)p. We will study the relevant co-
homology groups by using the exact sequence defining the non-primitive Selmer group. Each
of the verifications requires a certain subset of the assumptions we need for the main results,
which are propositions 3.1.1 and 3.2.1. The arguments apply with only minor modifications
in the formulations to a more general situation. It suffices to assume that K∞ is a Galois
extension of F containing the cyclotomic Zp-extension F∞ of F and that [K∞ : F∞] is finite.
Section 3.5 is devoted to a discussion of this generalization. .

3.1 The proof of theorem 1.

The proof is in a series of steps culminating in proposition 3.1.1, which is theorem 1.

A. Surjectivity of the global-to-local maps. We need only assume that SelE(K∞)p is Λ-
cotorsion. This is conjectured to always be true. Since we are including p = 2, we first
describe Hv(K∞, E) when v is an archimedean prime of F . There will then be infinitely
many primes of K∞ lying over v. If η is such a prime, then im(κη) = 0. The local factor
H∞(K∞, E) is trivial when p is odd, but can be nontrivial when p = 2. It is defined by

Hv(K∞, E) = Lim
−→

F ′

(⊕

v′|v

H1(F
′

v′ , E[p∞])
)

where F ′ varies over all finite extensions of F contained inK∞, partially ordered by inclusion,
and v′ runs over the primes of F ′ lying over v. We can restrict to F ′’s containing K (i.e., the
layers in the Zp-extension K∞/K), and then the completions F

′

v′ are either all isomorphic to
R or to C, depending on K and v. The group Hv(K∞, E) is nontrivial only when Fv = R, v
splits completely in K/F , and H1(Fv, E[p∞]) 6= 0, which occurs only when p = 2 and E(Fv)
has two connected components. In that case, H1(Fv, E[p∞]) is of order 2 and Hv(K∞, E)
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is infinite, but of exponent 2. Its Pontryagin dual is a Λ-module with µ-invariant equal to
[K : F ].

We will first recall why the map γK∞ is surjective, as stated in the introduction. Let Σ
be a set of primes of F containing all the primes where E has bad reduction, or where K/F
is ramified, or which divide p or ∞. Consider the map

(3.1.a) H1(FΣ/K∞, E[p∞]) −→
⊕

v∈Σ

Hv(K∞, E)

where FΣ is the maximal extension of F unramified outside Σ. Note that K∞ ⊂ FΣ. It is
easy to see that SelE(K∞)p is the kernel of (3.1.a), just assuming that Σ is chosen as stated.
Now, according to lemma 4.6 of [Gr99], if SelE(K∞)p is Λ-cotorsion, then the map (3.1.a) is
surjective. By letting Σ vary, the surjectivity of γK∞ follows. One immediate consequence
is that for any set Σ0 of primes of F , the global-to-local map

γΣ0
K∞

: H1(K∞, E[p∞]) −→
⊕

v 6∈Σ0

Hv(K∞, E)

is also surjective. By definition, SelΣ0
E (K∞)p = ker(γΣ0

K∞
).

B. Divisibility of Selmer groups. The assumptions that we need are that SelE(K∞)[p]
is finite and that E(K)[p] = 0. To apply the criteria of section 2.1, we need to show that
XΣ0
E (K∞) is a free Zp-module of finite rank or, equivalently, that SelE(K∞)p is divisible

and of finite Zp-corank. The assumption that SelE(K∞)[p] is finite implies that XE(K∞)
is a finitely generated, torsion Λ-module and that its µ-invariant is zero. It follows that
XE(K∞) is a finitely generated Zp-module. We can now use proposition 4.14 from [Gr99]
which requires the additional assumption that E(K)[p] = 0. It then follows that XE(K∞)
has no nonzero finite Λ-submodules. Hence the Zp-torsion submodule must be zero. This
implies that XE(K∞) is Zp-free of finite rank, as needed. Equivalently, SelE(K∞)p is divisible
and of finite Zp-corank.

Now for any non-archimedean prime v ∤ p, and a prime η of K∞ lying over v, the local
cohomology groups H1(K∞,η, E[p∞]) is also divisible and of finite Zp-corank. The divisibility
follows from the fact that K∞,η has p-cohomological dimension 2, and so H2(K∞,η, E[p]) = 0.
The fact that H1(K∞,η, E[p∞]) has finite Zp-corank follows from proposition 2 of [Gr89].
Therefore, for v ∤ p, Hv(K∞, E) is divisible and of finite Zp-corank. The surjectivity of γK∞
now implies that SelΣ0

E (K∞)p is indeed divisible and of finite Zp-corank.

C. Basic cohomology sequences. Continuing to assume that SelE(K∞)p is Λ-cotorsion, the
global-to-local map γΣ0

K∞
is surjective and gives the following exact sequence:

(3.1.b) 0 −→ SelΣ0
E (K∞)p −→ H1(K∞, E[p∞]) −→

⊕

v 6∈Σ0

Hv(K∞, E) −→ 0

37



We have already explained the surjectivity of the global-to-local map γΣ0
K∞

. The maps in
the sequence (3.1.b) are ∆-equivariant and so we obtain the following exact sequences of
cohomology groups.

H1(K∞, E[p∞])∆ δ−→
⊕

v 6∈Σ0

Hv(K∞, E)∆ −→ H1
(
∆, SelΣ0

E (K∞)p
)
−→ H1

(
∆, H1(K∞, E[p∞])

)

and

⊕

v 6∈Σ0

H1
(
∆,Hv(K∞, E)

)
−→ H2

(
∆, SelΣ0

E (K∞)p
)
−→ H2

(
∆, H1(K∞, E[p∞])

)

Theorem 1 will be proved by studying each of the terms in these sequences. To prove that
H1
(
∆, SelΣ0

E (K∞)p
)

= 0, it suffices to show that H1
(
∆, H1(K∞, E[p∞])

)
= 0 and that the

map labeled δ in the first sequence is surjective. To prove that H2
(
∆, SelΣ0

E (K∞)p
)

= 0, it
suffices to show that H2

(
∆, H1(K∞, E[p∞])

)
= 0 and that H1

(
∆,Hv(K∞, E)

)
= 0 for all

v 6∈ ΦK/F . For each of these statements, some subset of the assumptions in theorem 1 will
be needed.

D. Surjectivity of δ. We will need to assume that SelE(K∞)p is Λ-cotorsion, that ΦK/F is a
subset of Σ0, and that either p is non-anomalous for E/K or that none of the ev(K/F )’s for
v ∈ Σp is divisible by p. The kernel of the restriction map H1(F∞, E[p∞]) → H1(K∞, E[p∞])
is isomorphic to H1

(
∆, E(K∞)[p∞]

)
, which is easily seen to be finite. Thus, the kernel of

the map SelE(F∞)p → SelE(K∞)p must be finite. Since we assume that SelE(K∞)p is Λ-
cotorsion, it follows that the same is true for SelE(F∞)p. Therefore, the map γF∞ is surjective
and so is the global-to-local map defining SelΣ0

E (F∞)p. This shows the exactness of the first
row in the following commutative diagram.

H1(F∞, E[p∞]) //

��

⊕
v 6∈Σo

Hv(F∞, E) //

��

0

H1(K∞, E[p∞])∆ δ
//
⊕

v 6∈Σo
Hv(K∞, E)∆

where the vertical maps are the obvious restriction maps. To prove the surjectivity of the
map in the second row, it suffices to show the surjectivity of the second vertical map, or,
equivalently, that the map βv : Hv(F∞, E) −→ Hv(K∞, E)∆ is surjective for each v 6∈ Σo.

For any prime η of K∞ lying above v, let ∆η denote the corresponding decomposition
subgroup of ∆. Thus, ∆η

∼= Gal(K∞,η/F∞,ν), where ν is the prime of F∞ lying below η. Of
course, ∆ permutes the primes of K∞ above v. We can take one η in each orbit. If v|∞,
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the surjectivity of βv is clear because either K∞,η
∼= C, in which case Hv(K∞, E) = 0, or

K∞,η
∼= R, in which case each ∆η is trivial and the map βv is an isomorphism. Now assume

that v ∤ p,∞. For such v and any η|v, it suffices to prove that the map

H1(F∞,ν , E[p∞]) −→ H1(K∞,η, E[p∞])∆η

is surjective. The cokernel of this map is isomorphic to H2
(
∆η, H

0(K∞,η, E[p∞])
)
. But this

cohomology group vanishes if we assume that v 6∈ Σ0. To see that, note that F∞,ν is the
unramified Zp-extension of Fv, since v ∤ p, and hence any unramified extension of F∞,ν has
degree prime to p. Now ev(K/F ) is the order of the inertia subgroup of ∆η, which is assumed
to be prime to p, and so the same is true for |∆η| itself. The vanishing follows from that
fact.

Suppose now that v|p. Then we must prove the surjectivity of the map

H1(F∞,ν , Ev[p
∞]) −→ H1(K∞,η, Ev[p

∞])∆η .

The cokernel of this map is isomorphic to H2
(
∆η, H

0(K∞,η, Ev[p
∞])
)

= H2
(
∆η, Ev(kη)[p

∞]
)
.

This cohomology group obviously vanishes if Ev(kη)[p] = 0 or, equivalently, as we pointed
out in the introduction, if v is non-anomalous for E/K. Under that assumption, it follows
that βv is surjective.

The map βv will also be surjective if we assume that p ∤ ev(K/F ). To see this, let Υη

denote the inertia subgroup of ∆η, whose order will also be prime to p. It will be that
slightly weaker assumption that we actually need. It follows that H i(Υη, Ev(kη)[p

∞]) = 0
for i = 1, 2. We therefore have exact sequences

(3.1.c) 0 −→ H i(∆η/Υη, Ev(kη)[p
∞]) −→ H i(∆η, Ev(kη)[p

∞]) −→ 0

Thus, taking i = 2, the vanishing of H2(∆η, Ev(kη)[p
∞]), and therefore the surjectivity of

βv, follows from the fact that H2
(
kη/fν , Ev(kη)

)
= 0 for any finite extension of finite fields

kη/fν . Here we take fν to be the residue field for ν.

E. The Hochschild-Serre spectral sequence. We will use a special case. Assume that G
is a profinite group, N is a closed, normal subgroup of finite index, and let ∆ = G/N .
Suppose that A is a discrete, p-primary G-module. Let us assume that H i(N,A) = 0 for
i ≥ 2. The Hochschild-Serre spectral sequence then simplifies considerably. See exercise 5
in [NSW], page 96, which is based on theorem 2.1.5. The simplification occurs because only
the bottom two rows of objects in the spectral sequence can be nonzero. What we will need
are the following exact sequences for j ≥ 1. Mainly, we will need this for j = 2 and j = 3.
The last map for each j is the inflation map.

(3.1.d) Hj(G,A) −→ Hj−1
(
∆, H1(N,A)

)
−→ Hj+1(∆, AN) −→ Hj+1(G,A)
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As a consequence, if H i(G,A) = 0 for i ≥ 2, then we obtain isomorphisms:

(3.1.e) Hj−1
(
∆, H1(N,A)

) ∼= Hj+1(∆, AN)

for j ≥ 2. We will apply this to cases where G and N are global or local Galois groups which
have p-cohomological dimension 2. Thus, at least for i ≥ 3, the vanishing of both H i(N,A)
and H i(G,A) will be assured.

F. Vanishing of H i
(
∆, H1(K∞, E[p∞])

)
for i ≥ 1. We assume that SelE(K∞)p is Λ-

cotorsion and that E(K)[p] = 0. For p = 2, we will need the additional assumption that
E(Fv) is connected for all v|∞. We will use the Hochschild-Serre spectral sequence, taking
G = GF∞ , N = GK∞ , and A = E[p∞]. We first assume that p is odd. It is then known that
H i(F∞, E[p∞]) and H i(K∞, E[p∞]) both vanish for i ≥ 3. This follows from the fact that
the p-cohomological dimension for the Galois groups GF∞ and GK∞ is equal to 2 when p is
odd.

That vanishing statement is also known for i = 2 under the assumption that SelE(K∞)p
is Λ-cotorsion. That result is contained in [Gr99], although it is unfortunately not explicitly
stated. One first deduces that H1(K∞, E[p∞]) has Λ-corank equal to [K : Q]. That assertion
and its justification can be found on pages 94-95 in [Gr99]. The vanishing of H2(K∞, E[p∞])
for an odd prime p then follows from proposition 4.12 in that paper. Since SelE(F∞)p will
also be Λ-cotorsion, the vanishing of H2(F∞, E[p∞]) also follows.

The assumptions needed for (3.1.e) are therefore satisfied when p is odd. Hence we obtain
isomorphisms

(3.1.f) Hj−1
(
∆, H1(K∞, E[p∞])

) ∼= Hj+1
(
∆, H0(K∞, E[p∞])

)
,

for j ≥ 2. The assumption that E(K)[p] = 0 implies that H0(K∞, E[p∞]) = 0 since
Gal(K∞/K) is pro-p. The stated vanishing of H i

(
∆, H1(K∞, E[p∞])

)
then follows by taking

j = i+ 1.
We now assume that p = 2, that v is an archimedean prime of F , and that E(Fv) is

connected. That assumption is obviously satisfied for any complex prime v, but may fail if v
is real. An equivalent statement is that H i(Fv, E[2∞]) = 0 for all i ≥ 1. If w|v, then E(Kw)
will also be connected and so we have the corresponding vanishing for Kw too. By theorem
8.6.13 in [NSW], we have isomorphisms

(3.1.g) H i(F∞, E[2∞]) ∼=
⊕

v|∞

Hi
v(F∞, E), H i(K∞, E[2∞]) ∼=

⊕

v|∞

Hi
v(K∞, E)

for i ≥ 3. Here the Hi
v’s for v|∞ are defined just as in part A, except that H1 is replaced

by H i. These isomorphisms are proved in [NSW] for finite extensions and for finite Galois
modules, but they can be extended easily to the above situation by taking direct limits.
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The arguments and results in [Gr99] cited above imply thatH2(K∞, E[2∞]) is Λ-cotorsion,
and more precisely that it is a cofree module over Λ/2Λ. This again requires the assumption
that SelE(K∞)2 is Λ-cotorsion. The proof of proposition 4.12 in that paper shows that, un-
der that same assumption, the isomorphisms (3.1.g) hold even for i = 2. The connectedness
assumption implies that Hi

v(F∞, E) and Hi
v(K∞, E) both vanish for all v|∞. Therefore,

it follows that H i(F∞, E[p∞]) and H i(K∞, E[p∞]) must also vanish when i ≥ 2. Hence
the Hochschild-Serre sequence again gives us the identifications (3.1.f). The vanishing of
H i
(
∆, H1(K∞, E[2∞])

)
follows as before.

G. Vanishing of H i
(
∆,Hv(K∞, E)

)
for v 6∈ ΦK/F

⋃
Σp and i ≥ 1. No extra assump-

tions about such v are needed. First suppose that v ∤ ∞. We will then show that the
Pontryagin dual of Hv(K∞, E) is actually projective as a Zp[∆]-module. The fact that
H i
(
∆,Hv(K∞, E)

)
= 0 for any i ≥ 1 is a consequence. Since Hv(K∞, E) is a direct product

over all η|v, we can consider each ∆-orbit separately. Fix one η. Let ν be the prime of F∞

lying below η. Then

(3.1.h)
∏

η|ν

H1(K∞,η, E[p∞]) ∼= Ind∆
∆η

(
H1(K∞,η, E[p∞])

)

It therefore suffices to show that the Pontryagin dual of H1(K∞,η, E[p∞]) is projective as a
Zp[∆η]-module. Since v 6∈ ΦK/F , |∆η| is not divisible by p, and hence a Zp[∆η]-module is pro-
jective if it is finitely-generated and torsion-free as a Zp-module. Since v ∤ p, H1(K∞,η, E[p∞])
is cofinitely generated as a Zp-module. (See proposition 2 in [Gr89].) It is also a divisible Zp-
module, a consequence of the fact that GK∞,η has p-cohomological dimension 1. We refer the
reader to the discussion following lemma 4.5 in [Gr99] for the proof of divisibility. Thus, the
Pontryagin dual of H1(K∞,η, E[p∞]) is indeed a finitely-generated, torsion-free Zp-module.

Now suppose that v|∞. If the primes of K above v are complex, then Hv(K∞, E) = 0
and so the result is obvious. On the other hand, if those primes are real, then the primes η
of K∞ lying above v are also real and hence v splits completely in K∞/F . Thus, Hv(K∞, E)
is isomorphic to H1(K∞,η, E[p∞]) ⊗Zp Zp[∆], and this is cohomologically trivial.

H. Vanishing of H i
(
∆,Hv(K∞, E)

)
for v ∈ Σp and i ≥ 1. We need to assume that either

v is non-anomalous for E/K or that p ∤ ev(K∞/F∞). Again, ∆ permutes the primes of
K∞ above v and so one must prove that H1

(
∆η, H

1(K∞,η, Ev[p
∞])
)

= 0 for any η|v. Just
as before, one can use the Hochschild-Serre spectral sequence since it is known that the
p-cohomological dimension of both GK∞,η and GF∞,ν is 1. We have

H i
(
∆η, H

1(K∞,η, Ev[p
∞])
) ∼= H i+2

(
∆η, H

0(K∞,η, Ev[p
∞])
)

But H0(K∞,η, Ev[p
∞]) = Ev[p

∞]GK∞,η . This is trivial if we assume that Ev(kη)[p] = 0 .
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On the other hand, if v is anomalous for E and K, then we can still prove the vanish-
ing if we assume that p ∤ ev(K/F ), i.e., that v is tamely ramified in the extension K/F .
To show this, suppose that η be a prime of K∞ and ν is the prime of F∞ lying below
η. Then the residue fields kη and fν are finite. It is known that Hj(kη/fν , Ev(kη)) = 0
for j ≥ 1. Assuming that p ∤ ev(K/F ), it follows from (3.1.c) that we indeed have
H i+2

(
∆η, H

0(K∞,η, Ev[p
∞])
)

= 0 for all i ≥ 1. In fact, it suffices to assume that ev(K∞/F∞)
is not divisible by p.

The following proposition summarizes what the above results show. The final conclusion
about projectivity then follows from proposition 2.1.1. We just apply the first conclusion to
any subgroup ∆′ of ∆, taking i = 1 and i = 2. Theorem 1 is a consequence.

Proposition 3.1.1. Assume that SelE(K∞)p is Λ-cotorsion. Let us also make the following
assumptions:

(a) E(K)[p] = 0,

(b) For each v|p, either v is non-anomalous for E/K or v is tamely ramified in K/F .

(c) Σ0 contains ΦK/F , but no primes above p or ∞.

(d) If p = 2, then E(Fv) is connected for all archimedean primes v.

Then H i
(
∆, SelΣ0

E (K∞)p
)

= 0 for i ≥ 1.

If, in addition, we assume that

(e) SelE(K∞)[p] is finite,

then SelΣ0

E (K∞)p is a divisible, cofinitely generated Zp-module and XΣ0

E (K∞) is a projective
Zp[∆]-module.

Remark 3.1.2. The assumption that SelE(K∞)p is Λ-cotorsion together with assumption
(a) is sufficient to imply that XE(K∞) has no nonzero, finite Λ-submodules and hence is a
Λ-module of projective dimension 1. The first statement is proposition 4.14 in [Gr99]. For
the second, see remark 2.4.2. The same assertions will also be true for XΣ0

E (K∞). The above
proposition together with proposition 2.4.1 implies that XΣ0

E (K∞) actually has projective
dimension 1 as a Λ[∆]-module if assumptions (b), (c), and (d) are also satisfied. However,
without those assumptions, the proofs show that sometimes (although not always), we can
have H i

(
∆′, SelΣ0

E (K∞)p
)
6= 0 for some subgroup ∆′ of ∆ and i = 1 or 2. In such a case, it

is clear that XΣ0
E (K∞) has infinite projective dimension as a Λ[∆]-module. ♦

Remark 3.1.3. Assume that K∞/F is an abelian extension. Thus G = Gal(K∞/F ) is
isomorphic to ∆ × Γ, where ∆ is a finite, abelian group. Corollary 2.4.3 has an interesting
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consequence in that case. Let us make the assumptions in proposition 3.1.1. It follows
that X = XΣ0

E (K∞) is projective as a Zp[∆]-module. Therefore, X is isomorphic as a ΛG-
module to the cokernel of a ΛG-linear map Θ : Λn

G −→ Λn
G for some n ≥ 1. The ring ΛG is

commutative. Let θ = det(Θ), an element of ΛG. One can think of θ as a Zp-valued measure
on G.

Suppose that σ ∈ IrrF(∆). Then n(σ) = 1 and we can extend σ to a surjective Zp-
algebra homomorphism from Zp[∆] to O, which we also will denote by σ. Let Iσ = ker(σ),
an ideal in Zp[∆]. Let XO = X ⊗Zp O. We define the σ-component of XO as the quotient

X
(σ)
O = XO

/
IσXO, which we can consider as a ΛO-module, where ΛO = O[[Γ]]. As in the

introduction, we can extend σ to a Λ-algebra homomorphism from ΛG to ΛO, which we still
denote by σ. Then it is not difficult to verify that σ(θ) is a generator of the characteristic

ideal of the ΛO-module X
(σ)
O . Thus, all of these characteristic ideals have generators which

are “interpolated” by θ.
Such an element θ ∈ ΛG could also conceivably exist if we just make the assumptions

in proposition 3.2.1. Then X = XΣ0
E (K∞) is merely quasi-projective. Suppose that X is

actually strictly quasi-projective. In that case, there exists a projective Zp[∆]-module Y such
that Y ⊗Zp Qp

∼= X ⊗Zp Qp as a representation space for Gal(K∞/F ). If Y can be chosen to
be Γ-invariant, then one can apply corollary 2.4.3 to the ΛG-module Y . Such a θ would then
exist because, for every σ ∈ IrrF(∆), the ΛO-modules X

(σ)
O and Y

(σ)
O are pseudo-isomorphic

and hence have the same characteristic ideal. However, we do not know when it is possible
to find a Γ-invariant Y as described above. ♦

3.2 Quasi-projectivity.

For proving quasi-projectivity of XΣ0
E (K∞), it suffices to just make the assumptions (c), (d),

and (e) from proposition 3.1.1, as we will now explain.

A. Herbrand quotients for H1(K∞, E[p∞]). We assume that SelE(K∞)p is Λ-cotorsion
and, if p = 2, that E(Fv) is connected for all v|∞. Then, as explained in F of section 3.1,
we can make the identifications (3.1.f). However, we need a slight refinement. Suppose that
C = PQ is a cyclic subgroup of ∆, using the notation from section 2.1, part B. Let ε be a
character of Q. We will let ⊗ε denote tensoring over Zp with Lε, a free O-module of rank 1
on which Q acts by ε. We can make the identifications

H1(K∞, E[p∞])(ε) ∼=
(
H1(K∞, E[p∞]) ⊗ ε−1)Q

∼= H1(K∞, E[p∞] ⊗ ε−1)Q ∼= H1(KQ
∞, E[p∞] ⊗ ε−1)
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where the last isomorphism comes from the inflation-restriction sequence together with the
fact that |Q| is prime to p. If p is odd, then the assumptions for applying (3.1.e) are still
satisfied and so we get

H i
(
P,H1(K∞, E[p∞])(ε)

) ∼= H i
(
P,H1(KQ

∞, E[p∞]⊗ ε−1)
) ∼= H i+2

(
P,H0(KQ

∞, E[p∞]⊗ ε−1)
)

for i = 1, 2. Now H0(KQ
∞, E[p∞] ⊗ ε−1) can be identified with H0(K∞, E[p∞])(ε), which

is a subgroup of E(K∞)[p∞] ⊗Zp O and hence is finite. Also, P is cyclic and hence the
cohomology is periodic with period 2. Therefore,

hP
(
H1(K∞, E[p∞])(ε)

)
= hP

(
H0(K∞, E[p∞])(ε)

)
= 1

at least if p is odd. If p = 2, then we must show that if Fv ∼= R, thenH i(Fv, E[p∞]⊗ε−1)) = 0.
But since ε will have odd order, it is enough to considerH i(Fv, E[p∞]⊗ZpO) and this vanishes
because of the assumption that E(Fv) is connected. Hence we can again apply (3.1.e).

B. Herbrand quotients for Hv(K∞, E) when v 6∈ ΦK/F . For any archimedean prime v, we
have Hv(K∞, E) = 0 and so there is nothing to prove. Assume that v is non-archimedean
and that v 6∈ ΦK/F . First suppose that v ∤ p. Then, as shown in part G of section 3.1,
the Pontryagin dual of Hv(K∞, E) is projective. The Herbrand quotients hP (Hv(K∞, E)(ε))
which occur in proposition 2.1.3 must then all be equal to 1.

Now suppose that v|p. Let C = PQ be any cyclic subgroup of ∆ and let ε be a character
of Q. Just as in (3.1.h), but replacing ∆ by C, we can express Hv(K∞, E) as a direct product
of Zp[C]-modules of the form

A = IndCCη

(
Aη

)
, where Aη = H1(K∞,η, Ev[p

∞]) .

Here η is a prime of K∞ lying above v and Cη is the corresponding decomposition subgroup

of C. According to remark 2.1.9, hP (A(ε)) = 1 if and only if hPη(A(εη)
η ) = 1, where Pη is the

decomposition subgroup of P for η and εη is the restriction of ε to Qη, the decomposition
subgroup of Q for η.

Just as in part A, the inflation-restriction sequence gives a canonical isomorphism

A(εη)
η = H1(K∞,η, Ev[p

∞])(εη) ∼= H1(KQη
∞,η, Ev[p

∞] ⊗ ε−1
η )
)

as O[Pη]-modules. Since subgroups of GF∞,v have p-cohomological dimension 1, we can apply
(3.1.e) to obtain

H i(Pη, H
1(KQη

∞,η, Ev[p
∞] ⊗ ε−1

η )
) ∼= H i+2

(
Pη, H

0(KQ
∞,η, Ev[p

∞] ⊗ ε−1
η )
)
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for any i ≥ 1. The residue field for K∞,η is finite. It follows that

H0(KQη
∞,η, Ev[p

∞] ⊗ ε−1
η )
) ∼= H0(K∞,η, Ev[p

∞])(εη)

is finite too. Since the cohomology of a finite cyclic group is periodic with period 2, it follows
that

hPη

(
H1(K∞,η, Ev[p

∞])(εη)
)

= hPη

(
H0(K∞,η, Ev[p

∞](εη)
)

= 1

and therefore we have shown that hP
(
Hv(K∞, E)

)
= 1 for all primes v of F which are not

in ΦK/F .

Using the results in A and B, we can now deduce the following result concerning
quasi-projectivity for the Pontryagin dual of SelΣ0

E (K∞)p. Note that the assumption that
SelE(K∞)[p] be finite implies that SelE(K∞)p is Λ-cotorsion.

Proposition 3.2.1. Assume that (c), (d), and (e) from proposition 3.1.1 are satisfied. Then
XΣ0

E (K∞) is a quasi-projective Zp[∆]-module.

Proof. Suppose that C = PQ is any cyclic subgroup of ∆ and ε is any character of Q. Then
we have the following exact sequence of Zp[P ]-modules:

(3.2.a) 0 −→
(
SelΣ0

E (K∞)p
)(ε) −→

(
H1(K∞, E[p∞])

)(ε) −→
⊕

v 6∈Σ0

Hv(K∞, E)(ε) −→ 0

Using A and B, it is clear that hP

((
SelΣ0

E (K∞)p
)(ε))

= 1. Proposition 2.1.3 then implies

that the Pontryagin dual of SelΣ0
E (K∞)p is indeed quasi-projective. �

The following corollary follows immediately.

Corollary 3.2.2. Assume that ΦK/F is empty and that SelE(K∞)[p] is finite. If p = 2,
assume that E(Fv) is connected for all archimedean primes v. Then XE(K∞) is a quasi-
projective Zp[∆]-module.

The hypotheses in this corollary are not uncommonly satisfied. Suppose that Π is a Sylow
p-subgroup of ∆. We consider the fixed field L = KΠ for Π. Then the assumption that ΦK/F

is empty just means that only primes of L lying above p or ∞ can ramify in the extension
K/L. If one starts by choosing a finite extension L of F of degree prime to p, then there
may be many finite p-extensions K of L which are ramified only at primes lying over p and
∞. This is certainly true if L is not totally real. We also want K to be Galois over F and
K ∩ F∞ = F . Such examples are abundant. In any case, under the assumptions of the
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corollary, we can take Σ0 to be empty so that λΣ0
E (σ) = λE(σ) for all σ’s. Thus, we obtain

the congruence relations for the λE(σ)’s just as described in the introduction.
Here are some specific types of examples. Suppose that F = Q and L is an imaginary

quadratic field. Suppose that p is odd. Then one could take K to be any layer in the
anticyclotomic Zp-extension of L. Or one could take K to be the p-Hilbert class field of L,
or any layer in the p-Hilbert class field tower of L. (See [MR08] for a study of this type
of example.) One other interesting type of example arises from an elliptic curve A defined
over F whose j-invariant is an algebraic integer. The curve A will have potentially good
reduction at all primes of F . If p ≥ 5, one could take K to be any finite Galois extension
of F contained in F (A[p∞]) satisfying K ∩ F∞ = F . The ramification index for any v ∤ p
will be a divisor of 24 and hence not divisible by p. Thus, indeed, ΦK/F will then be empty.
This type of example will be discussed in section 8.1.

Remark 3.2.3. Suppose that SelE(K∞)p is Λ-cotorsion, but that SelE(K∞)[p] is infinite.
Suppose that Σ0 contains ΦK/F . If p = 2, suppose that E(Fv) is connected for all archimedean

primes v of F . Consider the maximal divisible subgroup of SelΣ0
E (K∞)p. Its Pontryagin dual

is a Zp[∆]-module and, as a Zp-module, it is free of finite rank. That module should be quasi-
projective as a Zp[∆]-module. We mention two situations in which that assertion would be
true. First of all, suppose that E is isogenous over F to an elliptic curve E ′ such that
SelE′(K∞)[p] is finite. Then it is quite easy to prove the assertion by applying proposition
3.2.1 to E ′. Secondly, one can apply proposition 2.2.1 to S = SelΣ0

E (K∞)p if one knows that
SelE(K∞)[p2]

/
SelE(K∞)[p] is finite, thus proving the assertion in that case. The needed

assumptions about the Herbrand quotients are verified in the proof of proposition 3.2.1. ♦

3.3 Partial converses.

It is natural to ask if XE(K∞) itself can be projective or quasi-projective as a Zp[∆]-module
when ΦK/F is nonempty. It is certainly possible for this to happen because one could
have Hv(K∞, E) = 0 for all v ∈ ΦK/F . If that is so, then, taking Σ0 = ΦK/F , one has

SelΣ0
E (K∞)p = SelE(K∞)p. Thus, if all the other assumptions in propositions 3.1.1 and 3.2.1

are satisfied, except for the assumption that Σ0 contains ΦK/F , then the projectivity or
quasi-projectivity of XE(K∞) would follow. The vanishing of Hv(K∞, E) is not uncommon.
We will discuss this in chapter 5. However, apart from this observation, one cannot really
improve the propositions significantly, at least for p ≥ 5, as the following result shows. We
continue to assume good, ordinary reduction at all v ∈ Σp. We will prove the following
proposition, using some results to be proved in chapter 5.
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Proposition 3.3.1 Suppose that Σ0 is a finite set of non-archimedean primes of F which
contains no prime over p. Let Σ1 = Σ0

⋃
ΦK/F .

(i) Assume that all of the assumptions in proposition 3.1.1 are satisfied except for the
inclusion ΦK/F ⊆ Σ0. If the Pontryagin dual of SelΣ0

E (K∞)p is projective as a Zp[∆]-module,

then Hv(K∞, E) = 0 for all v ∈ Σ1 − Σ0 and therefore SelΣ0

E (K∞)p = SelΣ1
E (K∞)p.

(ii) Suppose that p ≥ 5. If the Pontryagin dual of SelΣ0

E (K∞)p is a quasi-projective Zp[∆]-
module, then Hv(K∞, E) = 0 for all v ∈ Σ1 − Σ0 and therefore SelΣ0

E (K∞)p = SelΣ1
E (K∞)p.

Proof. For part (i), proposition 3.1.1 implies that the Pontryagin dual of SelΣ1
E (K∞)p is a

projective Zp[∆]-module. We have an exact sequence

0 −→ SelΣ0
E (K∞)p −→ SelΣ1

E (K∞)p −→
∏

v∈Σ1−Σ0

Hv(K∞, E) −→ 0 .

If the Pontryagin dual of SelΣ0
E (K∞)p is also projective as a Zp[∆]-module, then it follows

immediately that the Pontryagin dual of Hv(K∞, E) is also projective for each v ∈ Σ1 −Σ0.
However, we will show later (in section 5.3) that, for any v ∈ ΦK/F , the Pontryagin dual of
Hv(K∞, E) is projective if and only if Hv(K∞, E) = 0.

For part (ii), the assumption implies that XΣ0
E (K∞) is a finitely-generated Zp-module.

Therefore SelΣ0
E (K∞)[p] is finite, and hence so is SelE(K∞)[p]. Thus, by proposition 3.2.1,

XΣ1
E (K∞) will then be quasi-projective. Using the above exact sequence and remark 2.1.6, it

follows that the Pontryagin dual of
∏

v∈Σ1−Σ0
Hv(K∞, E) is also quasi-projective. Therefore,

for any cyclic p-subgroup P of ∆, we have
∏

v∈Σ1−Σ0
hP (Hv(K∞, E)) = 1. However, as we will

also show in section 5.3, if p ≥ 5, then hP (Hv(K∞, E)) ≤ 1 for all P and all nonarchimedean
v ∤ p. Thus, it follows that hP (Hv(K∞, E)) = 1 for all v ∈ Σ1 − Σ0, which is a subset of
ΦK/F . However, for such v, proposition 5.3.1 also asserts that if hP (Hv(K∞, E)) = 1 for all
P , then Hv(K∞, E) = 0. The proposition follows from this. �

Remark 3.3.2. If p < 5, then the conclusion in part (ii) of proposition 3.3.1 can fail to
be true. It is possible to have hP (Hv(K∞, E)) > 1 for some v. This can only happen if E
has additive reduction at v. We refer to remark 5.3.2 for more explanation. Thus, in some
cases, the product of Herbrand quotients over v ∈ Σ1 −Σ0 occurring in the above proof can
be 1, even though some factors are not 1. In such an unusual example, there will be a set
Σ0 with the following properties: The Pontryagin dual of SelΣ0

E (K∞) is quasi-projective, Σ0

does not contain ΦK/F , and SelΣ0
E (K∞)p is a proper subgroup of SelΣ1

E (K∞)p. ♦
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3.4 More general situations.

A. The results that we have described can be extended to a more general class of elliptic
curves. First consider any elliptic curve E with potentially good ordinary reduction at all
the primes of F lying above p. If v is such a prime, then there exists a finite extension
of Fv over which E has good ordinary reduction. The kernel of the reduction map is a
subgroup of E[p∞] which we denote by F+

v E[p∞]. That subgroup is easily seen to be GFv -
invariant. It is isomorphic to Qp/Zp, as is the quotient group E[p∞]

/
F+
v E[p∞], which we

will denote by Ev[p
∞]. By definition, the inertia subgroup of GFv acts on Ev[p

∞] through a
finite quotient group. With this notation, the Selmer group SelE(K∞)p can be defined just
as in the introduction. The crucial point is that the isomorphism (1.2.a) is still valid, as
proved in [CoGr]. (See proposition 4.3.) It is still true that H0(K∞,η, Ev[p

∞]) is finite. The
proof of proposition 3.2.1 then goes through with virtually no change. As for proposition
3.1.1, one must just replace assumption (b) by the assumption that H0(Kw, Ev[p

∞]) = 0 for
all v ∈ Σp. Here w is any prime of K lying over p.

If E has multiplicative or potentially multiplicative reduction at some v lying over p,
then the situation is different. One still has a canonical GFv -invariant subgroup F+

v E[p∞]
isomorphic to Qp/Zp as a group. We again denote the corresponding quotient group by
Ev[p

∞]. The definition of SelE(K∞)p remains the same as in the introduction. However, GFv

acts on Ev[p
∞] either trivially or through a quotient group of order 2. If the action of GK∞,η

is nontrivial and p is odd, then H0(K∞,η, Ev[p
∞]) = 0 and so the argument in this case

works just as if E were non-anomalous for any prime w of K lying above v. Even if p = 2,
H0(K∞,η, Ev[p

∞]) would still be finite. However, if E has split multiplicative reduction over
K∞,η, then H0(K∞,η, Ev[p

∞]) ∼= Qp/Zp and so the argument in part D of section 3.1 breaks
down if H2(∆′

η,Qp/Zp) 6= 0 for some subgroup ∆′
η of ∆η. The argument in part H breaks

down if p
∣∣|∆η|. For if ∆′

η is a subgroup of ∆η of order p, then has H3(∆′
η,Qp/Zp) 6= 0. The

argument in section 3.2, part B, also breaks down if p
∣∣|∆η| since if Pη is a cyclic subgroup

of order pt, then hPη(Qp/Zp) = p−t.
One does have a useful analogue of proposition 3.2.1 which applies under the assumption

that E has potentially good or multiplicative reduction at all primes of F lying above p.
One must just replace SelΣ0

E (K∞)p by the possibly larger group

S̃el
Σ0

E (K∞)p = ker
(
H1(K∞, E[p∞]) −→

⊕

v 6∈Σ0

H̃v(K∞, E)
)

where H̃v(K∞, E) is defined as follows. If v 6∈ Σp, we let H̃v(K∞, E) = Hv(K∞, E). If v ∈ Σp

and η|v, let Iη denote the inertia subgroup of GK∞,η . We then let H̃v(K∞, E) be the image

48



of Hv(K∞, E) under the homomorphism
∏

η|v

H1(K∞,η, Ev[p
∞]) −→

∏

η|v

H1(Iη, Ev[p
∞])

induced by the restriction maps. Thus, H̃v(K∞, E) ∼= Hv(K∞, E)/Tv, where Tv is a certain
Gal(K∞/F )-invariant subgroup of Hv(K∞, E). We now describe that subgroup. Note that
for each η|v, we have

ker
(
H1
(
K∞,η, Ev[p

∞]
)

−→ H1
(
Iη, Ev[p

∞]
)) ∼= H1

(
Kunr

∞,η

/
K∞,η, Ev[p

∞]Iη
)

and this group is finite (and trivial if p is odd) unless E has split multiplicative reduction
over K∞,η. In the latter case, the kernel is isomorphic to Qp/Zp as a group. This doesn’t
depend on the choice of η lying over v. Thus, as a group, Tv would be isomorphic to a direct
sum of Qp/Zp’s, one for each η.

To discuss the action of ∆ on Tv, note that GF∞,v acts on Ev[p
∞] by a character εv of

order 1 or 2. (We write F∞,v instead of F∞,ν because this extension of Fv doesn’t depend on
the choice of ν lying over v. Similarly, we write εv instead of εν .) The group Tv is nontrivial
(or infinite if p = 2) if and only if εv factors through the quotient ∆η. Now ∆η acts trivially

on Gal(Kunr
∞,η

/
K∞,η) ∼= Ẑ and hence the above kernel is isomorphic to (Qp/Zp)(εv), the group

Qp/Zp on which ∆η acts by εv. For any prime ν of F∞ lying over v, the primes η of K∞ lying
over ν form an orbit for the action of ∆. Let gv denote the number of such orbits. Thus,
assuming that εv factors through ∆η, it follows that Tv is isomorphic to a direct sum of gv
copies of Ind∆

∆η

(
(Qp/Zp)(εv)

)
as Zp[∆]-modules. The corresponding quotient of Hv(K∞, E)

is isomorphic to H̃v(K∞, E).

It is reasonable to believe that SelE(K∞)p is a cotorsion Λ-module if E has potentially
good or multiplicative reduction at the primes of F lying above p. Assuming this is the case,
the global-to-local map defining SelE(K∞)p is again surjective. One deduces that

(3.4.a) S̃el
Σ0

E (K∞)p
/
SelΣ0

E (K∞)p ∼=
∏

v|p

Tv

for any finite set Σ0 of primes not dividing p.

We want to prove the analogue of proposition 3.2.1 for the Pontryagin dual of the modified

Selmer group S̃el
Σ0

E (K∞)p. The argument is essentially the same and relies on parts A and
B of section 3.2. The arguments in A work without change. As for B, we must show that
the relevant Herbrand quotients for H̃v(K∞, E) are all equal to 1. It suffices to prove that

hP
(
Hv(K∞, E)(ε)

)
= hP

(
ker(Hv(K∞, E)(ε) −→ H̃v(K∞, E)(ε)

)
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for all v ∈ Σp, for every cyclic subgroup C = PQ of ∆, and every character ε of Q. For that

equality implies immediately that hP
(
H̃v(K∞, E)(ε)

)
= 1. The proof then proceeds just as

before.
As in section 3.2, part B, it is sufficient to prove that the Herbrand quotients for

H1(K∞,η, Ev[p
∞])(εη), and ker

(
H1(K∞,η, Ev[p

∞])(εη) −→ H1(Iη, Ev[p
∞])(εη)

)

are equal, where now Cη = PηQη is a cyclic subgroup of ∆η. Equivalently, we must show

hPη

(
H0(K∞,η, Ev[p

∞])(εη)
)

= hPη

(
H1(Kunr

∞,η/K∞,η, Ev[p
∞]Iη)(εη)

)
.

This is not hard. First of all, Ev[p
∞] is isomorphic to Qp/Zp as a group and so if GK∞,η

acts nontrivially on Ev[p
∞], then both H0(K∞,η, Ev[p

∞]) and H1(Kunr
∞,η/K∞,η, Ev[p

∞]Iη) are
finite. The above Herbrand quotients are then both equal to 1. On the other hand, if GK∞,η

acts trivially on Ev[p
∞], then we have isomorphisms

H0(K∞,η, Ev[p
∞]) ∼= Ev[p

∞], H1(Kunr
∞,η/K∞,η, Ev[p

∞]Iη) ∼= Ev[p
∞]

which are equivariant for the action of ∆η. For the second isomorphism, one uses the fact
that Kunr

∞,η/F∞,v is abelian and so ∆η acts trivially on Gal(Kunr
∞,η/K∞,η). It follows that

for every choice of Cη = PηQη and εη, the corresponding εη-components are isomorphic.
Consequently, the equality of Herbrand quotients is obvious.

These observations prove the following result:

Proposition 3.4.1. Assume that E has potentially good, ordinary reduction or potentially
multiplicative reduction at all primes of F lying above p. Assume also that (c), (d), and (e)
from proposition 3.1.1 are satisfied. Then the Pontryagin dual of the modified Selmer group

S̃el
Σ0

E (K∞)p is a quasi-projective Zp[∆]-module.

For every σ ∈ IrrF(∆), let λ̃Σ0
E (σ) = λ

(
X̃Σ0
E (K∞), σ

)
, where X̃Σ0

E (K∞) denotes the Pontryagin

dual of S̃el
Σ0

E (K∞)p. This is defined if one assumes that SelE(K∞)p is Λ-cotorsion and Σ0 is a
finite set of primes not including primes over p and ∞. Under the assumptions of proposition
3.4.1, one gets nontrivial congruence relations for the λ̃Σ0

E (σ)’s if |∆| is divisible by p. By
(3.4.a) and Frobenius reciprocity, we have the following formula

λ̃Σ0
E (σ) − λΣ0

E (σ) =
∑

v∈Σp

gv〈σ|∆η , εv〉
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where the multiplicity 〈σ|∆η , εv〉 is interpreted to be 0 if εv doesn’t factor through ∆η. Note
that this multiplicity doesn’t depend on the choice of η lying over v. Also, one should really
put the contragredient of εv in the above formula, but since εv has order 2, it defines a
self-dual representation.

Formula (1.3.b) still holds in this more general context. Thus, the difference λ̃Σ0
E (σ) − λE(σ)

can be expressed in terms of quantities defined purely locally at the primes in Σp ∪ Σ0.

B. We now consider an even more general situation. One can associate Selmer groups
to Galois modules of the form A = V/T , where V is a finite-dimensional Qp-representation
space for GF and T is a Galois-invariant Zp-lattice in V . This Selmer group can be defined if
one makes certain assumptions of a local nature about V . This topic is discussed in detail in
[Gr89]. Selmer groups are introduced there if one assumes a certain ordinariness condition
at the primes of F lying above p. Chapter 5 in that paper is even more general. We will use
the notation SA(K∞), although the notation in [Gr89] is slightly different and more precise.
The Selmer group SA(K∞) is defined as the kernel of a certain global-to-local map γA,K∞ .
Under the assumption that V is “p-critical”, one shows that if SA(K∞) is Λ-cotorsion, then
CA(K∞) = coker

(
γA,K∞

)
is also Λ-cotorsion.

In the special case where A = E[p∞] and E has good, ordinary reduction at the primes
of K lying above p, we have SA(K∞) = SelE(K∞)p. In contrast, if E has split, multiplicative

reduction at some of the primes of K lying above p, then SA(K∞) = S̃elE(K∞)p, the modified
Selmer group defined in remark 3.4, and this will be strictly bigger than SelE(K∞)p, assuming
that it is Λ-cotorsion. In this case, SelE(K∞)p coincides with the so-called “strict Selmer
group” SstrA (K∞) which is also defined in [Gr89]. Actually, one has SelE(K∞)p = SstrA (K∞)
just under the assumption that E doesn’t have potentially supersingular reduction at any
prime above p. If one assumes that SelE(K∞)p is Λ-cotorsion, then one has CA(K∞) = 0.

The most significant difference in the general setting is that it is possible for CA(K∞) to be
non-trivial. Assuming that V is p-critical and that SA(K∞) is Λ-cotorsion, it turns out that
the Pontryagin dual of coker

(
γA,K∞

)
is pseudo-isomorphic to H0(K∞, T

∗) as a Λ[∆]-module.
Here, as in [Gr89], we define T ∗ = Hom

(
A, µp∞

)
, a free Zp-module of rank n = dim(V ). We

cannot give a good reference for this, but the necessary arguments can essentially be found
in the proof of proposition 4.13 in [Gr99].

Surjectivity of the global-to-local map plays an important role in the proofs of proposi-
tions 3.1.1 and 3.2.1. Thus, if CA(K∞) 6= 0, then the proofs break down. One remedy for this
difficulty is to consider the non-primitive Selmer group SΣ0

A (K∞), defined to be the kernel
of a map γΣ0

A,K∞
, where one omits the local conditions for primes in Σ0. We assume as usual

that Σ0 is a finite set of primes not containing primes above p or ∞. If one assumes that V
is p-critical, that SA(K∞) is Λ-cotorsion, and that Σ0 is non-empty, then it turns out that
γΣ0
A,K∞

is surjective. (See the comment following proposition 4.13 in [Gr99].) Thus, one can
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then prove analogues of propositions 3.1.1 or 3.2.1 under suitable sets of assumptions. We
have not carefully checked what the needed assumptions are in this general setting. Under
all of these assumptions, one has the following exact sequence

(3.4.b) 0 −→ SelA(K∞) −→ SelΣ0
A (K∞) −→

∏

v∈Σ0

Hv(K∞, A) −→ CA(K∞) −→ 0

Therefore, one obtains an equation analogous to (1.3.b). One must just modify it by including
an additional term which takes into account the action of ∆ on H0(K∞, T

∗). Of course, that
term is subtracted on the right side of the equation.

3.5 ∆ ⋊ Γ-extensions.

We now consider a different type of generalization. We return to the situation where E
is an elliptic curve defined over F with good, ordinary reduction at the primes above p.
Propositions 3.1.1, 3.2.1, 3.3.1, and corollary 3.2.2 are all valid almost exactly as stated in the
following situation. Just as before, let us assume that K∞ = KF∞, where K is a finite Galois
extension of F . However, we won’t necessarily assume that K ∩ F∞ = F . Thus, K∞ is the
cyclotomic Zp-extension of K and is a finite Galois extension of F∞. Let ∆ = Gal(K∞/F∞).
Then ∆ acts on SelE(K∞)p, but there may not be a well-defined action of Γ = Gal(F∞/F )
on that Selmer group. Nevertheless, for the conclusions in the above propositions to be valid,
one only needs to replace the assumption that SelE(K∞)p be Λ-cotorsion by the assumption
that SelE(K∞)p be cotorsion over the ring Zp[[ΓK ]], where ΓK = Gal(K∞/K). Assumption
(e) in proposition 3.1.1 would certainly suffice because it implies that SelE(K∞)p has finite
Zp-corank which, in turn, implies that SelE(K∞)p is Zp[[ΓK ]]-cotorsion.

If K ∩ F∞ = F , then the restriction map defines an isomorphism of ΓK to Γ. However,
in general, we would have K ∩ F∞ = Fm for some m ≥ 0, where Fm is the unique subfield
of F∞ such that [Fm : F ] = pm. The restriction map is then an isomorphism of ΓK to
Γm = Gal(F∞/Fm). Note that Γm = Γp

m
. The restriction map also gives an injective

homomorphism of ∆ to Gal(K/F ). The image is Gal(K/Fm) and the cokernel is isomorphic
to Gal(Fm/F ), a cyclic group of order pm. We will often use the notation D for Gal(K/F )
to distinguish it from ∆ = Gal(K∞/F∞).

Note that if we replace the base field F by Fm, then we are in the earlier situation. We
have Gal(K∞/Fm) ∼= ∆ × Γm. In that isomorphism, Γm is identified with ΓK . We can
replace the set Σ0 by the set Σo,m consisting of the primes of Fm lying over primes in Σ0.
Only primes above p are ramified in Fm/F and hence ΦK/Fm contains just the primes of Fm
lying above primes in ΦK/F . Also, Fm and F have the same completions at archimedean
primes.
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Alternatively, one can start by just assuming that K∞ is a Galois extension of F which
contains F∞ and that [K∞ : F∞] is finite. We then have an exact sequence

1 −→ ∆ −→ Gal(K∞/F ) −→ Γ −→ 1 .

where ∆ = Gal(K∞/F∞) and Γ = Gal(F∞/F ). One sees easily that this group extension
is split. Hence there exists a subfield K ′ of K∞ containing F such that Gal(K∞/K

′) ∼= Γ,
K ′ ∩ F∞ = F , and K ′F∞ = K∞. One has [K ′ : F ] = |∆|, but K ′ may fail to be a Galois
extension of F . One can choose the splitting so that K ′ is Galois over F if and only if
the natural homomorphism Γ → Aut(∆)

/
Inn(∆) is trivial. Here Aut(∆) is the group of

automorphisms of ∆ and Inn(∆) is the subgroup of inner automorphisms. In general, let K
be the compositum of all the conjugates of K ′ over F . Then K/F is a finite Galois extension
and we do indeed have K∞ = KF∞. If K ′/F is not Galois, then K ∩ F∞ = Fm, where
m ≥ 1.

One could easily formulate the propositions just in terms of F∞ and K∞ without even
referring to Γ. One defines ∆ to be Gal(K∞/F∞) as before. The proofs would be virtually
unchanged, although the fact that those fields are the cyclotomic Zp-extensions of number
fields enters in an important way in some of the steps. It is worth noting that p is anomalous
for E/K if and only if p is anomalous for E/K∞, which is what the arguments actually use.
Also, it is obvious that E(K)[p] = 0 if and only if E(K∞)[p] = 0, which is another ingredient.

Since Gal(K∞/F ) is isomorphic to the semidirect product ∆ ⋊ Γ, where Γ acts on ∆ by
some homomorphism Γ → Aut(∆), we will refer to K∞/F as a (∆ ⋊ Γ)-extension. In the
special case where one can choose Γ so that its action on ∆ is trivial, we will call K∞/F a
(∆ × Γ)-extension. In the general case, the above discussion shows that if Gal(K∞/F ) is a
∆ ⋊ Γ-extension, then K∞/Fm is a (∆ × Γm)-extension for some m ≥ 0.

Suppose that K∞/F is a (∆ ⋊ Γ)-extension, that K is defined as above, and that D =
Gal(K/F ). Let G = Gal(K∞/F ). Thus, ∆ is a normal subgroup of G and D is a certain
quotient group. There is a fairly simple relationship between the irreducible representations
of D and ∆. To describe this, we identify ∆ with its image in D. It is a normal subgroup
and D

/
∆ ∼= Z/pmZ. Suppose that ρ ∈ IrrF(D). Of course, ρ|∆ may be reducible. We let

Orbρ denote the set of irreducible constituents in ρ|∆. We use that notation for the following
reason. Conjugation gives a well-defined action of D/∆ on the set IrrF(∆) and Orbρ is one
of the orbits. The cardinality of Orbρ divides pm, where m is as above. Furthermore, if
σ ∈ Orbρ, then the multiplicity of σ in ρ|∆ is 1. This last assertion follows from proposition
(9.12) in [Fei], using the fact that D

/
∆ is cyclic.

In this situation, one does not have a well-defined action of D on SelE(K∞)p. However,
it seems natural to make the following definitions. Fix a set Σ0 of primes as usual. We can

53



define λΣ0
E (σ) for every σ ∈ IrrF(∆) just as before. We can extend this to the Grothendieck

group RF(∆) to have a homomorphism λΣ0
E : RF(∆) → Z. We then define

(3.5.a) λΣ0
E (ρ) = λΣ0

E

(
ρ|∆
)

=
∑

σ∈Orbρ

λΣ0
E (σ)

for all ρ ∈ IrrF(D). Of course, if Σ0 is empty, we omit it from the notation. These definitions
can be extended to give homomorphisms from RF(D) to Z. It is important to note that if
σ, σ′ ∈ IrrF(∆) are in the same orbit under the action of Γ (or equivalently, under the action
of D/∆), then one can show that λΣ0

E (σ) = λΣ0
E (σ′) for any choice of Σ0. This is not difficult

to prove. Consequently, λΣ0
E (ρ) = |Orbρ| · λΣ0

E (σ) for any σ ∈ Orbρ.

Suppose that ρ1 and ρ2 are representations of D over F and that ρ̃1
ss ∼= ρ̃2

ss. We then
have a similar isomorphism for the restrictions of ρ1 and ρ2 to ∆. Therefore, if the hypotheses
in proposition 3.2.1 are satisfied, then we have a congruence relation λΣ0

E (ρ1) = λΣ0
E (ρ2).

As a final remark, assume that hypotheses (a), (b), (c), and (d) in proposition 3.1.1
are satisfied. One can then apply proposition 2.4.1 to conclude that XΣ0

E (K∞) has a free
resolution of length 1 as a ΛG-module. Thus, its projective dimension is 1.

4 Selmer atoms.

Let Σ be a finite set of primes of F containing the set Σp of primes lying over p, the set Σ∞

of archimedean primes of F , the set ΨE of primes where E has bad reduction, as well as the
set Ram(K/F ) of primes which are ramified in K/F . Thus, the maximal extension FΣ of
F unramified outside of Σ contains K∞ and F (E[p∞]). We will assume in this chapter that
K ∩F∞ = F . Everything we discuss can be reduced to that case by replacing F by K ∩F∞

if necessary. (See section 3.5.)

Let Repf(∆) denote the set of finite-dimensional representations of ∆ = Gal(K/F ) over
f, up to isomorphism. If α ∈ Repf(∆), we will denote the underlying representation space
for α by Uα. For any such α, consider E[p] ⊗Fp Uα, a representation space for Gal(FΣ/F )
over f of dimension 2n(α). We denote it more briefly by E[p]⊗α. The action of Gal(FΣ/F )
on E[p] ⊗ α factors through the quotient group Gal

(
K(E[p])/F

)
.

The definition of SelΣ0

E[p]⊗α(F∞) was given in section 1.4. One can see easily that it is a

subgroup of H1(FΣ/F∞, E[p] ⊗ α) and is defined by the local triviality conditions for the
primes v ∈ Σ − Σ0. All of the cohomology groups H i(FΣ/F∞, E[p] ⊗ α) can be naturally
considered as modules over the group ring f[[Γ]], where Γ = Gal(F∞/F ). Different aspects
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of their structure are discussed in section 4.1. The Selmer groups are also modules over that
ring and their structure is the subject of section 4.2.

Our main objective in this chapter is to prove Theorem 2, which follows the outline in
the introduction and will be completed only in section 4.4. Hypothesis (ii) in that result
implies that p is odd. We will simply make the blanket assumption in this chapter that p
is an odd prime, although it is not actually needed in many of the steps. In some parts, we
will make brief comments concerning the case p = 2. We will mostly assume that E has
good, ordinary reduction at the primes of F lying over p. That assumption is not needed
until part D of section 4.1.

4.1 Various cohomology groups. Coranks. Criteria for vanishing.

A. Coranks of H i(FΣ/F∞, E[p] ⊗ α) over f[[Γ]]. We can relate these coranks for i = 1, 2
to each other by studying the growth of H i(FΣ/F∞, E[p] ⊗ α)Γn as n varies. Here Γn is the
unique subgroup of Γ of index pn. Thus, Γn = Gal(F∞/Fn), where Fn is a cyclic extension
of F of degree pn, the n-th layer in the Zp-extension F∞/F . Consider the restriction maps

ρ(i)
n : H i(FΣ/Fn, E[p] ⊗ α) −→ H i(FΣ/F∞, E[p] ⊗ α)Γn .

It turns out that ρ
(i)
n is surjective. This follows for i = 1 from the usual inflation-restriction

sequence since H2
(
Γn, H

0(FΣ/F∞, E[p] ⊗ α)
)

= 0.
For i = 2, one can also use an exact sequence derived from the Hochschild-Serre spectral

sequence. The objects Eab
2 = Ha

(
Γn, H

b(FΣ/F∞, E[p]⊗α)
)

in that spectral sequence vanish
when a ≥ 2. This is because Γn has p-cohomological dimension 1. Consequently, Eab

2
∼= Eab

∞

for all a and b, and this vanishes when a ≥ 2. Hence only the first two columns of objects
in the spectral sequence can be nonzero. The filtration on H2(FΣ/Fn, E[p]⊗ α) collapses to

just a subgroup isomorphic to E11
2 (which will be the kernel of ρ

(2)
n ) and a quotient group

isomorphic to E02
2 = H2(FΣ/F∞, E[p] ⊗ α)Γn , where the isomorphism is induced by ρ

(2)
n .

Thus, coker(ρ
(2)
n ) = 0.

It is known that H i(FΣ/F,E[p] ⊗ α) is finite for any i. Applying the above result
for n = 0 and i = 1, 2 then shows that H i(FΣ/F∞, E[p] ⊗ α)Γ is also finite. It follows
that H i(FΣ/F∞, E[p] ⊗ α) is cofinitely generated as a f[[Γ]]-module. The same is true for
H0(FΣ/F∞, E[p]⊗α), which is obviously finite and hence is cotorsion as a module over f[[Γ]].
Although it won’t be needed, we remark that H i(FΣ/F∞, E[p]⊗ α) = 0 for i ≥ 3 if p is odd
or if p = 2 and E(Fv) is connected for all archimedean primes v of F . It could be nontrivial
otherwise, but will still be cofinitely generated.
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To study the growth of H i(FΣ/F∞, E[p] ⊗ α)Γn , we will need the isomorphisms

ker(ρ(1)
n ) ∼= H1(Γn, A), ker(ρ(2)

n ) ∼= H1(Γn, B)

where we let A = H0(FΣ/F∞, E[p]⊗ α) = (E[p]⊗ α)GF∞ and B = H1(FΣ/F∞, E[p]⊗ α) for
brevity. The first isomorphism follows from the inflation-restriction sequence. The second
follows from the above remarks since H1(Γn, B) = E11

2 . It follows that ker(ρ
(1)
n ) is finite and

has bounded order. In fact, for n sufficiently large, we have |ker(ρ
(1)
n )| = |A| since A is finite.

The f[[Γ]]-module B is cofinitely generated. Let h1 denote its corank. Since f[[Γ]] is a

PID, the Pontryagin dual B̂ of B is isomorphic to the direct sum of a free f[[Γ]]-module of
rank h1 and a finitely-generated torsion-module. The torsion-module will be finite. Thus B
contains a cofree f[[Γ]]-submodule, which we denote by Bdiv, such that the quotient module
B/Bdiv is finite. We use this notation because Bdiv is precisely the maximal divisible f[[Γ]]-
submodule of B. Also, we have B ∼= Bdiv ⊕ B/Bdiv as a f[[Γ]]-module. One sees easily that

H1(Γn, Bdiv) = 0 for all n ≥ 0. Hence H1(Γn, B) = H1(Γn, B/Bdiv). It follows that ker(ρ
(2)
n )

is finite and has bounded order. In fact, if n is sufficiently large, Γn acts trivially on B/Bdiv

and hence we then have |ker(ρ
(2)
n )| = |B/Bdiv|.

We have already proved the first part of the following result.

Proposition 4.1.1. The cohomology groups H i(FΣ/F∞, E[p] ⊗ α) are cofinitely generated
as modules over the ring f[[Γ]] for 0 ≤ i ≤ 2. The module H0(FΣ/F∞, E[p]⊗α) is cotorsion.
We have

corankf[[Γ]]

(
H1(FΣ/F∞, E[p] ⊗ α)

)
= corankf[[Γ]]

(
H2(FΣ/F∞, E[p] ⊗ α)

)
+ n(α)[F : Q] .

Furthermore, H2(FΣ/F∞, E[p] ⊗ α) is a cofree f[[Γ]]-module.

Proof. If H is an f[[Γ]]-module of corank h, then one sees easily that dimf

(
HΓn

)
= hpn+O(1)

as n → ∞. We have dimf

(
HΓn

)
≥ hpn for all n and equality holds for at least one n if and

only if H is a cofree f[[Γ]]-module. This can be seen by using the fact that f[[Γ]] is a PID.
For 0 ≤ i ≤ 2, let hi = corankf[[Γ]]

(
H i(FΣ/F∞, E[p] ⊗ α)

)
. It is obvious that h0 = 0. Using

the notation and the remarks described above, if n is sufficiently large, we have

dimf

(
H0(FΣ/Fn, E[p] ⊗ α)

)
= dimf(A) ,

dimf

(
H1(FΣ/Fn, E[p] ⊗ α)

)
= h1p

n + dimf

(
B/Bdiv

)
+ dimf(A) .

We have used the fact that dimf

(
ker(ρ

(1)
n )
)

= dimf(A) if n >> 0. The Euler-Poincaré
characteristic for the Gal(FΣ/Fn)-module E[p] ⊗ α, by which we mean the alternating sum
of the f-dimensions of the cohomology groups H i(FΣ/Fn, E[p] ⊗ α), can be expressed as

(4.1.a) dimf(A) −
(
h1p

n + dimf

(
B/Bdiv

)
+ dimf(A)

)
+ dimf

(
H2(FΣ/Fn, E[p] ⊗ α)

)
.
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One can calculate this from the standard formula for finite Galois modules, as given in
proposition 8.6.14 in [NSW], for example. The formula involves contributions from all of
the archimedean primes of Fn. The contribution to the value of (4.1.a) from the complex
primes is −2n(α). For each real prime, one notes that the +1 and −1 eigenspaces for the
action of complex conjugation on E[p] are both 1-dimensional over Fp. It follows that each
eigenspace for the action of complex conjugation on E[p] ⊗ α has f-dimension n(α), and
the corresponding contribution to (4.1.a) is −n(α). Thus, the Euler-Poincaré characteristic
(4.1.a) turns out to equal −n(α)[Fn : Q]. As a consequence, we have

dimf(A)−
(
h1p

n+dimf

(
B/Bdiv

)
+dimf(A)

)
+ dimf

(
H2(FΣ/Fn, E[p]⊗α)

)
= −n(α)[Fn : Q]

and we therefore find that

dimf

(
H2(FΣ/Fn, E[p] ⊗ α)

)
=
(
h1 − n(α)[F : Q]

)
pn + dimf

(
B/Bdiv

)
.

for sufficiently large n. We also have dimf

(
ker(ρ

(2)
n )
)

= dimf

(
B/Bdiv

)
. Therefore,

dimf

(
H2(FΣ/F∞, E[p] ⊗ α)Γn

)
=
(
h1 − n(α)[F : Q]

)
pn

for sufficiently large n. This implies two things: H2(FΣ/F∞, E[p] ⊗ α) has f[[Γ]]-corank
h2 = h1 − n(α)[F : Q] and is actually f[[Γ]]-cofree. The proposition follows. �

Corollary 4.1.2. We have the inequality

corankf[[Γ]]

(
H1(FΣ/F∞, E[p] ⊗ α)

)
≥ n(α)[F : Q] .

Equality holds if and only if H2(FΣ/F∞, E[p] ⊗ α) = 0.

The above proofs work without change if p = 2. However, in that case, there may be a
lower bound on the f[[Γ]]-corank of H2(FΣ/F∞, E[p]⊗α)

)
coming from the real archimedean

primes. Suppose that v is such a prime and that E(Fv) has two connected components.
The action of GFv on E[2] will then be trivial and we will have |H i(Fv, E[2]| = 4 for all
i ≥ 1. Hence it is possible for H i(Fv, E[p] ⊗ α) to be nontrivial. Its order (and hence its
f-dimension) will then be independent of i. For every i ≥ 1 and n ≥ 0, there is a map

H i(FΣ/Fn, E[p] ⊗ α) −→
∏

ν|v

H i(Fn,ν , E[p] ⊗ α)
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where ν varies over the primes of Fn lying above v and Fn,ν denotes the ν-adic completion
of Fn. This map is an isomorphism for i ≥ 3. It is surjective for i = 1, 2. In particular, since
v splits completely in F∞/F , we get a lower bound

corankf[[Γ]]

(
H2(FΣ/Fn, E[p] ⊗ α)

)
≥
∑

v|∞

dimf

(
H2(Fv, E[p] ⊗ α)

)

and so one may have a lower bound on corankf[[Γ]]

(
H1(FΣ/F∞, E[p] ⊗ α)

)
which is strictly

larger than n(α)[F : Q].

B. Vanishing of H0(F,E[p] ⊗ α). Since GK acts trivially on α, we have an isomorphism
E[p]⊗α ∼= (E[p]⊗ f)n(α) as f-representation spaces for GK . If we make the assumption that
E(K)[p] = H0(K,E[p]) vanishes, then it follows that H0(F,E[p]⊗α) = 0 for any α. On the
other hand, if E(K)[p] 6= 0, then we can regard E(K)[p] ⊗ f as a nontrivial f-representation
space for ∆. It contains a ∆-invariant subspace U on which ∆ acts irreducibly. Thus, for
some τ ∈ Irrf(∆), we have U ∼= Uτ̌ , the underlying representation space for the contragredient
representation τ̌ for τ . Then, for that τ ,

H0(F, E[p] ⊗ τ) ∼= H0
(
F, Hom(Uτ̌ , f) ⊗ E[p])

) ∼= H0
(
F, Hom(Uτ̌ , E[p] ⊗ f)

)

will be nontrivial. The following proposition summarizes these observations. It is valid even
for p = 2.

Proposition 4.1.3. The following statements about E[p] are equivalent:

(i) E(K)[p] = 0,

(ii) H0(F,E[p] ⊗ α) = 0 for all α ∈ Repf(∆),

(iii) H0(F,E[p] ⊗ τ) = 0 for all τ ∈ Irrf(∆).

Furthermore, H0(F∞, E[p]⊗ α) = 0 if and only if H0(F,E[p]⊗ α) = 0 and E(K∞)[p] = 0 if
and only if E(K)[p] = 0.

The final statement is true just because Gal(F∞/F ) and Gal(K∞/K) are pro-p groups.

C. Vanishing of H2(FΣ/F∞, E[p] ⊗ α). We have H2(F∞,v, E[p] ⊗ α) = 0 for all v. This is
true for non-archimedean primes v because GF∞,v always has p-cohomological dimension 1,
It is true for archimedean primes v because p is odd. In particular, we see that

H2(FΣ/F∞, E[p] ⊗ α) = X
2(FΣ/F∞, E[p] ⊗ α) ,
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the group of everywhere locally trivial 2-cocycle classes. We can relate this group to
X

1(FΣ/F∞, E[p] ⊗ α̌), the group of locally trivial 1-cocycle classes, by using one of the
Poitou-Tate duality theorems. The result is the following proposition.

Proposition 4.1.4. Suppose that α ∈ Repf(∆). With the above assumptions, the following
statements are equivalent:

(i) H2(FΣ/F∞, E[p] ⊗ α) = 0,

(ii) H2(FΣ/F∞, E[p] ⊗ α) is finite,

(iii) X
1(FΣ/F∞, E[p] ⊗ α̌) is finite.

Proof. We know that (i) and (ii) are equivalent by the last part of proposition 4.1.1. Let Fn
denote the n-th layer in the Zp-extension F∞/F as before. To use the Poitou-Tate duality
theorems, note that

(4.1.b) Hom
(
E[p] ⊗ α, µp

) ∼= E[p] ⊗ α̌

by the Weil pairing and standard canonical isomorphisms from linear algebra. Thus, for
every n, we have a perfect pairing of the f-vector spaces

X
1(FΣ/Fn, E[p] ⊗ α̌) × X

2(FΣ/Fn, E[p] ⊗ α) −→ Fp ,

which we refer to as the Poitou-Tate pairing.
Assume that (ii) is satisfied. Since ker(ρ

(2)
n ) has bounded order, it follows that the order

of H2(FΣ/Fn, E[p] ⊗ α) is bounded as n → ∞. Therefore, the same thing is true for the
order of X

2(FΣ/Fn, E[p]⊗α) and hence X
1(FΣ/Fn, E[p]⊗ α̌). Thus, X

1(FΣ/F∞, E[p]⊗ α̌)
is finite, and so (iii) is satisfied.

Assume that (iii) is satisfied. Consider the map ρ̌
(1)
n which is defined just as ρ

(1)
n , but

for the Galois module E[p] ⊗ α̌ instead of E[p] ⊗ α. Its kernel has bounded order, and so
it follows that X

1(FΣ/Fn, E[p] ⊗ α̌) and hence X
2(FΣ/Fn, E[p] ⊗ α) have bounded order.

Thus, X
2(FΣ/F∞, E[p] ⊗ α) is finite, and so (ii) is satisfied. �

Remark 4.1.5. In the above proofs, the restriction maps play a role. We can say a little
more about them. For m ≥ n (including the possibility that m = ∞), consider

r
(i)
m/n : X

i(FΣ/Fn, E[p] ⊗ α) −→ X
i(FΣ/Fm, E[p] ⊗ α)

for i = 1, 2. We first discuss the case when i = 1. The restriction maps then turn out to
be injective if n is sufficiently large. Of course, it suffices to show this for m = ∞. The
inflation-restriction sequence implies that

H1(Γn, A) ∼= ker
(
H1(FΣ/Fn, E[p] ⊗ α) −→ H1(FΣ/F∞, E[p] ⊗ α)

)
,
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where A = H0(F∞, E[p] ⊗ α) and Γn = Gal(F∞/Fn). We will identify H1(Γn, A) with its

image in H1(FΣ/Fn, E[p]⊗α). To prove the injectivity of r
(1)
∞/n for large n, we must show that

the intersection of H1(Γn, A) with X
1(FΣ/Fn, E[p]⊗α) is trivial. For that purpose, suppose

that π is a prime of F∞ lying over p. Then π is ramified in F∞/F and totally ramified in
F∞/Fn for sufficiently large n. For such n, we can identify Γn with Γn,π = Gal(F∞,π/Fn,π).
Thus, H1(Γn, A) ∼= H1(Γn,π, A). On the other hand, let Aπ = H0(F∞,π, E[p] ⊗ α). Consider
the composite map

H1(Γn, A) −→ H1(Γn,π, Aπ) −→ H1(Fn,π, E[p] ⊗ α) ,

where the second map is the inflation map and is certainly injective. Now A ⊆ Aπ and Γn,π
acts trivially on Aπ if n is sufficiently large, since Aπ is finite. The first map is then clearly
injective since 1-cocycles with values in A or Aπ are just homomorphisms. Thus, for large
n, any nontrivial element of ker

(
H1(FΣ/Fn, E[p] ⊗ α) −→ H1(FΣ/F∞, E[p] ⊗ α)

)
is locally

nontrivial at π. Hence, indeed, r
(1)
∞/n will be injective.

Now consider i = 2. The map r
(2)
m/n can fail to be injective. In fact, if one assumes

that X
1(FΣ/F∞, E[p] ⊗ α̌) is finite, then one can deduce that r

(2)
m/n is the zero-map for

m > n >> 0, which gives an alternative proof of the equivalence of that assumption to the
vanishing of H2(FΣ/F∞, E[p] ⊗ α). It is possible for X

1(FΣ/F∞, E[p] ⊗ α̌) to be finite, but
nontrivial. Then, for m >> n >> 0, H2(FΣ/Fn, E[p]⊗α) will be nontrivial and will coincide

with ker
(
r
(2)
m/n

)
.

The argument is as follows. The assumption that X
1(FΣ/F∞, E[p]⊗ α̌) is finite and the

injectivity of the restriction maps (which we now denote by ř
(1)
m/n) implies that the order of

X
1(FΣ/Fn, E[p] ⊗ α̌) stabilizes and ř

(1)
m/n is an isomorphism if m > n >> 0. Consider the

corestriction map

č
(1)
m/n : X

1(FΣ/Fm, E[p] ⊗ α̌) −→ X
1(FΣ/Fn, E[p] ⊗ α̌) .

Since č
(1)
m/n ◦ ř

(1)
m/n is simply multiplication by pm−n, it follows that, for n sufficiently large and

m > n, the map č
(1)
m/n will be the zero-map. Under the Poitou-Tate pairing, r

(2)
m/n and č

(1)
m/n

are adjoints of each other. It follows therefore that r
(2)
m/n is indeed the zero-map if n is large

enough and m > n. ♦

The group X
1(FΣ/K∞, E[p∞]) occurring in the next proposition is the group of locally

trivial 1-cocycle classes for the Galois module E[p∞]. It is a Λ-submodule of SelE(K∞)p,
called the “fine Selmer group” in [CS05], where it is denoted by R(E/K∞). Coates and
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Sujatha conjecture that the µ-invariant for this Λ-module (or its Pontryagin dual) is zero,
which means precisely that X

1(FΣ/K∞, E[p∞])[p] is finite. This does seem like a reasonable
conjecture, and so the statements (i), (ii), (iii) in the following proposition are likely to
hold in general. See also remark 4.1.7. Statement (iv) is also likely to hold if p is odd. For
p = 2, one certainly needs the hypothesis that E(Fv) is connected for all real primes v of F ,
as discussed at the end of part A.

Proposition 4.1.6. The following statements are equivalent:

(i) X
1(FΣ/K∞, E[p∞])[p] is finite,

(ii) X
1(FΣ/F∞, E[p] ⊗ α) is finite for all α ∈ Repf(∆),

(iii) X
1(FΣ/F∞, E[p] ⊗ τ) is finite for all τ ∈ Irrf(∆),

(iv) H2(FΣ/K∞, E[p]) = 0.

Proof. In comparing the various cohomology groups over F∞ and over K∞, the kernels of
the global and local restriction maps are involved. The Galois module might be of the form
A = E[p] ⊗ α, where α ∈ Repf(∆), and so will be finite. The kernels will be of the form
H1(∆, A) or H1(∆v, A) for v ∈ Σ. These groups are all clearly finite. To show that (i)
implies (ii), first note that GK∞ acts trivially on α and hence

E[p] ⊗ α ∼= E[p]n(α)[f:Fp]

as a Galois module over K∞. Thus, assuming that n(α) > 0, X
1(FΣ/K∞, E[p]⊗α) is finite

if and only if X
1(FΣ/K∞, E[p]) is finite . Therefore, if we assume that X

1(FΣ/F∞, E[p]⊗α)
is infinite for some α ∈ Repf(∆), then X

1(FΣ/K∞, E[p]) would be infinite too. The map

(4.1.c) H1(FΣ/K∞, E[p]) −→ H1(FΣ/K∞, E[p∞])[p]

has a finite kernel. Hence, the same is true for the kernel of the natural map

(4.1.d) X
1(FΣ/K∞, E[p]) −→ X

1(FΣ/K∞, E[p∞])[p] ,

and so the latter group would also be infinite. This proves that (i) implies (ii).
The fact that (ii) implies (iii) is obvious. Now we prove (i), assuming (iii). The map

(4.1.c) is surjective. To prove that the cokernel of the map (4.1.d) is finite, it is sufficient to
note that, for each v ∈ Σ, the local map

H1(K∞,v, E[p]) −→ H1(K∞,v, E[p∞])[p]

has a finite kernel. This is easy to verify. Thus, to prove (i), it suffices to show that
X

1(FΣ/K∞, E[p]) is finite.
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Suppose that X is any representation space for ∆ over f, possibly of infinite dimension.
However, assume that (X ⊗ τ)∆ is finite for all τ ∈ Irrf(∆). Thus, for each such τ , there is

a maximal integer m(τ̌) such that X contains a ∆-invariant subspace isomorphic to U
m(τ̌)
τ̌ .

We will let U denote the sum over all τ ’s of those subspaces. Thus, U is a ∆-invariant
subspace of X which has finite dimension over f, U is semisimple as a representation space
for ∆, and U is the maximum such subspace of X. Let u denote the f-dimension of U . Now
suppose that V is any ∆-invariant, finite-dimensional subspace of X containing U . We will
view these spaces, and their duals, as modules over the finite ring R = f[∆]. Let I denote
the Jacobson radical of that ring. The dual space Ǔ is then a quotient space of V̌ , namely
the maximal semisimple quotient as an R-module. That is, V̌/IV̌ ∼= Ǔ . Therefore, we can
get a set of generators of V̌ by choosing lifts of the elements in an f-basis of Ǔ . Hence, V̌ has
u generators as an R-module and so dimf(V) = dimf(V̌) is bounded by u|∆|. However, X is
the union of all its finite-dimensional, ∆-invariant subspaces V , and therefore it follows that
X is finite-dimensional.

It is clear that X
1(FΣ/K∞, E[p]) ⊗ τ = X

1(FΣ/K∞, E[p] ⊗ τ) since GK∞ acts trivially

on Uτ . Therefore, it is now sufficient to show that
(
X

1(FΣ/K∞, E[p] ⊗ τ)
)∆

is finite for
every τ ∈ Irrf(∆). Consider the restriction map

(4.1.e) X
1(FΣ/F∞, E[p] ⊗ τ) −→ X

1(FΣ/K∞, E[p] ⊗ τ)∆ .

The groups X
1(FΣ/F∞, E[p] ⊗ τ) are assumed to be finite for all τ ’s, and so we must just

show that the cokernel of the (4.1.e) is finite too. For each such τ , we have an exact sequence

H1(FΣ/F∞, E[p] ⊗ τ) −→ H1(FΣ/K∞, E[p] ⊗ τ)∆ −→ H2
(
∆, (E[p] ⊗ τ)∆

)

which is part of the inflation-restriction sequence. The last group is certainly finite and hence
so is the cokernel of the first map. However, our initial remarks then imply the finiteness of
the cokernel of the map (4.1.e). Thus, we have proved that (iii) implies (i).

Finally, if we apply proposition 4.1.4 to F∞ = K∞, then we see thatH2(FΣ/K∞, E[p]) = 0
is equivalent to the finiteness of X

1(FΣ/K∞, E[p]). In the course of the above proof, it was
shown that this finiteness is equivalent to (i) and so to all three statements. �

Remark 4.1.7. Let L∞ denote the maximal, abelian pro-p extension of K∞ such that all
primes of K∞ are unramified. Then X = Gal(L∞/K∞) is a Λ-module, one of the main
objects of study in classical Iwasawa theory. It is a finitely generated, torsion Λ-module. A
well-known conjecture of Iwasawa asserts that µ(X) = 0. This is known to be true if K is
a finite, abelian extension of Q, a theorem of Ferrero and Washington [FeWa], but is open
in general. Note that all primes v of K∞ not lying over p split completely in L∞/K∞. Let
L
′

∞ denote the maximal subfield of L∞ in which the primes above p split completely and let
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X ′ = Gal(L∞/K∞), which is also a Λ-module. Those two modules can differ; the restriction
map X → X ′ is surjective and its kernel is finitely generated over Zp. Hence µ(X ′) = µ(X).

As pointed out at the end of the proof, the statements considered in proposition 4.1.6
are equivalent to the statement that X

1(FΣ/K∞, E[p]) is finite. If we choose K so that
F (E[p]) ⊆ K, then H1(FΣ/K∞, E[p]) = Hom(Gal(FΣ/K∞, E[p]). It then follows that
X

1(FΣ/K∞, E[p]) = Hom(X ′, E[p]). The finiteness of that group is equivalent to the van-
ishing of µ(X ′), and hence to Iwasawa’s conjecture for K∞. Thus, if Iwasawa’s conjecture is
true for all ground fields K, then the statements in proposition 4.1.6 are also valid. Essen-
tially the same point is made in [CS05], corollary 3.5. ♦

If p = 2 and E(Fv) is connected for all archimedean primes v of F , then proposition
4.1.4 and 4.1.6 are valid as stated. That assumption implies that E[2] is a projective
F2[GFv ]-module, and hence so is E[2] ⊗ α. It then follows that H i(F∞,v, E[p] ⊗ α) = 0
for all i ≥ 1. However, for greater generality, one can simply replace H2(FΣ/K∞, E[p]) and
H2(FΣ/F∞, E[p]⊗α) by X

2(FΣ/K∞, E[p]) and X
2(FΣ/F∞, E[p]⊗α), respectively, in those

propositions. The difference comes entirely from the local conditions at the archimedean
primes.

D. The local cohomology groups. We first discuss the coranks of the local cohomology
groups of interest in this chapter as modules over the group ring f[[Γ]]. For a nonarchimedean
prime v of F , and any α ∈ Repf(∆), we will use the notation Hv(F∞, E[p]⊗ α) to represent

∏

ν|v

H1(F∞,ν , E[p] ⊗ α) or
∏

ν|v

H1(F∞,ν , Ev[p] ⊗ α) ,

the first if v ∤ p, the second if v|p. Note that these products are finite. They are the groups
that occur in the definition of the Selmer groups for E[p] ⊗ α. The result about coranks is
more definitive then in the global case. We have

Proposition 4.1.8. Suppose that α ∈ Repf(∆) and that v is a nonarchimedean prime of F .
If v|p, we have

corankf[[Γ]]

(
Hv(F∞, E[p] ⊗ α)

)
= [Fv : Qp]n(α) .

If v ∤ p, then Hv(F∞, E[p] ⊗ α) is finite and hence has f[[Γ]]-corank zero.

Proof. There are only finitely many primes of F∞ lying above a given nonarchimedean
prime v of F . Let Fn,v and F∞,v denote the completions of Fn and F∞ at any one of the
primes above v. Let Γn,v = Gal(F∞,v/Fn,v). The group Γv = Γ0,v can be identified with the
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decomposition subgroup of Γ for any of the primes lying above v. The index gv = [Γ : Γv] is
the number of primes of F∞ lying above v.

The proof is easy if v ∤ p. It suffices to point out that H1(Fn,v, E[p] ⊗ α) has bounded
order as n varies. The Euler-Poincaré characteristic of the Galois module E[p] ⊗ α is zero.
That is, we have

2∑

i=0

(−1)idimf

(
H i(Fn,v, E[p] ⊗ α)

)
= 0 .

Obviously, the order of H0(Fn,v, E[p] ⊗ α) is bounded by that of H0(F∞,v, E[p] ⊗ α), which
is finite, and so the f-dimension of H0(Fn,v, E[p]⊗α) stabilizes for sufficiently large n. Now,
by local Tate duality, H2(Fn,v, E[p]⊗α) is the Pontryagin dual of H0(Fn,v, E[p]⊗ α̌) and so
its order and f-dimension also stabilize. Thus, indeed, the f-dimension of H1(Fn,v, E[p]⊗ α)
stabilizes. To get a precise result about H1(F∞,v, E[p] ⊗ α), we use the inflation-restriction
sequence. Let Av = H0(F∞,v, E[p] ⊗ α). Then we have an exact sequence

0 −→ H1(Γn,v, Av) −→ H1(Fn,v, E[p] ⊗ α) −→ H1(F∞,v, E[p] ⊗ α)Γn,v −→ 0 .

If n is large enough, then Γn,v acts trivially on Av and also on H1(F∞,v, E[p] ⊗ α). We then
have |H1(Γn,v, Av)| = |Av|. Consequently,

(4.1.f) dimf

(
Hv(F∞, E[p] ⊗ α)

)
= gvdimf

(
H0(F∞,v, E[p] ⊗ α̌)

)

for any nonarchimedean v not lying over p.

Now suppose v|p. With the same notation as above, the relevant Euler-Poincaré charac-
teristic is now

2∑

i=0

(−1)idimf

(
H i(Fn,v, Ev[p] ⊗ α)

)
= − [Fn,v : Qp]n(α)

since Ev[p] has Fp-dimension 1. The order of H0(Fn,v, E[p] ⊗ α) stabilizes as n varies. So
does the order of H2(Fn,v, Ev[p]⊗α) since that group is again isomorphic to the Pontryagin
dual of H0(Fn,v, Ev[p] ⊗ α̌). Also, just as above, the order of the kernel of the restriction
map stabilizes. Thus, we have

dimf

(
H1(F∞,v, Ev[p] ⊗ α)Γn,v

)
= [Fn,v : Qp]n(α) + O(1)

as n → ∞. Suppose that gv = pn0 . Then Fn0,v = Fv and Γv = Γn0,v. Also, we have
[Fn,v : Fv] = [Γv : Γn,v] for n ≥ n0. It follows that

corankf[[Γv ]]

(
H1(F∞,v, Ev[p] ⊗ α)

)
= [Fv : Qp]n(α)
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Therefore, the f[[Γv]]-corank of Hv(F∞, E[p]⊗α) is equal to gv[Fv : Qp]n(α). Since [Γ : Γv] =
gv, it follows that the f[[Γ]]-corank of Hv(F∞, E[p] ⊗ α) is [Fv : Qp]n(α). �

Assume that v ∈ Σp. As defined in the introduction, v is anomalous for E/K if and only
if H0(Kw, Ev[p]) 6= 0, where w is a prime of K lying above v. The argument in the proof of
proposition 4.1.3 applies to this group with little change. Thus, we have the following result:

Proposition 4.1.9. The following statements are equivalent:

(i) H0(Kw, Ev[p]) = 0.

(ii) H0(Fv, Ev[p] ⊗ α) = 0 for all α ∈ Repf(∆),

(iii) H0(Fv, Ev[p] ⊗ τ) = 0 for all τ ∈ Irrf(∆).

Proposition 4.1.8 is valid as stated for p = 2. Proposition 4.1.9 is vacuously true for
p = 2; the three statements there are never satisfied. Archimedean primes split completely
in F∞/F . For such a prime v, one defines Hv(F∞, E[p] ⊗ α) as a direct limit over the Fn’s,
just as in section 3.1, part A. One then proves the following result:

corankf[[Γ]]

(
Hv(F∞, E[p] ⊗ α)

)
= dimf

(
H1(Fv, E[p] ⊗ α)

)
.

One sees easily that for any nonzero α, H1(Fv, E[p] ⊗ α) = 0 if E(Fv) is connected, and is
nonzero otherwise.

4.2 Selmer groups for E[p] ⊗ α.

A. Definition and equivalences for finiteness. The definition of SelΣ0

E[p]⊗α(F∞) was given
at the beginning of section 1.4 for the base field F∞. However, for proving the next two
propositions, it will be helpful to have an alternative description of the local cohomology
groups occurring in the definition. If F ′ is any finite extension of F contained in FΣ, consider
the localization map:

H1(FΣ/F
′, E[p] ⊗ α)

loc−→ P 1
Σ(F ′, E[p] ⊗ α) ,

where

P 1
Σ(F ′, E[p] ⊗ α) =

∏

v∈Σ

(∏

v′|v

H1(F ′
v′ , E[p] ⊗ α)

)
.
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Here v′ runs over all the primes of F ′ lying above a prime v which, in turn, varies over
the primes in Σ. For each such v′, let Iv′ denote the inertia subgroup of GF ′

v′
. We define

L1(F ′
v′ , E[p] ⊗ α) to be the kernel of one of the following maps

H1(F ′
v′ , E[p] ⊗ α) −→ H1(Iv′ , E[p] ⊗ α) or H1(F ′

v′ , E[p] ⊗ α) −→ H1(F ′
v′ , E[p] ⊗ α) ,

the first if v ∤ p, the second if v|p. Thus, L1(F ′
v′ , E[p]⊗α) is a subgroup of H1(F ′

v′ , E[p]⊗α).
We then define SelE[p]⊗α(F

′) as the kernel of the composite map

H1(FΣ/F
′, E[p] ⊗ α)

locF ′−→ P 1
Σ(F ′, E[p] ⊗ α)

redF ′−→ P 1
Σ(F ′, E[p] ⊗ α)

/
L1

Σ(F ′, E[p] ⊗ α)

where we have put

L1
Σ(F ′, E[p] ⊗ α) =

∏

v∈Σ

(∏

v′|v

L1(F ′
v′ , E[p] ⊗ α)

)
.

Thus, SelE[p]⊗α(F
′) = ker(redF ′ ◦ locF ′). Note that the contribution to P 1

Σ(F ′, E[p]⊗ α) and
L1

Σ(F ′, E[p]⊗α) coming from archimedean primes is trivial since p is odd. Thus, there is no
local condition in the definition of the Selmer group for those primes.

Suppose that F ′ and F ′′ are finite extensions of F such that F ′ ⊂ F ′′ ⊂ FΣ. Then one
has a natural map (the restriction map) from SelE[p]⊗α(F

′) to SelE[p]⊗α(F
′′). For an infinite

extension of F contained in FΣ, one defines the corresponding Selmer group for E[p] ⊗ α to
be just the direct limit of the Selmer groups for E[p]⊗α over all the subfields of finite degree
over F . In particular, if F∞ = ∪nFn is the cyclotomic Zp-extension of F , then

SelE[p]⊗α(F∞) = ker

(
H1(FΣ/F∞, E[p] ⊗ α) −→ P 1

Σ(F∞, E[p] ⊗ α)
/
L1

Σ(F∞, E[p] ⊗ α)

)
,

where P 1
Σ(F∞, E[p] ⊗ α) and L1

Σ(F∞, E[p] ⊗ α) are defined in the same way as above. One
can also define these f[[Γ]]-modules as direct limits

P 1
Σ(F∞, E[p] ⊗ α) = Lim

−→

n

P 1
Σ(Fn, E[p] ⊗ α), L1

Σ(F∞, E[p] ⊗ α) = Lim
−→

n

L1
Σ(Fn, E[p] ⊗ α) .

The map whose kernel is SelE[p]⊗α(F∞) will be denoted by red∞ ◦ loc∞, with the obvious
meaning for red∞ and loc∞. The corresponding maps at the n-th level will be denoted by
redn and locn. Results from section 4.1 imply that

(4.2.a) corankf[[Γ]]

(
P 1

Σ(F∞, E[p] ⊗ α)
/
L1

Σ(F∞, E[p] ⊗ α)

)
= [F : Q]n(α) .

66



To see this, note that for v|p, the map H1(F∞,v, E[p]⊗α) −→ H1(F∞,v, E[p]⊗α) is surjective
and hence

H1(F∞,v, E[p] ⊗ α)
/
L1(F∞,v, E[p] ⊗ α) ∼= H1(F∞,v, E[p] ⊗ α) .

The contribution to P 1
Σ(F∞, E[p]⊗α)

/
L1

Σ(F∞, E[p]⊗α) coming from primes v not lying over
p will be finite and hence of f[[Γ]]-corank 0. Although we don’t need it right now, we remark
that for any v ∈ Σ not dividing p and for any prime ν of F∞ lying above such a v, we have
L1(F∞,ν , E[p]⊗ α) = 0. This is true because GF∞,ν

/
Iν has profinite order prime to p. Thus,

the corresponding factor in P 1
Σ(F∞, E[p]⊗α)

/
L1

Σ(F∞, E[p]⊗α) is simply H1(F∞,ν , E[p]⊗α).
The f-dimension of the contribution from all ν|v is given by (4.1.f).

On the other hand, corollary 4.1.2 states that H1(FΣ/F∞, E[p] ⊗ α) has f[[Γ]]-corank
bounded below by [F : Q]n(α), with equality if and only if H2(FΣ/F∞, E[p]⊗α) = 0. Using
this fact in conjunction with (4.2.a) and the definition of the Selmer group, we have the
following proposition.

Proposition 4.2.1. The following statements are equivalent:

(i) SelE[p]⊗α(F∞) is finite.

(ii) SelE[p]⊗α(Fn) has bounded order as n→ ∞.

(iii) H2(FΣ/F∞, E[p] ⊗ α) = 0 and the cokernel of the map red∞ ◦ loc∞ is finite.

(iv) X
1(FΣ/F∞, E[p] ⊗ α̌) is finite and the cokernel of the map redn ◦ locn is finite and

has bounded order as n→ ∞.

If Σ0 is a subset of Σ which contains only nonarchimedean primes not lying above p, then we
will also consider the nonprimitive Selmer groups SelΣ0

E[p]⊗α(Fn) and SelΣ0

E[p]⊗α(F∞) obtained
by omitting the local conditions at all primes lying above v ∈ Σ0. We will next prove that,
under certain mild hypotheses, coker(red∞ ◦ loc∞) is trivial. This will have an immediate
consequence concerning the f-dimension of SelΣ0

E[p]⊗α(F∞)
/
SelE[p]⊗α(F∞).

B. Surjectivity of the global-to-local map. We prove the following result:

Proposition 4.2.2. Assume that SelE[p]⊗α(F∞) is finite and that H0(F,E[p]⊗α̌) = 0. Then
the map

H1(FΣ/F∞, E[p] ⊗ α) −→ P 1
Σ(F∞, E[p] ⊗ α)

/
L1

Σ(F∞, E[p] ⊗ α)

is surjective.

Proof. We will use the following abbreviated notation in this proof. The Selmer groups and
other groups associated with E[p] ⊗ α for the field Fn and the fixed set Σ will be denoted
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by Sn,α, H
1
n,α, H

2
n,α, X

1
n,α, X

2
n,α, P

1
n,α, and L1

n,α. Also, we let Gn,α denote the image of
the map locn : H1

n,α −→ P 1
n,α. The corresponding groups over F∞ will just have a subscript

∞, α. We will use a similar notation for the groups associated to E[p] ⊗ α̌.
By proposition 4.2.1, we know that X

1
n,α̌ has bounded order as n→ ∞. The cokernel of

redn ◦ locn is isomorphic to P 1
n,α

/
G1
n,αL

1
n,α. We also know that this group will be finite and

of bounded order as n varies. Now, according to the Poitou-Tate duality theorems, there is
a perfect pairing

P 1
n,α × P 1

n,α̌ −→ Fp

for each n ≥ 0. Also, the orthogonal complements of L1
n,α and G1

n,α are L1
n,α̌ and G1

n,α̌,

respectively. The Pontryagin dual of P 1
n,α

/
G1
n,αL

1
n,α is isomorphic to G1

n,α̌ ∩ L1
n,α̌, which

therefore has bounded order as n→ ∞.
Surjectivity of the global-to-local map means that P 1

∞,α

/
G1

∞,αL
1
∞,α = 0. It suffices to

show that Lim
−→

n

P 1
n,α

/
G1
n,αL

1
n,α is trivial. Now that direct limit is defined by the natural local

restriction maps as n varies. Equivalently, we must show that the inverse limit Lim
←−

n

G1
n,α̌∩L1

n,α̌

defined by the corestriction maps is trivial. We will use the isomorphism

G1
n,α̌ ∩ L1

n,α̌
∼= Sn,α̌

/
X

1
n,α̌

which follows from the definition of Sn,α̌. We have already pointed out that X
1
n,α̌ has

bounded order. But Sn,α̌
/
X

1
n,α̌ also has bounded order and hence so does Sn,α̌.

We are assuming that H0(F,E[p] ⊗ α̌) = 0. The inflation-restriction sequence then
implies that the restriction maps ˇresm/n : Sn,α̌ −→ Sm,α̌ for m > n ≥ 0 are injec-
tive. It follows that these maps are isomorphisms if n is sufficiently large. Hence so
are the restriction maps X

1
n,α̌ −→ X

1
m,α̌. Therefore, the induced maps on the quotients

Sn,α̌
/
X

1
n,α̌ −→ Sm,α̌

/
X

1
m,α̌ will also be isomorphisms if n is large enough. For the associ-

ated corestriction maps ˇcorm/n, the map ˇcorm/n◦ ˇresm/n is multiplication by pm−n. Hence the
maps Sm,α̌

/
X

1
m,α̌ −→ Sn,α̌

/
X

1
n,α̌ induced by ˇcorm/n will be the zero map if m > n >> 0.

This proves that the inverse limit of the groups G1
n,α̌ ∩ L1

n,α̌ is zero and hence the same is

true for the direct limit of the groups P 1
n,α

/
G1
n,αL

1
n,α, as we needed to prove. �

The following result follows immediately from the above proposition and (4.1.f).

Corollary 4.2.3. Assume that SelE[p]⊗α(F∞) is finite and that H0(F,E[p]⊗α̌) = 0. Suppose
that Σ0 is a finite subset of Σ which contains no primes lying above p or ∞. Then

SelΣ0

E[p]⊗α(F∞)
/
SelE[p]⊗α(F∞) ∼=

∏

v∈Σ0

Hv(F∞, E[p] ⊗ α) .
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Therefore,

dimf

(
SelΣ0

E[p]⊗α(F∞)
/
SelE[p]⊗α(F∞)

)
=

∑

v∈Σ0

gvdimf

(
H0(F∞,v, E[p] ⊗ α̌)

)
.

Remark 4.2.4. The proof of proposition 4.2.2 includes the following assertion:

If SelE[p]⊗α(F∞) is finite, then so is SelE[p]⊗α̌(F∞).

We also remark that the finiteness of SelE[p]⊗α(F∞) and of SelΣ0

E[p]⊗α(F∞) are equivalent. ♦

C. Finiteness of SelE(K∞)[p]. The following result is the analogue of proposition 4.1.6 for
SelE(K∞)p. However, as we discuss in section 4.5, there are situations where the statements
fail to be true.

Proposition 4.2.5. The following statements are equivalent:

(i) SelE(K∞)[p] is finite,

(ii) SelE[p]⊗α(F∞) is finite for all α ∈ Repf(∆),

(iii) SelE[p]⊗τ (F∞) is finite for all τ ∈ Irrf(∆).

Proof. The proof is similar to that for proposition 4.1.6. We just sketch the steps. First of
all, the restriction map

(4.2.b) SelE[p]⊗α(F∞) −→ SelE[p]⊗α(K∞)∆

has finite kernel. Also, SelE[p]⊗α(K∞) ∼= SelE[p](K∞)n(α)[f:Fp]. Here SelE[p](K∞) is defined
exactly as previously, just taking F∞ = K∞ and tensoring by the trivial representation. The
map (4.1.c) has finite kernel and hence so does the map

(4.2.c) SelE[p](K∞) −→ SelE(K∞)[p] .

It follows that (i) implies (ii). Clearly, (ii) implies (iii).
The cokernel of the map (4.2.b) is finite. Just as in the proof of proposition 4.1.6, it is

a matter of showing that the local restriction maps for v ∈ Σ have finite kernels. One must
check this also for v|p, where the relevant kernel is H1(∆v, Ev[p] ⊗ α), and that is clearly

finite. Assume that (iii) is true. It then follows that
(
SelE[p](K∞) ⊗ τ

)∆
is finite for all

τ ∈ Irrf(∆). Consequently, as in the earlier proof, SelE[p](K∞) is finite-dimensional over f.
To deduce (i), assuming (iii), it suffices now to show that the map (4.2.c) has finite

cokernel. But this follows just as before. The only additional ingredient is the fact that, for
all v|p, the map H1(K∞,v, Ev[p]) −→ H1(K∞,v, Ev)[p

∞]), which is induced by the inclusion
map Ev[p] −→ Ev[p

∞], has finite kernel. �
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4.3 Justification of (1.4.b) and (1.4.c).

A. The corank of SelΣ0

E[p∞]⊗σ(F∞). We take Σ0 to be any subset of Σ not containing primes

above p or ∞. First of all, SelΣ0

E[p∞]⊗σ(F∞) is a subgroup of H1(FΣ/F∞, E[p∞] ⊗ σ). Here,
as in the introduction, Lσ is a ∆-invariant O-lattice in the underlying representation space
Wσ for σ and E[p∞]⊗ σ = E[p∞]⊗Lσ by definition. This tensor product is over Zp and the
resulting group is an O-module on which Gal(FΣ/F ) acts O-linearly. We will denote various
other tensor products with Lσ similarly in the following discussion. The local conditions
defining SelΣ0

E[p∞]⊗σ(F∞) are that a cocycle class have trivial image in H1(F∞,v, E[p∞] ⊗ σ)

for all non-archimedean v ∈ Σ which are not in Σp ∪ Σ0 and in H1(F∞,v, Ev[p
∞] ⊗ σ) for all

v ∈ Σp. We prove the following proposition justifying the first equality in (1.4.b).

Proposition 4.3.1. Suppose that σ ∈ IrrF(∆) and that Σ0 is any subset of Σ containing no
primes of F lying above p or ∞. Then we have

λΣ0

E (σ) = corankO

(
SelΣ0

E[p∞]⊗σ(F∞)
)
.

Proof. First of all, the kernel and the cokernel of the restriction map

(4.3.a) H1(F∞, E[p∞] ⊗ σ) −→ H1(K∞, E[p∞] ⊗ σ)∆ ∼=
(
H1(K∞, E[p∞]) ⊗ σ

)∆

are finite. The isomorphism in (4.3.a) arises from the fact that GK∞ acts trivially on Lσ and
the canonical isomorphism H1(K∞, E[p∞]⊗σ) ∼= H1(K∞, E[p∞])⊗σ is ∆-equivariant. We
identify the two groups.

We can define SelΣ0

E[p∞]⊗σ(K∞) just as above. It is a subgroup of H1(K∞, E[p∞]⊗ σ) and

can be identified with SelΣ0

E[p∞](K∞) ⊗ σ = SelE(K∞)p ⊗ σ. Consider the map

(4.3.b) SelΣ0

E[p∞]⊗σ(F∞) −→ SelΣ0

E[p∞]⊗σ(K∞)∆ =
(
SelΣ0

E (K∞)p ⊗ σ
)∆

.

This map has finite kernel and cokernel because the kernels of the relevant local restriction
maps are all finite. Thus, we have

corankO

(
SelΣ0

E[p∞]⊗σ(F∞)
)

= corankO

(
(SelΣ0

E (K∞)p ⊗ σ)∆
)
.

To see that the last O-corank is equal to λE(σ), we have

SelΣ0
E (K∞)p ⊗ σ ∼= HomZp(X

Σ0
E (K∞), Lσ ⊗ Qp/Zp) ∼= HomZp(X

Σ0
E (K∞), Wσ/Lσ) .
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The second isomorphism results from the fact that Wσ/Lσ =
⋃
m

(
1
pmLσ

/
Lσ
)
. It follows that

corankO

(
(SelΣ0

E (K∞)p ⊗ σ)∆
)

= rankZp

(
HomZp(X

Σ0
E (K∞), Wσ)

∆
)

= dimF

(
HomF(XΣ0

E (K∞) ⊗F , Wσ)
∆
)
.

Since σ is absolutely irreducible over F and XΣ0
E (K∞) ⊗ F is a semisimple representation,

the above F -dimension is indeed equal to the multiplicity λE(σ). �

Remark 4.3.2. Virtually the same proof demonstrates the following useful result about
the Pontryagin dual XΣ0

E (K) of SelΣ0
E (K)p. Let sΣ0

E (σ) denote the multiplicity of σ in the
∆-representation space XΣ0

E (K) ⊗Zp F over F . We then have

sΣ0
E (σ) = corankO

(
SelΣ0

E[p∞]⊗σ(F )
)
,

where the non-primitive Selmer group over F occurring here is defined in a completely
analogous way as over F∞. This remark applies to sE(σ) by taking Σ0 to be empty. ♦

B. Divisibility of SelΣ0

E[p∞]⊗σ(F∞). We will prove that the Pontryagin dual of SelΣ0

E[p∞]⊗σ(F∞)
has no nontrivial, finite Λ-submodule under certain assumptions. As a consequence, if one
assumes that µE(K∞) = 0, it would then follow that SelΣ0

E[p∞]⊗σ(F∞) is a divisible group. In

part B of section 3.1, we discussed a similar statement for SelΣ0
E (K∞)p, based on results in

[Gr99] and [Gr89]. Although we didn’t mention it there, the assumption that E(K)[p] = 0 is
not needed if Σ0 is non-empty. The proof is essentially the same as the proof of proposition
4.15, part (i), in [Gr99] (which is found on page 104 of that paper). The arguments given
for propositions 4.14 and 4.15 there are easily extended to Galois modules of the form
E[p∞] ⊗ σ. Those arguments rely on the assumption that the corresponding Selmer groups
are Λ-cotorsion, and start by proving a general form of Cassels’ theorem concerning the
cokernel of the global-to-local maps defining Selmer groups. That is proposition 4.13 in
[Gr99]. Since the arguments are so similar, we simply state the result.

Proposition 4.3.3. Suppose that Σ0 is any subset of Σ containing no primes above p or ∞.
If E(K)[p] = 0 and SelE(K∞)[p] is finite, then SelΣ0

E[p∞]⊗σ(F∞) is a divisible group. The same

conclusion is valid without the assumption that E(K)[p] = 0 if one assumes additionally that
Σ0 is non-empty.

Under the assumptions in proposition 4.3.3, the Pontryagin dual of SelΣ0

E[p∞]⊗σ(F∞) will be

finitely-generated as a Zp-module. Now SelΣ0

E[p∞]⊗σ(F∞) is an O-module, and if it is divisible

71



as a group, then it is also divisible as an O-module. Its Pontryagin dual will then be a
free O-module of finite rank. The rank of a free O-module X is equal to the f-dimension
of X/mX. Therefore, we obtain the following corollary which gives the second equality in
(1.4.b).

Corollary 4.3.4. Suppose that Σ0 is any subset of Σ containing no primes above p or ∞,
that SelE(K∞)[p] is finite, and that either E(K)[p] = 0 or Σ0 is non-empty. Then

corankO

(
SelΣ0

E[p∞]⊗σ(F∞)
)

= dimf

(
SelΣ0

E[p∞]⊗σ(F∞)[m]
)
.

C. Two isomorphisms. We now establish the two isomorphisms stated in (1.4.c). The
second isomorphism is essentially a matter of definition. Suppose that σ ∈ IrrF(∆). The
inclusion E[p] ⊂ E[p∞] induces a canonical isomorphism E[p]⊗σ ∼= (E[p∞]⊗σ)[p] as Galois
modules over O. The maximal submodules killed by m will be canonically isomorphic. Thus,
E[p] ⊗ σ̃ = (E[p] ⊗ σ)[m] will be isomorphic to (E[p∞] ⊗ σ)[m] as representation spaces for
GF over f.

In defining Selmer groups over F∞ for those isomorphic Galois modules, the local con-
ditions for primes v not dividing p are the same. Cocycles are required to be trivial when
restricted to GF∞,v . If v divides p, then note that the map E[p∞] → Ev[p

∞] induces (by

restriction) the map E[p] → Ev[p]. It follows that the map E[p∞]⊗σ → Ev[p
∞]⊗σ induces

the map E[p] ⊗ σ → Ev[p] ⊗ σ. We refer to those maps as the reduction maps. Just as
above, the f-representation spaces (Ev[p

∞]⊗ σ)[m] and Ev[p]⊗ σ̃ for GFv will be canonically
isomorphic . The obvious commutative square involving the reduction maps and the above
canonical isomorphisms of GFv -modules is commutative. We have already described the lo-
cal condition at v in the definition of SelE[p]⊗eσ(F∞). A cocycle class satisfies that Selmer
condition if its image in H1(F∞,v, Ev[p] ⊗ σ̃) is trivial. We haven’t yet specified the local
condition at v for defining SelΣ0

(E[p∞]⊗σ)[m](F∞), but we simply require that a cocycle class have

trivial image in H1(F∞,v, (Ev[p
∞]⊗ σ)[m]). With this definition, the canonical isomorphism

(E[p∞] ⊗ σ)[m] ∼= E[p] ⊗ σ̃ induces the second isomorphism in (1.4.c).

The first isomorphism in (1.4.c) requires the assumptions in theorem 2.

Proposition 4.3.5. The inclusion map (E[p∞]⊗σ)[m] → E[p∞]⊗σ induces an isomorphism

SelΣ0

(E[p∞]⊗σ)[m](F∞) ∼= SelΣ0

E[p∞]⊗σ(F∞)[m] .

under the assumptions in theorem 2. This isomorphism is Γ-equivariant.
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Proof. Suppose that π is a generator of m. The O-module E[p∞] ⊗ σ is divisible and
multiplication by π induces a surjective Γ-equivariant map

H1(FΣ/F, (E[p∞] ⊗ σ)[m]) −→ H1(FΣ/F,E[p∞] ⊗ σ)[m] .

This map is also injective becauseH0(F∞, E[p∞]⊗σ) = 0. That fact follows from assumption
(i) in theorem 2 and proposition 4.1.3. Thus, the map

(4.3.c) SelΣ0

(E[p∞]⊗σ)[m](F∞) −→ SelΣ0

E[p∞]⊗σ(F∞)[m]

is injective. It is also Γ-equivariant. The surjectivity will be proved by showing that the
corresponding maps for the local cohomology groups occurring in the definitions of these
Selmer groups are injective. The assumption that Σ0 contains ΦK/F ∪ΨE is important here.

If v ∈ Σ and v 6∈ Σp ∪ Σ0, then the action of GFv on E[p∞] will be unramified. Hence
GF∞,v acts through a finite quotient group of order prime to p. The action of GF∞,v on Lσ
factors through ∆v, which also has order prime to p. Thus the action of GF∞,v on E[p∞]⊗σ
is through a finite group of order prime to p and therefore H0(F∞,v, E[p∞]⊗σ) is a divisible
O-module. This proves the injectivity of the map

H1(F∞,v, (E[p∞] ⊗ σ)[m]) −→ H1(F∞,v, E[p∞] ⊗ σ)[m]

for those v’s. Now suppose that v ∈ Σp. We want to show that the map

H1(F∞,v, (E[p∞] ⊗ σ)[m]) −→ H1(F∞,v, E[p∞] ⊗ σ)[m]

is injective. The O-module E[p∞]⊗σ is again divisible. The map is induced by multiplication
by π. Its kernel will be trivial because assumption (ii) in theorem 2, together with proposition
4.1.9, implies that H0(F∞,v, E[p∞]⊗σ) = 0. Since p is odd, the local cohomology groups for
archimedean primes are trivial. The surjectivity of (4.3.c) follows. �

4.4 Justification of (1.4.d) and the proof of theorem 2.

Assume that X
1(FΣ/K∞, E[p∞])[p] is finite. Propositions 4.1.4 and 4.1.6 then imply that

H2(FΣ/F,E[p] ⊗ α) = 0 for all α. Assume also that E(K)[p] = 0. Then proposition 4.1.3
implies that H0(FΣ/F,E[p] ⊗ α) = 0 for all α. Suppose that we have an exact sequence

0 −→ Uα −→ Uβ −→ Uγ −→ 0

of finite-dimensional representation spaces for ∆ over f. Tensoring with E[p], or with Ev[p],
will give exact sequences. We consider the corresponding cohomology sequences, both global
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and local. The results just cited imply that the first row in the diagram below is exact. The
second row involves the product of groups of the form Hv(F∞, ·) over all v which are in Σ,
but not in Σ0. For brevity, we denote that product by PΣ0

Σ (F∞, ·).
(4.4.a)

0 // H1(FΣ/F∞, E[p] ⊗ α) //

��

H1(FΣ/F∞, E[p] ⊗ β) //

��

H1(FΣ/F∞, E[p] ⊗ γ) //

��

0

0 // PΣ0
Σ (F∞, E[p] ⊗ α) // PΣ0

Σ (F∞, E[p] ⊗ β) // PΣ0
Σ (F∞, E[p] ⊗ γ) // 0

The vertical maps are the global-to-local maps defining the non-primitive Selmer groups. All
the maps are f[[Γ]]-module homomorphisms. We now prove the exactness of the second row.

Since we are assuming that p is non-anomalous for E/F , proposition 4.1.9 implies that
H0(F∞.v, Ev[p] ⊗ γ) = 0 for all v|p. The fact that GF∞,v has p-cohomological dimension

1implies that H2(F∞.v, Ev[p]⊗α) = 0 for those v’s. The cohomological dimension argument
also implies that H2(F∞.v, E[p] ⊗ α) = 0 for any non-archimedean prime v. Now assume
that v 6∈ Σp∪ΦK/F ∪ΨE. Then the action of GF∞,v on E[p] is unramified and hence through
a finite quotient group of order prime to p. The same is true for the action of GF∞,v on α, β,
and γ since |∆v| is prime to p, and therefore for the action on E[p]⊗α,E[p]⊗β and E[p]⊗γ.
Suppose that all of these actions factor through G, a finite group of order prime to p. Then
H1(G,E[p] ⊗ α) = 0. Therefore, we have the following exact sequence

H0(F∞,v, E[p] ⊗ β) −→ H0(F∞,v, E[p] ⊗ γ) −→ 0 .

The exactness of the second row in (4.4.a) follows from these observations.

The vertical arrows are surjective by proposition 4.2.2. The exactness of the sequence
(1.4.d) then follows by applying the snake lemma, completing the proof of theorem 2. �

4.5 Finiteness of Selmer atoms.

We believe that the Selmer atoms we have been considering are usually finite dimensional
over f. But there are exceptions. The exceptions we know of correspond to cases where
E[p] ⊗ τ is reducible as a representation space over f. As before, we assume that f is large
enough so that all irreducible representations over f of the finite groups that we consider are
absolutely irreducible. We want to make the following conjecture:

Conjecture 4.5.1. Suppose that p is odd and that τ ∈ Irrf(∆). If E[p]⊗ τ is an irreducible
GF -representation space over f, then SelE[p]⊗τ (F∞) is finite.
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The irreducibility of E[p] ⊗ τ over F∞ obviously implies the irreducibility over F . The
converse is true too.

Proposition 4.5.2. If GF acts irreducibly on the f-representation space E[p] ⊗ τ , then so
does GF∞.

Proof. We can regard E[p]⊗ τ as a representation space for Gal(L/F ), where L = K(E[p]),
a finite Galois extension of F . It suffices to show that L∩ F∞ = F . If that is not true, then
clearly F1 ⊆ L and so K1 ⊆ L. Hence K1 ⊂ L ∩ K∞. Since p2 ∤ [L : K], it would follow
that L ∩K∞ = K1. Hence Gal(L/K) has a normal subgroup of index p. But Gal(L/K) is
isomorphic to a subgroup H of GL2(Fp). The simplicity of SL2(Fp)

/
{±I} implies that H

cannot contain SL2(Fp). The Sylow theorems imply that H contains either one or all of the
p+1 Sylow p-subgroups of GL2(Fp). Those subgroups are of order p and generate SL2(Fp).
Therefore, one sees that H has a unique subgroup P of order p. It is clear that P is a normal
subgroup of Gal(L/F ). Therefore, E[p]P is invariant under the action of Gal(L/F ). This
would imply that E[p] is reducible as a representation space for GF , and hence so is E[p]⊗τ ,
contrary to the hypothesis. �

A. The case where GF acts irreducibly on E[p] ⊗ τ0. Suppose that GF acts irreducibly
on E[p] ⊗Fp f. If K ∩ F (E[p]) = F , then it follows that GF acts irreducibly on E[p] ⊗ τ
for any τ in Irrf(∆). This is so because the action of GF on E[p] ⊗ τ factors through the
direct product Gal(K(E[p])/F ) ∼= Gal(F (E[p])/F ) × ∆, and is therefore just the tensor
product of irreducible representations of each direct factor. However, if K ∩ F (E[p]) 6= F ,
it is not uncommon for E[p] ⊗ τ to be reducible. For example, suppose that K = F (E[p])
and that ∆ ∼= GL2(Fp). Then, the action of GF on E[p] factors through ∆ and defines an
irreducible representation of ∆ of dimension 2. One can take f = Fp in this example since
all the irreducible representations of ∆ are isomorphic to syma(E[p])⊗detb for non-negative
integers a and b. If τ ∈ IrrFp(∆) and n(τ) > 1, then the representation space E[p] ⊗ τ of ∆
over Fp is actually reducible. A similar phenomenon can happen if ∆ is a proper subgroup
of GL2(Fp). We will discuss one such example (due to Drinen) in part C below, where ∆
is a nonabelian subgroup of order prime to p. It is clear that ∆ will still act irreducibly on
E[p] ⊗ τ0.

B. The case where E[p] is reducible. We consider the simpler situation where E[p] ⊗ τ is
reducible just because E[p] is itself reducible. This means that E has an isogeny of degree
p defined over F . Let Φ denote the kernel of that isogeny. Then E[p] is reducible as a
representation space for GF over Fp and Φ is a GF -invariant, 1-dimensional subspace of
E[p]. Hence Φ⊗τ is a GF -invariant f-subspace of E[p]⊗τ of dimension n(τ), and so E[p]⊗τ
is reducible as a GF -representation space over f.
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For simplicity, we will now assume that F = Q. Thus, E is assumed to be defined over
Q and to have good ordinary reduction at p. The reduction of E modulo p is denoted by Ep.
If π is a prime of Q(E[p]) lying above p, then the reduction map E[p] → Ep[p] is a surjective
homomorphism. We denote its kernel by F+

π E[p], following the notation in [Dri]. Thus,
F+
π E[p] is a 1-dimensional subspace of E[p]. In general, only the orbit of F+

π E[p] under the
action of GQ is well-defined. The next proposition deals with the case where F+

π E[p] is fixed
by the action of GQ.

The cyclotomic Zp-extension of Q is denoted by Q∞. Suppose that K/Q is a finite Galois
extension, that K ∩ Q∞ = Q, that ∆ = Gal(K/Q), and that τ ∈ Irrf(∆). For any GQ-
representation space A over f, we let n(±)(A) denote the f-dimension of the (±1)-eigenspace
for a complex conjugation in GQ. With this notation, we will prove the following result.

Proposition 4.5.3. Suppose that E is defined over Q and has an isogeny of degree p
defined over Q. Suppose that Φ is the kernel of that isogeny and that the extension Q(Φ)/Q
is ramified at p. Let τ ∈ Irrf(∆). Then

corankf[[Γ]]

(
SelE[p]⊗τ (Q∞)

)
≥ n−(Φ ⊗ τ) .

In particular, if n−(Φ ⊗ τ) ≥ 1, then SelE[p]⊗τ (Q∞) is infinite.

Proof. The set Σ consists of primes of Q now. For m ≥ 0, let Qm denote the m-th layer in
Q∞/Q. The Euler-Poincaré characteristic for the Gal(QΣ/Qm)-module Φ⊗τ is n−(Φ⊗τ)pm.
Thus the f-dimension of H1(QΣ/Qm,Φ ⊗ τ) is at least n−(Φ ⊗ τ)pm. The restriction maps

H1(QΣ/Qm,Φ ⊗ τ) −→ H1(QΣ/Q∞,Φ ⊗ τ)Γm

are surjective and the kernels are finite of bounded order (and usually trivial). It follows that
the corank of H1(QΣ/Q∞,Φ⊗τ) as an f[[Γ]]-module is at least n−(Φ⊗τ). We will denote the
maximal divisible f[[Γ]]-submodule of H1(QΣ/Q∞,Φ⊗τ) by H1(QΣ/Q∞,Φ⊗τ)div. Consider
the maps

H1(QΣ/Q∞,Φ ⊗ τ)div −→ H1(QΣ/Q∞, E[p] ⊗ τ) −→
∏

v∈Σ

Hv(F∞, E[p] ⊗ τ) .

The first map has a finite kernel and its image is still f[[Γ]]-divisible. Denote that image by
S. For any prime v 6= p, the f[[Γ]]-module Hv(F∞, E[p]⊗ τ) is finite, and hence its maximal
f[[Γ]]-divisible submodule is trivial. Therefore the image of S in Hv(F∞, E[p] ⊗ τ) is trivial.

Now suppose that v = p. The assumption about Q(Φ)/Q implies that the action of GQp

on Φ is ramified. Therefore, we have Φ = F+
π E[p] for a prime π of Q(E[p]) lying over p

(and hence for all such primes). This implies that the image of Φ⊗ τ in Ep[p]⊗ τ is trivial.
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Consequently, the image of S in Hv(F∞, E[p]⊗τ) is trivial. Therefore, we have the following
inclusion:

S = im
(
H1(QΣ/Q∞,Φ ⊗ τ)div

)
⊆ SelE[p]⊗τ (Q∞) .

The stated inequality follows from this since the f[[Γ]]-corank of S is at least n−(Φ⊗ τ). �

Remark 4.5.4. It is very likely that the inequality in proposition 4.5.3 is an equality. This
assertion follows from Iwasawa’s conjecture that the classical µ-invariant for the cyclotomic
Zp-extension L∞ of any number field L vanishes. That conjecture asserts that Cl(Ln)[p] is
of bounded order as n → ∞, where Cl(Ln) denotes the ideal class group of Ln, the n-th
layer in L∞/L. It has been proven if L/Q is abelian, a theorem of Ferrero and Washington
[FeWa]. If Iwasawa’s conjecture is assumed to be true for all number fields L, then one can
deduce that

corankf[[Γ]]

(
H1(QΣ/Q∞,Φ ⊗ τ)

)
= n−(Φ ⊗ τ)

for all τ ∈ Irrf(∆). This is proved in [Gr99], lemma 5.9, for the special case τ = τ0, but
the same argument (which is rather long) works in general. Furthermore, SelE[p]⊗τ (Q∞)

/
S

would then be finite, where S is as in the proof of proposition 4.5.3. It would therefore follow
that the f[[Γ]]-corank of SelE[p]⊗τ (Q∞) is indeed equal to n−(Φ⊗τ). The Ferrero-Washington
theorem implies this statement for all 1-dimensional τ ’s.

As an example, suppose that E is the elliptic curve X0(11), which is 11A1 in Cremona’s
tables. Let p = 5. Then E has good, ordinary reduction at p and there are two cyclic isogenies
of E of degree p defined over Q. For one of them, the kernel Φ satisfies the assumption in
the above proposition. In fact, Φ ∼= µp as a Galois module. For any τ ∈ Irrf(∆), we have
n−(Φ ⊗ τ) = n+(Uτ ), which will be a lower bound on the f[[Γ]]-corank of SelE[p]⊗τ (Q∞).
Iwasawa’s conjecture for the base field L = K(µp) implies equality. ♦

Remark 4.5.5. The ramification hypothesis in proposition 4.5.3 is not preserved by isogeny.
As an example, let E again be 11A1 in [Cre], let E ′ be 11A3, and let p = 5. Then E ′[p]
has a unique GQ-invariant subgroup Φ′ of order p. It is generated by a point on E ′(Q)
of order p and so Q(Φ′) = Q. In general, suppose that E is any elliptic curve over Q
with good ordinary reduction at a prime p which has an isogeny over Q of degree p. It is
not hard to see that the isogeny class of E over Q contains at least one curve E ′ where
the hypothesis fails: E ′[p] will have just one GQ-invariant subgroup Φ′ of order p and the
action of GQ on Φ′ will be unramified at p. It is then reasonable to conjecture that all
the Selmer atoms SelE′[p]⊗τ (Q∞) are finite. Some results in this direction are proved in
[Tri], mostly taking τ = τ0 and assuming that the kernel of the isogeny is generated by
a point of E ′(Q). That conjecture means that, for any Galois extension K/Q, it should
be true that SelE′(K∞)[p] is finite. Thus, in the situation of the above proposition, and
assuming the conjecture, one should be able to apply all our results to E ′ in place of E.
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Now one has XΣ0
E (K∞)⊗Zp Qp

∼= XΣ0

E′ (K∞)⊗Zp Qp for any choice of Σ0. Thus, one certainly

has λΣ0
E (σ) = λΣ0

E′ (σ) for all σ. Furthermore, assuming that SelE′(K∞)[p] is indeed finite,
it would follow from proposition 3.2.1 that XΣ0

E′ (K∞) is quasi-projective if Σ0 is suitably
chosen. Therefore, one would expect to have exactly the same congruence relations for the
λΣ0
E (σ)’s as described in the introduction.

If we take an arbitrary base field F , one can prove an analogue of proposition 4.5.3.
The formulation is somewhat more involved. We refer the reader to [Dri] for a thorough
discussion of this. Results in that paper suggest that the preceding discussion in this remark
should apply with no change under the assumption that E is defined over Q and has a
cyclic isogeny of degree p defined over Q. In particular, if X = XΣ0

E (K∞), then one would
conjecture that X/X[pt] is quasi-projective for a suitably chosen set Σ0 and a sufficiently
large t. ♦

C. Drinen’s example. Now we come to a more surprising kind of example, but one which
seems exceedingly rare. It was found by M. Drinen, although our explanation is from the
point of view of Selmer atoms and is somewhat different than that given in [Dri]. The idea
is that if E[p] ⊗ τ is reducible and if Ψ is a GQ-invariant subspace, then one can consider
the map

(4.5.a) µ : H1(QΣ/Q∞,Ψ)div −→ H1(QΣ/Q∞, E[p] ⊗ τ) .

The kernel of the map µ is finite. One has corankf[[Γ]]

(
H1(QΣ/Q∞,Ψ)

)
≥ n−(Ψ), which

could easily be positive. The f[[Γ]]-corank of im(µ) is the same. One can then consider
im(µ) ∩ SelE[p]⊗τ (Q∞), which sometimes will also have positive f[[Γ]]-corank, thereby giving
an example where SelE[p]⊗τ (Q∞) is infinite. This is precisely what happens in the proof of
proposition 4.5.3, where we take Ψ = Φ ⊗ τ .

Drinen’s example is as follows. LetE be any one of the elliptic curves in the isogeny classes
338D or 338E in Cremona’s tables. Let p = 3, K = Q(E[p]), and ∆ = Gal(K/Q). Now
the representation of GQ on E[p] is irreducible, but the image of GQ in the automorphism
group GL2(Fp) is small, just a dihedral group of order 8. We identify that image with ∆.
We can clearly take f = Fp in this case. Thus, ∆ has just one 2-dimensional irreducible
representation over Fp, which we call τ2. It is precisely the representation giving the action
of ∆ on E[p]. Now ∆ also has four 1-dimensional representations over Fp and E[p] ⊗ τ2
is easily seen to be isomorphic to the direct sum of those representations. The action of
∆ on E[p] ⊗ τ2 is through the quotient ∆ab, which is isomorphic to (Z/2Z)2. In fact, the
maximal abelian extension of Q contained in K is the biquadratic field Q(

√
13,

√
−3). Two

of the four 1-dimensional representations of ∆ are odd, say ε and ε′. Define Ψ to be the
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sum of the ε- and ε′-components in E[p]⊗ τ2. Hence n(Ψ) = n−(Ψ) = 2. It follows that the
Fp[[Γ]]-corank of H1(QΣ/Q∞,Ψ) is at least 2. In fact, that corank is exactly 2.

As in the proof of proposition 4.5.3, if µ is the map (4.5.a), then im(µ) satisfies the local
conditions defining SelE[p]⊗τ (Q∞) for all v 6= p. For the local condition at the unique prime of
Q∞ lying above p, one chooses an embedding of QΣ into Qp. Let π be the associated prime

of K. We then define F+
π Ψ = Ψ

⋂(
F+
π E[p] ⊗ τ2

)
. If γ is a cocycle class in H1(QΣ/Q∞,Ψ),

then a sufficient condition for µ(γ) to satisfy the local condition for p is that the image of
γ in H1(Q∞,p,Ψ/F

+
π Ψ) is trivial. We will show that F+

π Ψ is 1-dimensional, and hence so
is Ψ/F+

π Ψ. It then follows that the Fp[[Γ]]-corank of H1(Q∞,p,Ψ/F
+
π Ψ) is equal to 1, and

consequently, im(µ) ∩ SelE[p]⊗τ2(Q∞) has positive Fp[[Γ]]-corank.

Let C = Gal
(
K/Q(

√
13)
)
, a subgroup of ∆ of order 4. If c ∈ C denotes a complex con-

jugation, then c acts on E[p] with eigenvalues ±1. However, C also contains the center of ∆,
which has order 2 and is generated by the element acting on E[p] as the scalar −1. Therefore,
C can be identified with the diagonal subgroup of GL2(Fp) and ∆ with its normalizer in
GL2(Fp). The group C fixes two subspaces of E[p]. Since p is unramified in Q(

√
13)/Q, the

inertia subgroup Iπ of ∆ for any prime π of K above p will be a subgroup of C which acts
nontrivially on F+

π E[p] and trivially on E[p]/F+
π E[p]. Thus, Iπ has order 2 and a generator

acts with eigenvalues ±1. It is then clear that F+
π E[p] is one of the two subspaces of E[p]

fixed by C. We can choose a complex conjugation c so that it is a generator of Iπ. Then c
acts on F+E[p] ⊗ τ2 with eigenvalues ±1. It follows that F+Ψ is indeed 1-dimensional.

One can find infinitely many examples of the above type when p = 3. Twists of E by
a quadratic character ε of conductor prime to p would give more examples. The field K
can change, but the biquadratic subfield contained in K will be the same. In addition, one
can apply a theorem in [RuSi] which asserts that there are infinitely many elliptic curves E ′

defined over Q such that E ′[p] ∼= E[p]. Then the field K remains the same. That theorem
applies because p ≤ 5. It seems likely that more examples exist for p = 3. However, it is
not so clear what to expect for p ≥ 5. The above argument can be made to work under
the following hypothesis: The prime p is odd, the image of GQ in Aut(E[p]) ∼= GL2(Fp)
is the normalizer N of a split Cartan subgroup C, and the subfield of Q(E[p]) fixed by C
is real and unramified at p. If p ≥ 5, one shows that for certain 2-dimensional, irreducible
representations τ of ∆, E[p]⊗ τ has a ∆-invariant subspace Ψ such that n(Ψ) = n−(Ψ) = 2.
The subspace Ψ will now be irreducible, but the rest of the argument is essentially the same
as in the above example for p = 3. Examples of such elliptic curves E for p > 3 haven’t yet
been exhibited.

D. Some verifiable cases. We will end this chapter by discussing some cases where the
Selmer atoms are provably finite. We continue to assume that F = Q. Suppose that K is
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a finite, abelian extension of Q and ∆ = Gal(K/Q). A theorem of Kato (theorem 17.4 in
[Kat]) asserts that the Λ-module X = XE(K∞) is torsion and that its characteristic ideal IX
contains an element ptθ(E/K), where t ≥ 0 and θ(E/K) ∈ Λ is the measure on Γ associated
with the p-adic L-function for E over K. The element θ(E/K) can be computed quite
accurately in practice. In particular, if one can verify that IX contains θ(E/K) itself and
that p ∤ θ(E/K), then it follows that µ(X) = 0. The Selmer atoms SelE[p]⊗τ (Q∞) will then
be finite for all τ ∈ IrrF(∆) according to proposition 4.2.5. Kato proves that θ(E/K) ∈ IX if
Gal(Q(E[p])/Q) ∼= GL2(Fp). The assertion that p ∤ θ(E/K) has been verified for numerous
examples, especially when K is a quadratic field or K = Q(µp). The first such verifications
are given in [MaSw] for the elliptic curves X0(11) and X0(17). They consider the good,
ordinary primes p in the range 7 ≤ p ≤ 347 for the first curve and in the range 5 ≤ p ≤ 179
for the second. Those calculations are for K = Q(µp) and include the determination of the
corresponding λ-invariants for each character of ∆ = Gal(K/Q). To be precise, it is only
the “analytic” λ-invariants that are determined. Similar calculations have been done by T.
McCabe for various elliptic curves and primes p. R. Pollack has produced extensive tables
which give λ- and µ-invariants over Q∞. They includes quadratic twists for many elliptic
curves. Those tables can be found on Pollack’s webpage at Boston University.

Proposition 5.10 in [Gr99] gives one situation where it is known that µ
(
XE(K∞)

)
= 0.

The assumptions are that E has an isogeny of degree p defined over Q, that the character
φ : GQ → F×

p giving the action of GQ on the kernel Φ of the isogeny is even and is ramified
at p, and that K is a finite, abelian, totally real extension of Q. That result is a consequence
of the Ferrero-Washington theorem. It is equivalent to the assertion that SelE[p]⊗τ (Q∞) is
finite for all τ ∈ IrrF(∆), where ∆ = Gal(K/F ). Unfortunately, the assumption that K is
totally real is crucial in the proof.

5 The structure of Hv(K∞, E).

Our main objective in this chapter is to discuss the determination of the quantity δΣ0
E (σ)

which occurs in formula (1.3.b). For each v ∈ Σ0, the group Hv(K∞, E) defined in the
introduction is the direct product of the groups H1(K∞,η, E[p∞]), where η varies over all
primes of K∞ lying above v. This is so since v ∤ p and hence im(κη) = 0. For each such η,
let ∆η denote the decomposition subgroup of ∆ for η. It is determined up to conjugacy by
v. Let gv denote the number of primes ν of F∞ lying over v. As a ∆-module, Hv(K∞, E) is
the direct product over all those ν’s of the ∆-modules

(5.0.a) Hν(K∞, E) =
∏

η|ν

H1(K∞,η, E[p∞]) ∼= Ind∆
∆η

(
H1(K∞,η, E[p∞])

)
,
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where η varies over the primes of K∞ lying over ν. Those primes η are permuted transitively
by ∆. For the induced module in (5.0.a), we simply fix one η|ν for each ν. We identify ∆η

with Gal(K∞,η/F∞,ν). That group acts naturally on H1(K∞,η, E[p∞]).

Let Ĥν(K∞, E) denote the Pontryagin dual of Hν(K∞, E). For each σ ∈ IrrF(∆), one

sees easily that λ(Ĥν(K∞, E), σ) is independent of the choice of ν lying above v. We denote
that quantity by δE,v(σ). Then

(5.0.b) δΣ0
E (σ) =

∑

v∈Σ0

gvδE,v(σ) .

The gv’s depend only on F∞/F and not on E. They are not difficult to determine, but the
δE,v(σ)’s are more subtle.

All of the quantities that we define in this chapter are independent of the choice of the
primes η and ν dividing v. In particular, the extensions F∞,ν and K∞,η are determined by
v and K. Thus, to simplify notation, we will denote these fields by F∞,v and K∞,v from
here on, and we will usually write ∆v instead of ∆η for Gal(K∞,v/F∞,v). We will sometimes
revert back to the previous notation if there is a possibility of confusion. If σ ∈ IrrF(∆)
and τ ∈ Irrf(∆), then we denote their restrictions to the subgroup ∆v of ∆ by σv and τv,
respectively. Various Galois groups will arise in our arguments. We will use the following
notation throughout for a few of them.

Gv = GF∞,v , Nv = GK∞,v , Iv = GKunr
v

,

where Kunr
v is the maximal unramified extension of Kv. Since K∞,v/Kv is unramified, Iv is

the inertia subgroup of Nv. Note that ∆v is isomorphic to the quotient group Gv
/
Nv. We

will often regard representations of ∆v as representations of Gv.
Another notation that we will use is the following. Suppose that G is a group, that α is

an absolutely irreducible representation for G over a field F, and that β is any representation
for G over F. We assume these representations are finite-dimensional. Let Vα and Vβ be the
underlying representation spaces for α and β, respectively. Suppose that m is the largest
nonnegative integer such that Vβ contains a G-invariant subspace isomorphic to Vmα . We
denote this m by 〈β, α〉G, or just by 〈β, α〉. Equivalently,

〈β, α〉 = 〈β, α〉G = dimF

(
HomG(Vα,Vβ)

)
.

If G is a quotient of another group G, then one can view α and β as representations of G,
but 〈β, α〉 is unchanged. Thus, 〈β, α〉G = 〈β, α〉G. We often suppress the subscripts because
specifying α and β should be sufficient.
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If G is finite and F has characteristic 0, then 〈β, α〉 is just the usual multiplicity of α in
β. If G is infinite, it may happen that β is not semisimple. Its semisimplification is denoted
by βss. Then, in a composition series for Vβ consisting of G-invariant subspaces, the number
of composition factors isomorphic to Vα is equal to 〈βss, α〉, which may be different than
〈β, α〉. Notice that we are taking the second variable in this notation to be irreducible. This
is usually what we will do. However, if G is finite and F has characteristic zero, then all
finite-dimensional representations over F are semisimple. We may then sometimes want to
regard 〈β, α〉 as a Z-bilinear form on RF(G). We assume that all irreducible representations
over F are absolutely irreducible. The form is symmetric, Z-valued, nondegenerate, and is
characterized by defining 〈β, α〉 just as before when α and β are both irreducible, equal to
1 if β ∼= α and equal to 0 otherwise.

5.1 Determination of δE,v(σ).

To determine δE,v(σ), it is sufficient to study H1(K∞,v, E[p∞]) = H1(Nv, E[p∞]) as a ∆v-
module. The δE,v(σ)’s can then be determined by the Frobenius reciprocity law. More

precisely, let ĤE,v denote the Pontryagin dual of H1(Nv, E[p∞]). We will assume that F is

chosen as in the introduction. We can regard ĤE,v ⊗Zp F as a representation space for ∆v.
Furthermore, each χ ∈ IrrF(∆v) will be absolutely irreducible. We will temporarily write

hv(E,χ) to denote the multiplicity of χ in ĤE,v ⊗Zp F . Then (5.0.a) implies that δE,v(σ) is
equal to the multiplicity of σ in

⊕

χ∈Irrv

Ind∆
∆v

(χ)hv(E,χ) ,

where χ runs over IrrF(∆v) (abbreviated as Irrv here and in the summation below). By
Frobenius reciprocity, the multiplicity of σ in Ind∆

∆v
(χ) is equal to 〈σv, χ〉. Therefore, we

have the formula

(5.1.a) δE,v(σ) =
∑

χ∈Irrv

〈σv, χ〉hv(E,χ) .

The quantities 〈σv, χ〉 are group-theoretic in nature and will be discussed for various examples
in later chapters. We will now study the hv(E,χ)’s in some detail. The next proposition is
needed for that purpose. Let Vp(E) = Tp(E)⊗Zp Qp, where Tp(E) denotes the Tate module
for E and p. We consider Vp(E) as a representation space for Gv.

Proposition 5.1.1. The Qp-representations spaces ĤE,v ⊗Zp Qp and H0
(
K∞,v, Vp(E)

)
for

∆v are isomorphic.
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Proof. One has a tower of fields

Fv ⊂ Kv ⊂ K∞,v ⊂ Kunr
v ⊂ Ktr

v ⊂ Kv,

where Kunr
v is the maximal unramified extension and Ktr

v is the maximal tamely ramified
extension of Kv, all subfields of an algebraic closure Kv of Kv. All these extensions are Galois
over Fv. We have already defined Iv,Nv, and Gv. Let Rv = GKtr

v
, the wild ramification

subgroup of Nv. In this proof, we will suppress the subscript v and just write N , I, and R.

Now Gal(Kunr
v /Kv) ∼= Ẑ and Gal(K∞,v/Kv) ∼= Zp, where Ẑ denotes the profinite com-

pletion of Z. Hence N /I ∼= Ẑ/Zp, a topologically cyclic group of profinite order prime to p.

By local class field theory, we also have an isomorphism I/R ∼= Ẑ/Zℓ, where ℓ is the residue
field characteristic for v. We are assuming that ℓ 6= p. Hence I contains a unique subgroup
P containing R such that P/R ∼= Zp. The subgroup P is normal in N , and actually even
normal in GFv . The profinite order of N /P is prime to p. Furthermore, R is a pro-ℓ group
and hence also has profinite order prime to p.

For brevity, we will let A = E[p∞] and B = AR = E(Ktr
v )[p∞] in this proof. If n ∈ Z, the

notation A(n) and B(n) will denote the twists of A and B by χnp , where χp is the p-power
cyclotomic character of GFv . Note that ker(χp) contains I. Local class field theory implies
that the natural action of GFv/P on P/R (by inner automorphisms) is given by the character
χp. For that reason, we write P/R ∼= Zp(1).

The group ĤE,v is the Pontryagin dual of H1(N , A). We have the following isomorphisms

H1(N , A)
∼−→ H1(N /R, B)

∼−→ H1(P/R, B)N/P .

The first isomorphism is the inverse of the inflation map corresponding to the normal sub-
group R of N , which is an isomorphism because H1(R, A) = 0. The second isomorphism is
the restriction map corresponding to the normal subgroup P/R of N /R. It is an isomor-
phism because H i(N /P , BP) = 0 for i = 1, 2.

The group R acts trivially on B. The maximal quotient BP of B on which P acts trivially
is B/(̟ − 1)B, where ̟ is a topological generator for P/R. We then have isomorphisms

H1(P/R, B) ∼= Hom(P/R, BP) ∼= Hom(Zp, B(−1)P) ∼= B(−1)P .

We have used the fact that P ⊂ ker(χp) and so BP(−1) = B(−1)P . Combining the above
observations, we have now shown that H1(N , A) is isomorphic to the maximal subgroup of
B(−1)P on which N /P acts trivially.

Recall the following easily proved fact. Suppose that G is a profinite group which has
profinite order prime to p. Suppose that C is a p-primary group on which G acts. Then
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CG is a direct summand of C and is therefore canonically isomorphic to CG. We apply this
first to C = B(−1)P and G = N /P . It follows that H1(N , A) is isomorphic to B(−1)N .
Similarly, we also have B(−1) ∼= A(−1)R. Therefore, we have an isomorphism

H1(N , A) ∼= A(−1)N .

The Weil pairing implies that the Tate module Tp(E) is isomorphic to the Pontryagin dual
of E[p∞](−1) = A(−1). Hence the Pontryagin dual of A(−1)N is isomorphic to the maximal
subgroup Tp(E)N of Tp(E) on which N acts trivially.

The isomorphisms given above are all GFv -equivariant. Thus, we obtain a Gal(K∞,v/Fv)-

equivariant isomorphism from the Pontryagin dual of H1(Nv, E[p∞]), which is ĤE,v, to
Tp(E)Nv . Tensoring by Qp gives the isomorphism in the proposition. �

Corollary 5.1.2. Suppose that v is a nonarchimedean prime of F and that v ∤ p. The
following statements are equivalent:

(i) Hv(K∞, E) = 0,

(ii) δE,v(σ) = 0 for all σ ∈ IrrF(∆),

(iii) H0
(
K∞,v, Vp(E)

)
= 0,

(iv) E(K∞,v)[p
∞] is finite.

The following statement implies (i) - (iv):

(v) E(Kv)[p] = 0.

Statement (v) is equivalent to the other four statements if E has good reduction over Kv or
if p ≥ 5 and E has potentially good reduction at v.

Proof. For the equivalence of (i) and (ii), note that Hv(K∞, E) is a divisible group. Hence
Hv(K∞, E) = 0 if and only if the Zp-rank of its Pontryagin dual is zero. Each of the groups
Hν(K∞, E) for ν|v has the same Zp-corank. By definition, its Pontryagin dual has Zp-rank
zero if and only if all the multiplicities δE,v(σ) are zero. The equivalence of (iii) and (iv) is
clear. Proposition 5.1.1 and (5.0.a) imply the equivalence of (i) and (iii).

Since Gal(K∞,v/Kv) is pro-p, (v) is equivalent to E(K∞,v)[p] = 0 and hence equivalent
to E(K∞,v)[p

∞] = 0. Thus, (v) obviously implies (iv). As for the converse, assume that
E(Kv)[p] 6= 0. Then E(K∞,v)[p] 6= 0. Under the assumptions about E stated in the last
sentence of the proposition, the action of Nv on Vp(E) and on E[p∞] will factor through
a finite quotient group of Nv of order prime to p. (More details about the action of Gv
are given below. We apply them to Nv. ) Thus, the action of Nv on E[p] is semisimple.
Since we assume that E(Kv)[p] 6= 0, the Fp-representation space E[p] for Nv contains the
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trivial representation as a constituent. It follows that the trivial representation occurs as a
constituent in the Qp-representation space Vp(E) for Nv. Hence, it does indeed follow that
H0
(
K∞,v, Vp(E)

)
has positive dimension. Therefore, (iii), and hence (iv), implies (v). �

5.2 Determination of 〈ρE,v, χ〉.
We will use proposition 5.1.1 to reduce the determination of the hv(E,χ)’s to studying
Vp(E)F = Vp(E) ⊗Qp F as a representation space for Gv. We denote this representation of
Gv by ρE,v. It is not necessarily semisimple. If χ ∈ IrrF(∆v), then we can regard χ as an

irreducible representation of Gv. For any such χ, let Vp(E)
(χ)
F denote the maximal subspace

of Vp(E)F on which Gv acts by χ. Obviously,

Vp(E)
(χ)
F ⊆ H0

(
K∞,v, Vp(E)F

)
= H0

(
K∞,v, Vp(E)

)
⊗Qp F .

Consequently, we have hv(E,χ) = 〈ρE,v, χ〉 for any χ ∈ IrrF(∆v). It therefore suffices to
discuss the 〈ρE,v, χ〉’s. There are four cases to consider, corresponding to different reduction
types over Fv.

E has good reduction at v. Then the action of GFv on Vp(E) is unramified. The Frobenius
automorphism over Fv acts with eigenvalues αv, βv, the roots of a quadratic polynomial
x2 − avx + N(v), where av, N(v) ∈ Z. Here N(v) is the cardinality of the residue field
for v and 1 − ap + N(v) is the cardinality of the set of points on the reduction of E over
that residue field. Those eigenvalues lie in a quadratic extension of Qp, possibly in Qp itself.

They must be units in that field. We will let α̃v, β̃v denote the unique roots of unity of order
prime to p in their residue classes. The orders of α̃v and β̃v divide p2 − 1. Now F∞,v is the
unramified Zp-extension of Fv. The eigenvalues of the Frobenius automorphism in Gv acting

on Vp(E) are the roots of unity α̃v and β̃v. Thus, for a suitable F , Vp(E)F is the direct sum
of two one-dimensional subspaces on which Gv acts by unramified characters ϕv, ψv of order
dividing p2 − 1. Those characters are determined entirely by the integers av and N(v).

The action of GFv on Qp(1) is also unramified. The Frobenius acts by N(v), a p-adic unit.
The Frobenius in Gv acts by the unique (p− 1)-st root of unity in the residue class of N(v).
Thus, Gv acts on Qp(1) by a character ωv of order dividing p− 1. The Weil pairing on Vp(E)
implies that ϕvψv = ωv. If χ ∈ {ϕv, ψv}, then 〈ρE,v, χ〉 = 1 if ψv 6= ϕv and 〈ρE,v, χ〉 = 2 if
ψv = ϕv. For any other χ, we have 〈ρE,v, χ〉 = 0.

E has multiplicative reduction at v. This case is somewhat simpler. The action of Gv
on Vp(E) is not semisimple. There is a unique one-dimensional Gv-invariant subspace. The
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character giving the action of Gv on that subspace will be denoted by ϕv. Then, ϕv = ωv if
E has split multiplicative reduction at v and ϕv = ωvεv, where εv is unramified of order 2,
if E has nonsplit multiplicative reduction at v. If p = 2, then the second case cannot occur
and ϕv is trivial. We have 〈ρE,v, χ〉 = 0 unless χ = ϕv in which case 〈ρE,v, χ〉 = 1. Note that
the order of ϕv is not divisible by p.

E has potentially multiplicative reduction at v. In this case, Vp(E) will also have a
unique one-dimensional Gv-invariant subspace. If ϕv denotes the corresponding character,
then ϕvω

−1
v will be a ramified quadratic character of Gv, assuming that E doesn’t have

multiplicative reduction over F∞,v. As above, we have 〈ρE,v, χ〉 = 1 if χ = ϕv and 〈ρE,v, χ〉 =
0 otherwise. The order of ϕv is not divisible by p if p ≥ 3.

E has potentially good reduction at v. We assume that E actually has bad reduction
at v. There are a number of distinct possibilities for the action of Gv. However, the image
of Gv under ρE,v is finite and hence the representation is semisimple. We let Θv denote the
image of the inertia subgroup under ρE,v. Then Θv is a normal subgroup of ρE,v(Gv) and
ρE,v(Gv)

/
Θv is cyclic of order prime to p. The possibilities for Θv are described in [SeTa].

The order of Θv has no prime factor ≥ 5. If ρE,v(Gv) is abelian, then the action of Gv on
Vp(E)F is given by two one dimensional characters of Gv, which we denote by ϕv and ψv.
Since ϕvψv = ωv, which is unramified, it follows that the restrictions of ϕv and ψv to Θv

are both faithful. Note that it is possible for ϕv and ψv to be equal, just as in the case
of good reduction. If the image of ρE,v is nonabelian, then ρE,v is absolutely irreducible
and we denote it by ϕv. Hence, there may be at most two one-dimensional χ’s for which
〈ρE,v, χ〉 > 0, or just one two-dimensional χ. If one of those χ’s factors through ∆v, then
E has good reduction over Kv. If E has good reduction over Kv, then ϕv (and ψv) factor
through Gal(Kunr

v /Fv).
One useful remark is that if p ≥ 5, then the action of Gv on Vp(E) factors through a finite

quotient group of order prime to p. This follows from what we have said above, but it is
also quite clear directly since an element of order p can act nontrivially on a 2-dimensional
Qp-vector space only if p ≤ 3.

For each v ∈ Σ0, let Irrv = IrrF(∆v) as before. Then (5.0.b) and (5.1.a) imply the formula

(5.2.a) δΣ0
E (σ) =

∑

v∈Σ0

gv

(
∑

χ∈Irrv

〈σv, χ〉〈ρE,v, χ〉
)

.

The inner sum is precisely δE,v(σ). For each v, there are at most two irreducible representa-
tions χ of Gv for which 〈ρE,v, χ〉 > 0. Thus, at most two terms in each inner sum could be
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nonzero. Those χ’s might or might not factor through ∆v. Even if they do, the multiplicity
〈σv, χ〉 might be 0.

5.3 Projectivity and Herbrand quotients.

The missing steps for the proof of proposition 3.3.1 are contained in the following result.

Proposition 5.3.1 (i) For any v ∈ ΦK/F , the Pontryagin dual of Hv(K∞, E) is projective
as a Zp[∆]-module if and only if Hv(K∞, E) = 0. (ii) Suppose that p ≥ 5 or that E has
good or multiplicative reduction at v. Then, for every cyclic p-subgroup P of ∆, we have
hP
(
Hv(K∞, E)

)
≤ 1. If v ∈ ΦK/F , then hP

(
Hv(K∞, E)

)
= 1 for all P ’s if and only if

Hv(K∞, E) = 0.

Proof. For any p-subgroup P of ∆ and for any v, let Pv be the corresponding decomposition
subgroup. (Recall that Pv is actually the decomposition subgroup for some prime η of K∞

lying above v.) Just as for ∆ itself, we can write Hv(K∞, E) as a direct product of modules
of the form A = IndPPv

(
H1(K∞,v, E[p∞])

)
. As a Zp[Pv]-module, H1(K∞,v, E[p∞]) is a direct

summand of A. If v ∈ ΦK/F , then we can choose a cyclic p-subgroup P so that Pv is
nontrivial.

Part (i) is now quite easy. It suffices to show that if v ∈ ΦK/F , if P is chosen so that
Pv is nontrivial, and if H1(K∞,v, E[p∞]) 6= 0, then the Pontryagin dual of H1(K∞,v, E[p∞])
cannot be projective as a Zp[Pv]-module. Recall that projective Zp[Pv]-modules must be
free. Hence their Zp-rank must be divisible by |Pv|. But the Zp-corank of H1(K∞,v, E[p∞])
is at most 2 according to proposition 5.1.1. Thus, (i) is proven except for the case where Pv
has order 2 and H0

(
K∞,v, Vp(E)

)
= Vp(E). So we now suppose that p = 2. It is clear that

ωv|Pv is trivial. Thus, a generator of Pv will act on Vp(E) with determinant 1. Therefore, its
eigenvalues will either both be equal to 1, or both equal to -1. The same thing will be true
for its action on the Pontryagin dual of H1(K∞,v, E[p∞]), and so that Zp[Pv]-module cannot
be projective.

Now consider part (ii). Let P be a cyclic p-subgroup of ∆ and let A be as above. Shapiro’s
lemma implies that the Herbrand quotient hP (A) is equal to hPv

(
H1(K∞,v, E[p∞])

)
. Of

course, Pv is a subgroup of ∆v and could be any cyclic p-subgroup. If Pv is nontrivial,
then apart from the trivial representation, any irreducible representation for Pv over Qp has
degree at least p − 1. Thus, assuming that p ≥ 5, the action of Pv on the Qp-vector space
H0
(
K∞,v, Vp(E)

)
must be trivial. By proposition 5.1.1 and the fact that H1(K∞,v, E[p∞])

is divisible, the action of Pv on that group must also be trivial. Therefore,

(5.3.a) hPv

(
H1(K∞,v, E[p∞])

)
= |Pv|−r ,
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where r denotes the Zp-corank of H1(K∞,v, E[p∞]), proving the first statement for p ≥ 5.
If E has good or multiplicative reduction at v, then the characters χ ∈ IrrF(∆v) for

which 〈ρE,v, χ〉 > 0 are of order prime to p. Thus, the restriction of such χ’s to a p-subgroup
will be trivial. That is, for any P , the action of Pv on H1(K∞,v, E[p∞]) will again be trivial.
Just as above, one has (5.3.a) and the first statement again follows.

If v ∈ ΦK/F , then one can clearly choose P so that Pv is nontrivial. Furthermore, if
hP
(
Hv(K∞, E)

)
= 1, then hPv

(
H1(K∞,v, E[p∞])

)
= 1. It follows from (5.3.a) that r = 0.

However, H1(K∞,v, E[p∞]) is a divisible group. Therefore, H1(K∞,v, E[p∞]) = 0, and hence
indeed Hv(K∞, E) = 0. The other implication in the second assertion is obvious. �

Remark 5.3.2. As a complement to the above proposition, we will discuss the second part
of the above proposition when p ≤ 3 and E does not have good or multiplicative reduction
at p. We use the notation as in the proof. The case of potentially multiplicative reduction is
the easiest. Suppose first that p = 3. Then ϕv is a ramified character of order 2. The action
of Pv on H1(K∞,v, E[p∞]) will again be trivial. Hence the proof works without change. We
could indeed have included this case in the proposition.

Suppose now that p = 2 and that E has potentially multiplicative reduction at v. Then ϕv
is a ramified character of order 2. Since v ∤ 2, the character ϕv is tamely ramified and hence
is uniquely determined. If v ∈ ΦK/F , then ϕv does factor through ∆v and has a nontrivial
restriction to Pv for some cyclic p-subgroup P of ∆. The Zp-corank of H1(K∞,v, E[p∞]) is
equal to 1 and one finds that hPv

(
H1(K∞,v, E[p∞])

)
= p, Therefore, the first conclusion in

part (ii) of proposition 5.3.1 could fail in this case. One can easily find examples where
hP
(
Hv(K∞, E)

)
> 1.

In the case of potentially good reduction, and p = 2 or 3, it might or might not be the
case that |Θv| is divisible by p. If p doesn’t divide |Θv|, then the characters χ for which
〈ρE,v, χ〉 > 0 will be of order prime to p, and so the proof of proposition 5.3.1 still works.
On the other hand, assume that p divides |Θv|. If ϕv or ψv factor through ∆v, then Θv is
isomorphic to a subgroup of ∆v and hence, for some P , we will have Pv ⊆ Θv. The action of
Pv on H1(K∞,v, E[p∞]) will then be nontrivial. In such a case, the Herbrand quotient will
again be greater than 1. It is then possible to have hP

(
Hv(K∞, E)

)
> 1. This can happen

for either p = 2 or p = 3. ♦

6 The case where ∆ is a p-group.

Formula (1.3.c) is based on the fact that if ∆ is a p-group, then Irrf(∆) contains only the
trivial representation τ0 = σ̃0. By using the results of chapter 5, we can refine that formula.
One of the additional simplifying features in this case is that ∆η will also be a p-group for
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any prime η of K∞ (reverting back to the notation in the beginning of chapter 5). Assuming
that η | v, where v ∤ p,∞, it is clear that ∆η is actually the inertia subgroup of ∆ for η.
This is because F∞,v is the unramified Zp-extension of Fv and hence there are no nontrivial
unramified p-extensions of F∞,v. Thus ∆η is nontrivial if and only if v ∈ ΦK/F . We let
eη = |∆η|, the ramification index for η in the extension K∞/F∞. The ramification is tame
and so eη divides N(η) − 1, where N(η) denotes the cardinality of the residue field for η. It
follows that if v ∈ ΦK/F , then µp ⊂ K∞,v. Since ∆η is a p-group, it acts trivially on µp and
hence the character ωv is trivial. That is, we have µp ⊂ F∞,v.

Another simplifying feature is that for η and v as above, if χ ∈ IrrF(∆η) is a nontrivial
representation, then usually 〈ρE,v, χ〉 = 0. This is true if p ≥ 5 or if E has good or multi-
plicative reduction at v, because, as pointed out in chapter 5, 〈ρE,v, χ〉 > 0 implies that χ
factors through a group of order prime to p. However, if p = 2 or 3, one can sometimes have
〈ρE,v, χ〉 > 0 for a nontrivial χ.

We will prove the following proposition. It is assumed thatE has good, ordinary reduction
at the primes of F lying over p. The trivial character of ∆η is just the restriction of σ0, which
we will denote by σ0,v. But we will also sometimes use the notation χ0,v when it seems more
appropriate.

Proposition 6.1. Suppose that p ≥ 5, that ∆ is a p-group. and that σ ∈ IrrF(∆). Assume
also that SelE(F∞)[p] is finite. Let Σ0 = ΦK/F . Then

λE(σ) = n(σ)λE(σ0) +
∑

v∈Σ0

gv
(
n(σ) − 〈σv, χ0,v〉

)
〈ρE,v, χ0,v〉 .

Furthermore, for v ∈ Σ0, 〈ρE,v, χ0,v〉 = 2 if E has good reduction at v and E(Fv)[p] 6= 0,
〈ρE,v, χ0,v〉 = 1 if E has split multiplicative reduction at v, and 〈ρE,v, χ0,v〉 = 0 otherwise.

Proof. It is proved in [HaMa] that if SelE(F∞)[p] is finite, then SelE(K∞)[p] is also finite. (See
also chapter 4 for an argument using the concept of a Selmer atom.) The other assumptions
in proposition 3.2.1 are clearly satisfied and so we can apply formula (1.3.c). Together with
formula (5.2.a), we have in general

λE(σ) = n(σ)λE(σ0) +
∑

v∈Σ0

gv

(
∑

χ∈Irrv

(
n(σ)〈σ0,v, χ〉 − 〈σv, χ〉

)
〈ρE,v, χ〉

)
.

Since p ≥ 5, we have 〈ρE,v, χ〉 = 0 if χ 6= χ0,v. Here σ0,v = σ0|∆η and obviously 〈σ0,v, χ0,v〉 = 1.
This gives the formula in the proposition.

Assume that E has good reduction at v. Then 〈ρE,v, χ0,v〉 > 0 if and only if χ0,v is equal
to ϕv or ψv. However, ϕvψv = ωv, which is trivial, and so χ0,v = ϕv means that both ϕv and
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ψv are equal to χ0,v and that 〈ρE,v, χ0,v〉 = 2. Since the action of Gv on E[p] is unramified
and factors through a group of order prime to p, we have the equivalences

〈ρE,v, χ0,v〉 = 2 ⇐⇒ ϕv = χ0,v ⇐⇒ E(F∞,v)[p] 6= 0 .

Actually, these statements are equivalent to the assertion that E[p] ⊂ E(F∞,v). Since
F∞,v/Fv is a Zp-extension, E(F∞,v)[p] 6= 0 if and only if E(Fv)[p] 6= 0. Therefore, we
see that 〈ρE,v, χ0,v〉 = 2 if E(Fv)[p] 6= 0 and 〈ρE,v, χ0,v〉 = 0 otherwise. The assumption that
p ≥ 5 is not needed for this assertion.

Now assume that E has multiplicative or potentially multiplicative reduction at v. Since
ωv = χ0,v, it follows that ϕv = χ0,v if and only if E has split multiplicative reduction at v.
Hence 〈ρE,v, χ0,v〉 = 1 just in that case and 〈ρE,v, χ0,v〉 = 0 otherwise. Again, this assertion
is valid for all p.

Finally, assume that E has additive reduction at v. Then 〈ρE,v, χ〉 > 0 implies that χ is
ramified at v. Thus, χ 6= χ0,v. However, if p ≥ 5, then 〈ρE,v, χ〉 > 0 implies that χ factors
through a quotient of Gv of order prime to p. Hence, if χ also factors through the p-group
∆v, then χ = χ0,v. Therefore, it follows that 〈ρE,v, χ〉 = 0 for all χ ∈ Irrv. �

Remark 6.1.1. In the above proposition, suppose that ∆ is a cyclic group of order pr

where r ≥ 1 and that σ is a faithful character of ∆. We also take Σ0 = ΦK/F and p ≥ 5.
Then the formula takes the following simple form:

λE(σ) = λE(σ0) +
∑

v∈Σ0

gv〈ρE,v, χ0,v〉 .

This is clear since n(σ) = 1 and σv is nontrivial for any v ∈ ΦK/F . ♦

Remark 6.1.2. The formula proved in [HaMa] follows from proposition 6.1. We make the
same assumptions and let σ vary over IrrF(∆). We use formulas (1.2.b) and (1.3.c) which
give

λE(K∞) =
∑

σ

n(σ)λE(σ) =
∑

σ

n(σ)2λE(σ0) +
∑

σ

n(σ)2δΣ0
E (σ0) −

∑

σ

n(σ)δΣ0
E (σ) .

Of course,
∑

σ n(σ)2 = |∆| and λE(σ0) = λE(F∞). Thus, the first sum on the right is equal
simply to |∆|λE(F∞). The second sum is

|∆|
∑

v∈Σ0

gv〈ρE,v, χ0,v〉 =
∑

v∈Σ0

[∆ : ∆η]gveη〈ρE,v, χ0,v〉 .
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Note that for each v ∈ Σ0, the quantity [∆ : ∆η]gv is equal to the cardinality of the set of
primes of K∞ lying over v. The third sum is

∑

σ

n(σ)δΣ0
E (σ) =

∑

v∈Σ0

gv〈ρE,v, χ0,v〉
(
∑

σ

n(σ)〈σv, χ0,v〉
)

=
∑

v∈Σ0

〈ρE,v, χ0,v〉gv[∆ : ∆η]

since 〈σv, χ0,v〉 is the multiplicity of σ in the induced representation Ind∆
∆η

(χ0,v) and the
dimension of that representation is [∆ : ∆η]. Thus the second and third contributions are

∑

v∈Σ0

〈ρE,v, χ0,v〉[∆ : ∆η]gv
(
eη − 1

)
.

Therefore, the formula that we derive is

λE(K∞) = |∆|λE(F∞) +
∑

η∈Σ1

(eη − 1) + 2
∑

η∈Σ2

(eη − 1)

where Σ1 denotes the set of primes of K∞ lying over a v ∈ Σ0 where E has split multiplicative
reduction and Σ2 denotes the set of primes of K∞ lying over a v ∈ Σ0 where E has good
reduction and E(Fv)[p] 6= 0. This is exactly the formula proved in [HaMa].

Conversely, the formula proved in [HaMa] implies proposition 6.1. One must apply the
formula to all intermediate fields F ′ for the p-extension K/F . The non-primitive version of
that formula takes the following form:

λΣ0
E (F ′

∞) = [F ′ : F ]λΣ0
E (F∞) = [F ′ : F ]λΣ0

E (σ0) .

This is valid even if F ′/F is not Galois since there will be a tower of subfields of F ′, starting
from F , ending with F ′, each Galois over the preceding field. This is so because ∆ is a
p-group. If ∆′ = Gal(K/F ′), then it follows that

λΣ0
E (1∆′) = [∆ : ∆′]λΣ0

E (σ0) .

The characters of irreducible representation of ∆ over Q can be expressed as linear combina-
tions of the characters for the induced representations Ind∆

∆′(1∆′). Using this together with
the second part of remark 2.1.8, one deduces that

∑

σ

λΣ0
E (σ) =

(∑

σ

n(σ)

)
λΣ0
E (σ0) ,
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where σ varies over any Q-conjugacy class of irreducible representations of ∆. However, if
σ1 and σ2 are conjugate over Q, then they are also conjugate over Qp and hence it follows
that λΣ0

E (σ1) = λΣ0
E (σ2). Of course, n(σ1) = n(σ2) too. Therefore, we indeed have

λΣ0
E (σ) = n(σ)λΣ0

E (σ0)

for all σ ∈ IrrF(∆). ♦

Remark 6.1.3. We will discuss the dihedral group ∆ = D2pr here because it requires just
a simple application of remark 6.1.1. We still assume that p ≥ 5. The quadratic extension
of F contained in K is KΠ, the fixed field for the Sylow p-subgroup Π of ∆, which we will
denote by K0. The order of Π is pr. Suppose that r ≥ 1 and that σ is a faithful element of
IrrF(∆). Then σ = Ind∆

Π(π), where π is a faithful character of Π. We have λE(π) = λE(σ)
and λE(π0) = λE(σ0) + λE(σ1), where σ0 and σ1 are the two 1-dimensional representations
of ∆ and π0 is the trivial character of Π. (See remark 2.1.8.) Applying remark 6.1.1 to π,
we obtain the formula

λE(σ) = λE(σ0) + λE(σ1) +
∑

v∈Σ0

gv
(
〈ρE,v, σ0,v〉 + 〈ρE,v, σ1,v〉

)
.

There may be one or two primes of K0 lying above each v, and one checks both possibilities
to verify this formula. Note that, in remark 6.1.1, the gv is gv(K0), whereas in the formula
just stated, gv = gv(F ). ♦

7 Other specific groups.

We will discuss the determination of congruence relations for certain groups ∆ and primes
p. As previously, the trivial representations of ∆ over F and f will always be denoted by
σ0 and τ0, respectively. The other representations will be denoted with double-subscripts
n, i, where n indicates the dimension n(σ) or n(τ), written in boldface, and where i ≥ 1.
However, if there is only one nontrivial representation of a given dimension, we will suppress
the second subscript.

In section 7.1, we first consider the solvable groups A4 and S4. For any prime p, they
are p-solvable and that simplifies the discussion. We also discuss the non-solvable group
S5. In each example, we will specify the smallest field F over which the representations
are realizable, possibly significantly smaller than the F specified in the introduction. In
section 7.2, we discuss the group PGL2(Z/pZ) and describe the representation theory and
congruence relations rather completely. In sections 7.3 and 7.4, we discuss interesting families
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of groups which will come up in some of our later illustrations. However, although the
discussion will include many of the irreducible representations of those groups, it is still
somewhat incomplete.

One fact in modular representation theory that we will use frequently has to do with
induced representations. Suppose that Θ is a subgroup of ∆. One can regard Ind∆

Θ as a
homomorphism from RF(Θ) to RF(∆) or as a homomorphism from Rf(Θ) to Rf(∆). Those
induction maps commute with the decomposition maps for the groups Θ and ∆. One can
find a proof of this commutativity on page 502 in [CuRe], volume 1. We will often use the
following consequence.

Suppose that θ1 and θ2 are representations of Θ. Let ρ1 = Ind∆
Θ(θ1) and ρ2 = Ind∆

Θ(θ2). If

θ̃1

ss ∼= θ̃2

ss
, then ρ̃1

ss ∼= ρ̃2
ss.

We want to give an alternative justification here by using character theory. As in [Se77], let
∆reg denote the set of elements of ∆ whose order is prime to p. Define Θreg in the same way.
If χ is a character of a representation ρ over F , then Brauer proved that ρ̃ss is determined
up to isomorphism by χ|∆reg . This is corollary 1 to theorem 42 in [Se77]. Furthermore, if

ρ = Ind∆
Θ(θ), then there is a standard formula for χ in terms of the character ψ of θ. That

formula shows that χ|∆reg is determined by ψ|Θreg . Therefore, up to isomorphism, ρ̃ss is

determined by θ̃ss.

7.1 The groups A4, S4, and S5.

A. ∆ = A4. We have s = 4. We can take F = Q(µ3). The elements of IrrF(∆) are σ0,
σ1,1 and σ1,2 (the last two of which are the characters of order 3), and σ3 (of dimension 3).
The group ∆ has a normal subgroup Π of order 4, the Klein 4-group, and σ3

∼= Ind∆
Π(χ),

where χ is any one of the three nontrivial characters of Π. Note that σ3 is defined over Q.
The prime divisors of |∆| are 2 and 3. The determinant of σ3 is σ0.

Consider first p = 2. Then f = F4 and t = 3. The three elements of Irrf(∆) factor
through the abelian quotient group ∆/Π and are τ0 = σ̃0, τ1,1 = σ̃1,1, and τ1,2 = σ̃1,2. We
have σ̃3

ss ∼= τ0⊕τ1,1⊕τ1,2. Thus, for any projective Z2[∆]-module X, we have the congruence
relation

λ(X, σ3) = λ(X, σ0) + λ(X, σ1,1) + λ(X, σ1,2)

This equation becomes fairly obvious if one uses the fact that X must be a free Z2[Π]-
module. Its Z2[Π]-rank r will be equal to the Zp-rank of XΠ, and that is just the sum of
the multiplicities of the 1-dimensional representations σ0, σ1,1 and σ1,2 in VF = X ⊗Zp F .
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But dimF(VF) = 4r and hence the contribution of the 3-dimensional representation σ3 has
F -dimension 3r, and therefore multiplicity r. Note that we also have the conjugacy relation
λ(X, σ1,1) = λ(X, σ1,2).

For p = 3, we have t = 2 and f = F3. The two elements of Irrf(∆) are τ0 = σ̃0 and
τ3 = σ̃3. We have σ̃1,1

∼= σ̃1,2
∼= τ0. Thus, for a projective Z3[∆]-module X, we have the two

congruence relations
λ(X, σ0) = λ(X, σ1,1) = λ(X, σ1,2)

which are also obvious from the fact that σ0, σ1,1 and σ1,2 factor through the quotient ∆/Π,
a 3-group. The second equality is also a conjugacy relation.

B. ∆ = S4. We have s = 5 and can take F = Q. The elements of IrrF(∆) are σ0 and σ1,
both one-dimensional (the trivial and sign characters), one two-dimensional representation
σ2, whose kernel is the Klein 4-group Π, and two three-dimensional representations σ3,1 and
σ3,2 = σ3,1 ⊗ σ1. Those two representations are induced from nontrivial characters of a
Sylow 2-subgroup of ∆. We let σ3,1 be the representation whose determinant is σ0. Thus,
det(σ3,2) = σ1.

First p = 2. We have t = 2. The elements of Irrf(∆) are τ0 and a 2-dimensional
representation τ2 = σ̃2. Clearly, σ̃0

∼= σ̃1
∼= τ0. Also, σ̃3,1

ss ∼= σ̃3,2
ss ∼= τ0 ⊕ τ2. The three

independent congruence relations for a projective Z2[∆]-module X are

λ(X, σ1) = λ(X, σ0), λ(X, σ3,1) = λ(X, σ3,2) = λ(X, σ0) + λ(X, σ2).

For p = 3, we have t = 4. There are two elements of Irrf(∆) of dimension 1, namely
τ0 = σ̃0 and τ1 = σ̃1, and two representations of dimension 3, namely τ3,1 = σ̃3,1 and
τ3,2 = σ̃3,2. We have σ̃2

ss ∼= τ0 ⊕ τ1. For a projective Z3[∆]-module X, we have

λ(X, σ2) = λ(X, σ0) + λ(X, σ1) ,

which is actually just the congruence relation for the projective Z3[∆/Π]-module XΠ.

C. ∆ = S5. We have s = 7 and can take F = Q. The elements of IrrF(∆) are
of dimensions 1, 4, 5, and 6, two of each dimension except for 6. We denote them by
σ0, σ1, σ4,1, σ4,2, σ5,1, σ5,2, and σ6. Tensoring by σ1 interchanges the two representations
of each of the dimensions 1, 4, and 5. We identity S4 with a subgroup H of S5 in any
way. Thus, we can regard S5 as the group of permutations on the left cosets of H in S5.
Choose σ4,1 so that its restriction to H contains the trivial representation. That is, σ4,1

is the 4-dimensional irreducible constituent in the permutation representation IndS5
H (1H).
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Its determinant is σ1. Of course, σ4,2 has the same determinant. The determinant of σ6

is also σ1. However, it will be convenient to take σ5,1 to be the 5-dimensional irreducible
representation with determinant σ0. And so the determinant of σ5,2 will be σ1. A reference
for the decomposition matrix information that we will now cite is [J-K], which contains useful
tables for the symmetric groups.

For p = 2, we have t = 3. The elements of Irrf(∆) are of dimension 1 and 4: τ0, τ4,1
and τ4,2. In fact, σ̃4,1 is irreducible and we take that reduction to be τ4,1. We also have
σ̃4,2

∼= τ4,1. As for τ4,2, it isn’t of the form σ̃ for any σ ∈ IrrF(∆), but it is a direct summand
in σ̃5,1

ss, σ̃5,2
ss, and σ̃6

ss. The complementary summands are τ0’s. Thus, we have the
following congruence relations for a projective Z2[∆]-module X:

λ(X, σ1) = λ(X, σ0), λ(X, σ4,2) = λ(X, σ4,1), λ(X, σ5,2) = λ(X, σ5,1)

λ(X, σ6) = λ(X, σ0) + λ(X, σ5,1) .

In this example, τ0 and τ4,1 have liftings σ0 and σ4,1, respectively, and so we recover the
corresponding weights quite easily: w(X, τ0) = λ(X, σ0), w(X, τ4,1) = λ(X, σ4,1). However,
for τ4,2, we have w(X, τ4,2) = λ(X, σ5,1) − λ(X, σ0).

If p = 3, then t = 5. The elements of Irrf(∆) are of dimension 1, 4, and 6, two of
each dimension except 6. All of the elements of Irrf(∆) can be lifted to elements of IrrF(∆)
(even though S5 is not 3-solvable). They are τ0 = σ̃0, τ1 = σ̃1, τ4,1 = σ̃4,1, τ4,2 = σ̃4,2, and
τ6 = σ̃6. The 5-dimensional representations of ∆ have reducible reductions: σ̃5,1

ss ∼= τ4,1⊕τ1
and σ̃5,2

ss ∼= τ4,2 ⊕ τ0. Thus, for a projective Z3[∆]-module X, the congruence relations are

λ(X, σ5,1) = λ(X, σ1) + λ(X, σ4,1), λ(X, σ5,2) = λ(X, σ0) + λ(X, σ4,2) .

In this example, every τ in Irrf(∆) has a unique lifting σ in IrrF(∆) and we then have
w(X, τ) = λ(X, σ).

For p = 5, we have t = 6. However, S5
∼= PGL2(F5). This example is included in the

next section which considers the family of groups PGL2(Fp), where p is any odd prime. In
fact, S4

∼= PGL2(F3), which was already discussed above for p = 3 and is also a special case
of section 7.2.

D. Blocks. We want to briefly discuss an important aspect of modular representation
theory, although it will not play a real role in the present paper. It does shed some light on
congruence relations. For a given finite group ∆ and a prime p, the sets IrrF(∆) and Irrf(∆)
can both be partitioned into blocks in a standard way. This corresponds to writing the
matrix Dp(∆) in a block form. Let S1, ...,Sk denote the distinct blocks in IrrF(∆), T1, ..., Tk
the corresponding blocks in Irrf(∆). For each i (with 1 ≤ i ≤ k), if σ is in Si, then every τ
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such that d(σ, τ) > 0 will be in Ti. If τ ∈ Ti, then every σ such that d(σ, τ) > 0 will be in Si.
The blocks provide the finest partitions of IrrF(∆) and Irrf(∆) with these two properties.
(We refer the reader to chapter 9 in [CuRe] for a complete discussion.)

If si = |Si| and ti = |Ti|, then the corresponding submatrix in Dp(∆) is a ti × si matrix.

The rank of that submatrix is ti because
∑k

i=1 ti = t and the matrix Dp(∆) itself has rank
t according to the theorem of Brauer cited in section 1.1. Therefore, we have ti ≤ si for all
i. The congruence relations can be found block-by-block, each block Si contributing si − ti
independent relations.

For the groups A4 and S4, the congruence relations involve just the irreducible representa-
tions of the block that contains the trivial representation σ0, the so-called “principal block”.
However, for S5 and p = 2, there are two blocks and the non-principal block {σ4,1, σ4,2}
gives one of the four congruence relations. The other three come from the principal block
{σ0, σ1, σ5,1, σ5,2, σ6}. For p = 3, there are three blocks and the two congruence relations
come from the principal block and the block for σ1. Those two blocks are {σ0, σ4,2, σ5,2} and
{σ1, σ4,1, σ5,1}. The third block is simply {σ6}.

Other illustrations involving congruence relations and blocks are discussed in remark
7.2.8, remark 7.3.2, and at the end of part B of section 7.4.

7.2 The group PGL2(Fp).

We consider ∆ = PGL2(Fp), where p is any odd prime. We will discuss in some detail the
modular representation theory for ∆ and for the prime p.

A. Representations in characteristic 0. First we describe thet irreducible representations
of ∆ over a sufficiently large field F (of characteristic zero). They are of dimension 1,
p − 1, p and p + 1. By counting characteristic polynomials, one finds that s = p + 2. The
commutator subgroup ∆′ of ∆ has index 2 and so there are two elements of IrrF(∆) of
dimension 1, the two characters σ0 and σ1 which factor through ∆/∆′. If σ ∈ IrrF(∆),
then so is σ ⊗ σ1, which has the same dimension. One of the two p-dimensional elements
of IrrF(∆) is the Steinberg representation. We denote this by σst. It can be defined by
the isomorphism σ0 ⊕ σst ∼= Ind∆

B(1B), where B denotes the image of the group of upper
triangular matrices in ∆ and 1B is the trivial representation of B. Viewing Ind∆

B(1B) as the
permutation representation of ∆ on the set of 1-dimensional subspaces of F2

p, one easily sees
that the determinant of σst is σ1. The other p-dimensional irreducible representation of ∆
is σst ⊗ σ1 which has determinant σ0. We will let σp,1 = σst ⊗ σ1 and σp,2 = σst.

All of the other elements of IrrF(∆) have even dimension. There are p-3
2

of dimension

p+1, which we denote by σp+1,j, where 1 ≤ j ≤ p-3
2

. These are of the form Ind∆
B(ψ) where ψ
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is a 1-dimensional character of B such that ψ 6= ψ-1. Both ψ and ψ-1 give the same induced
representation. To make the notation more precise, we will define a canonical character
β : B −→ Z×

p and then we let σp+1,j denote Ind∆
B(βj) for 1 ≤ j ≤ p-3

2
. The definition of β

is very simple and natural. Consider the action by inner automorphisms of B on its Sylow
p-subgroup Π, a normal subgroup of B of order p. That action defines a homomorphism

β̃ : B −→ F×
p whose kernel is Π. Thus, if b ∈ B is represented by the matrix

(
b11 b12
0 b22

)
,

then β̃(b) = b11b
-1
22. Define the character β : B −→ Z×

p to be the unique lifting of β̃. Thus,

β is a character of B of order p− 1 and hence ψ = βj satisfies ψ 6= ψ-1 for 1 ≤ j ≤ p-3
2

.

As for the elements of IrrF(∆) of dimension p−1, there are p-1
2

of those, which we denote

by σp-1,j, where 1 ≤ j ≤ p-1
2

. To make the notation more precise for those representations,
we will first need to consider their reductions modulo m. The following result will be helpful
for that purpose. Since s − t = 1 in this example, it will also give the one independent
congruence relation that exists.

Proposition 7.2.1. Suppose that ∆ = PGL2(Fp), where p is an odd prime. Then we have

σ̃0 ⊕ σ̃1 ⊕
p-3
2⊕

j=1

σ̃p+1,j
ss ∼=

p-1
2⊕

j=1

σ̃p-1,j
ss
.

Consequently, if X is a quasi-projective Zp[∆]-module, then we have the congruence relation

λ(X, σ0) + λ(X, σ1) +

p-3
2∑

j=1

λ(X, σp+1,j) =

p-1
2∑

j=1

λ(X, σp-1,j).

Proof. Let B and Π be as above. The group B has p − 1 representations of dimension
1, namely the distinct powers of the character β, as well as one irreducible representation
of dimension p − 1, which we will denote by γ in this proof. Let β0 denote the trivial
representation. The other “self-inverse” character of B is β

p-1
2 . But this coincides with

σ1|B and so we will denote it simply by β1. The representation γ is IndBΠ(π), where π is
any nontrivial character of Π. Frobenius reciprocity implies that σp+1,j|B has βj and β-j

as its 1-dimensional constituents and hence γ as another constituent, all with multiplicity
1. If σ is any one of the elements of IrrF(∆) of dimension p − 1, then σ|B has no 1-
dimensional constituents and hence must be precisely γ. The restriction of the 1-dimensional
representations to B are obvious (namely, β0 and β1), and the restrictions of σp,1 or σp,2 to
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B contain γ as one constituent and β1 or β0, respectively, as the other, all with multiplicity
1. Thus, every element of IrrF(∆) occurs in Ind∆

Π(π) = Ind∆
B(γ) with multiplicity 1, except

for σ0 and σ1 which don’t occur at all.
On the other hand, if π0 denotes the trivial character of Π, then every 1-dimensional

representation of B occurs as a constituent in IndBΠ(π0) with multiplicity 1, but γ does not
occur. Therefore, the representations σ0, σ1, σp,1, σp,2 occur with multiplicity 1 in Ind∆

Π(π0),
each of the σp+1,j’s occur with multiplicity 2, but none of the σp-1,j’s occur.

Now, as representations of Π, we have π̃ ∼= π̃0. Thus, if we consider the definition of the
induced representation by monomial matrices, it is clear that

˜Ind∆
Π(π)

ss
∼= ˜Ind∆

Π(π0)
ss

.

If we compare the constituents and their multiplicities, as described above, then we obtain
the stated isomorphism. The congruence relation follows immediately. �

Remark 7.2.2. It is worth pointing out that the irreducible representations of B are the
1-dimensional representations βj, where 0 ≤ j ≤ p − 2, and the single (p − 1)-dimensional
representation γ which occurred in the above proof. ♦

Remark 7.2.3. Suppose that σ ∈ IrrF(∆). Then det(σ) is determined by σ|B. Of course,
det(σ) is either σ0 or σ1. We already know det(σ) for the four odd-dimensional σ’s. If γ
is as above, then det(γ) = σ1|B. The remarks in the above proof about σ|B imply that
det(σ) = σ1 when n(σ) = p+1 or p − 1. Thus, the determinant of all the even-dimensional
and two of the four odd-dimensional elements of IrrF(∆) is equal to σ1. ♦

B. Characteristic p. Now we come to the irreducible representations of ∆ in characteristic
p. The elements of order p in ∆ form one conjugacy class, represented by any generator of
Π. All other elements of ∆ have order prime to p. Thus, we have t = p+1. The elements of
Irrf(∆) are of odd dimensions varying from 1 to p, two for each such dimension, interchanged
by tensoring by the nontrivial character of dimension 1. We denote them by τj,k where
j ∈ {1, 3, ..., p} and k ∈ {1, 2}. The two 1-dimensional irreducible representations will also be
denoted, as usual, just by τ0 and τ1. For each possible dimension j, one of the representations
has determinant τ0 and we denote that by τj,1. Thus, τj,2 has determinant τ1. All of these
representations are defined over Fp and will be described in terms of the symmetric powers
of the tautological 2-dimensional representation of GL2(Fp). For any n ≥ 0, let symn denote
the n-th symmetric power. We will view symn in the following way. Let Pn be the Fp-
subspace of the polynomial ring Fp[x, y] consisting of all homogeneous polynomials of degree
n. Then GL2(Fp) acts on Pn by linear substitutions. The Fp-dimension of Pn is n + 1. In
order to obtain representations which factor through the quotient group ∆ = PGL2(Fp), we
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must twist by a suitable power of the determinant homomorphism det : GL2(Fp) −→ F×
p .

This is possible if n is even. For any j ∈ {1, 3, ..., p}, we define

τj,1 = symj-1 ⊗ det-
j-1
2 , τj,2 = τj,1 ⊗ τ1 .

The determinant of τj,1, as just defined, is indeed seen to be τ0. Note that τ1 = det
p-1
2 and

so τj,2 is also a twist of symj-1 by a suitable power of det.

It will be useful to have a somewhat different characterization for the elements of Irrf(∆).
We consider their restrictions to B and to the p-subgroup Π. Let u be the generator of Π

represented by the matrix a =

(
1 1
0 1

)
, where 1 is written for the identity in Fp. Suppose

that 0 ≤ n ≤ p − 1 and that n is even. The underlying vector space for symn ⊗ det-
n
2

will be denoted by Pn(-n2 ). There is a descending filtration on that space defined by the
subspaces (u − idP )kPn(-n2 ) for 0 ≤ k ≤ n + 1. Each of these subspaces is invariant under
the action of B and has codimension 1 in the preceding subspace. This filtration is the
unique composition series for Pn(−n

2
) as a representation space for Π, and also for B. The

top subquotient Pn(−n
2
)/(u − idP )Pn(−n

2
) is represented by yn, the next subquotient is

represented by xyn−1, etc. The bottom subquotient is (u− idP )nPn(−n
2
) and is represented

by xn, which is killed by u− 1. Note that if b ∈ B is represented by a diagonal matrix with
diagonal entries b11, b22, then all the monomials xiyj, where i + j = n, are eigenvectors for
b. The eigenvalue for yn is bn22(b11b22)

−n
2 = β̃(b)−

n
2 . The eigenvalue for xn is β̃(b)

n
2 . The

eigenvalue for x
n
2 y

n
2 is 1 (in Fp). All other eigenvalues occur in pairs whose product is 1.

Thus, it is clear that the action of B on the successive subquotients in the above filtration
on Pn(−n

2
) is given by powers of β̃, varying from β̃−n

2 at the top to β̃
n
2 at the bottom. The

exponent of the power of β̃ increases by 1 at each step. There is an odd number of steps in
the filtration, the action of B on the middle step is given by τ0|B, and so it follows that the
determinant of this representation, restricted to B, is trivial. The element of Irrf(∆) just
described is of dimension n + 1 and has determinant τ0. It is precisely τn+1,1. If we twist
by τ1, then we obtain τn+1,2 and the action of B on each subquotient of the corresponding

composition series has been twisted by τ1|B = β̃
p-1
2 .

We can define a function ch : Irrf(∆) −→ Irrf(B) as follows. For each τ ∈ Irrf(∆), let
Uτ denote the underlying f-representation space. Let ch(τ) be the character of B giving the
action of B on the highest subquotient in the filtration on Uτ described above. Thus, if
j ∈ {1, 3, ..., p}, then

ch(τj,1) = β̃− j-1
2 , ch(τj,2) = β̃

p-j
2

It is clear that the map ch is surjective and that τ is determined by ch(τ) except when
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n(τ) = 1 or p. We have

ch(τp,1) = ch(τ1) = β̃
p-1
2 = τ1|B = β̃1, ch(τp,2) = ch(τ0) = β̃0 .

If 1 < n(τ) < p and if ch(τ) = ψ̃, then the characters of B which occur in the filtration for

Uτ are {ψ̃, ψ̃β̃, ..., ψ̃-1}. One has ψ̃ 6= ψ̃-1 and every character of B occurring can be paired
with its inverse, except for the character for the middle of the filtration which will be either
β0 or β

p-1
2 . The determinant of τ is determined by this middle character. Of course, the

number of characters that occur is n(τ). If n(τ) = 1, then ch(τ) = τ |B. If n(τ) = p, then

ch(τ) = ψ̃ will be one of the two characters satisfying ψ̃ = ψ̃-1, which occurs twice, and the
middle character will be the other self-inverse (or self-dual) character of B, and again this
middle character determines the determinant of τ .

We remark in passing that each τ is self-dual. This is clear because the elements of
Irrf(∆) are determined by their dimension and determinant. The determinant is a character
of order 1 or 2 and so, letting τ̌ denote the contragredient of any element τ ∈ Irrf(∆), we have
det(τ̌) = det(τ)-1 = det(τ). Obviously, n(τ̌) = n(τ) and so indeed τ̌ ∼= τ . The restriction

of τ to B will also be self-dual and so the symmetry in the powers of β̃ occurring in the
filtration for Uτ , which we saw above, is to be expected. The character occurring in the
middle step must be self-inverse, i.e., either β0 or β1. Correspondingly, det(τ) is then τ0 or
τ1, respectively.

C. The decomposition numbers, indecomposable projective modules, and blocks. We can now
obtain rather complete information about the decomposition matrix Dp(∆) for ∆. There are
only four odd-dimensional representations in IrrF(∆) and their reductions are irreducible.
Namely, we have σ̃0

∼= τ0, σ̃1
∼= τ1, σ̃p,1

∼= τp,1, and σ̃p,2
∼= τp,2. Thus, the only elements of

Irrf(∆) which can be lifted to characteristic 0 are the ones of dimension 1 or of dimension p.
As for the other representations σ ∈ IrrF(∆), it turns out that σ̃ has just two composition
factors which we will now determine. The following describes what they are for each of the
(p + 1)-dimensional representations σp+1,j. For those of dimension p − 1, the proposition
specifies what they are and also serves as the definition of the index j which was left undefined
above.

Proposition 7.2.4. Suppose that ∆ = PGL2(Fp) and that 1 ≤ j ≤ p-3
2

. Then

σ̃p+1,j
ss ∼= τ ⊕ τ ′ ,

where τ and τ ′ are the unique elements in Irrf(∆) such that ch(τ) = β̃j and ch(τ ′) = β̃-j.
Also, suppose that 1 ≤ j ≤ p-1

2
. Then

σ̃p-1,j
ss ∼= τ ⊕ τ ′ ,
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where τ and τ ′ are the unique elements in Irrf(∆) of dimension at most p − 2 such that

ch(τ) = β̃j and ch(τ ′) = β̃1-j.

Proof. As mentioned in the proof of proposition 7.2.1, σp+1,j|B has βj and β-j as its 1-
dimensional constituents and hence γ as another constituent, all with multiplicity 1. Now γ̃
has all of the powers of β̃ as its 1-dimensional constituents. Thus, the restriction of σ̃p+1,j

ss
to

B is isomorphic to the direct sum of all the distinct powers of β̃, all with multiplicity 1 except
for β̃j and β̃-j, which have multiplicity 2. In particular, the self-inverse characters β̃0 and β̃1

occur with multiplicity 1 each. This last fact implies that there are exactly two irreducible
constituents in σ̃p+1,j

ss
. Furthermore, in order for β̃j and β̃-j to occur with multiplicity 2,

the irreducible constituents must be precisely the ones described in the proposition.
Now suppose that σ ∈ IrrF(∆) and has dimension p− 1. We then have σ|B ∼= γ. Hence,

the restriction of σ̃ss to B is isomorphic to the direct sum of all the distinct powers of β̃,
all with multiplicity 1. This implies that β̃0 and β̃1 occur with multiplicity 1 each, and so
again there are exactly two irreducible constituents in σ̃ss. In order for each power of β̃
to occur with multiplicity 1 in σ̃ss, the two irreducible constituents must be precisely the
ones described in the proposition for some value of j. The inequality 1 ≤ j ≤ p-1

2
uniquely

determines that j. Proposition 7.2.1 implies that each of those irreducible constituents will
occur in σ̃ss for exactly one of the σ’s of dimension p − 1. And so, each j occurs just once
and we can denote the given σ by σp-1,j. It is determined by j up to isomorphism. �

Corollary 7.2.5. All elements of IrrF(∆) can be realized over Qp.

Proof. It is clear from the definitions that the elements of IrrF(∆) of dimension 1 or p can
be realized over Q. The σp+1,j’s are induced from 1-dimensional representations ψ of B.
Each such ψ is a character of order dividing p − 1 and so has values in Q×

p . Hence the
corresponding induced representation is realizable over Qp.

If σ is of dimension p− 1, one can use the fact that every τ ∈ Irrf(∆) is actually defined
over Fp. Suppose that σa and σb are of dimension p − 1 and conjugate over Qp. Then
their reductions σ̃a

ss and σ̃b
ss would be conjugate over Fp and hence isomorphic. However,

proposition 7.2.4 implies that σ is determined up to isomorphism by the constituents τ and
τ ′ in σ̃ss. Hence σa and σb would be isomorphic. Thus, for any σ ∈ IrrF(∆) of dimension
p− 1, the character of σ has values in Qp.

Finally, we must show that the Schur index for σ over Qp is 1. Consider the representation
γ of B defined earlier. It is realizable over Qp (and even over Q). Hence Ind∆

B(γ) is a
representation of ∆ over Qp. But σ|B ∼= γ and hence σ occurs with multiplicity 1 in Ind∆

B(γ).
The assertion about the Schur index follows from this. �
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The indecomposable, projective O[∆]-modules Pτ are direct summands (as left ideals)
in O[∆]. The multiplicity of Pτ is n(τ). The following result gives their O-ranks. It is
easily derived from proposition 7.2.4 by using the fact that each σ ∈ IrrF(∆) contributes
n(σ)d(σ, τ) to the O-rank.

Corollary 7.2.6. Suppose that τ ∈ Irrf(∆). We have rankO

(
Pτ
)

= p if n(τ) = 1 or
n(τ) = p, and rankO

(
Pτ
)

= 2p for all other τ ’s.

Remark 7.2.7. Note that the F -representation space Pτ ⊗O F for ∆ is irreducible if
n(τ) = p, and is a direct sum of two distinct irreducible representations of ∆ for all other
τ ’s. One of those representation spaces has dimension p − 1; the other has dimension 1 or
p+1. Each of the irreducible representations of dimension p−1 or p+1 occurs as a summand
in Pτ ⊗O F for exactly two τ ’s, precisely as indicated in proposition 7.2.4. ♦

Remark 7.2.8. Proposition 7.2.1 provides another illustration of the fact that congruence
relations arise from the individual blocks, just as described in part D of section 7.1. In this
case, it is the principal block which gives the congruence relation. To explain this, note
that proposition 7.2.4 allows us to determine the blocks for ∆ = PGL2(Fp) and p. There
are two nonprincipal blocks, which are just the singletons {σp,1} and {σp,2}. Note that
those representations are realizable on F -vector spaces which contain projective ∆-invariant
O-lattices, namely Pτp,1 and Pτp,2 , respectively. The principal block consists of all of the
other elements of IrrF(∆). One can verify this by repeatedly using proposition 7.2.4. If
σ1, σ2 ∈ IrrF(∆) are such that σ̃1

ss and σ̃2
ss have an irreducible constituent in common, then

we will say that they are “linked”. If so, then σ1 and σ2 are in the same block. Thus, in
order, we have the following linked pairs:

(7.2.a) σ0, σp-1,1, σp-1,1, σp+1,1, . . . , σp-1,1, σ1

and all the elements of IrrF(∆), except for the two of degree p, are easily seen to be included
in the list and hence in the principal block. Following this same approach, one can also
express the w(X, τ)’s in terms of the λ(X, σ)’s for any projective Zp[∆]-module X. ♦

D. The representations ρ, ζ, and κ. It will be useful for proposition 7.3.1 below to discuss
the following three representations of ∆:

ρ =
⊕

σ

σn(σ), ζ = Ind∆
B(γ), κ = σ0 ⊕ σ1 ⊕ σp,1 ⊕ σp,2 ⊕

p-3
2⊕

j=1

σ2
p+1,j .
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Of course, ρ is just the regular representation for ∆ over F and n(ρ) = |∆| = p(p+1)(p−1).
Also, n(ζ) = n(κ) = (p+ 1)(p− 1). We can describe ζ and κ in the following ways:

ζ ∼=
⊕

n(σ)>1

σ and κ ∼=
p-2⊕

j=0

σp+1,j,

where we are using the notation σp+1,j for the representation Ind∆
B(βj) for any j in the range

0 ≤ j ≤ p− 2, and not just for 1 ≤ j ≤ p-3
2

as before. Thus, βj can be any power of β. The
justification for the first isomorphism is that if σ ∈ IrrF(∆) and n(σ) > 1, then σ|B has γ as
a constituent with multiplicity 1. One then applies Frobenius reciprocity. The justification
for the second isomorphism is again Frobenius reciprocity. It follows from what we have
described previously concerning the βj’s which occur in the restrictions σ|B for σ ∈ IrrF(∆).
Note that σp+1,j is reducible for two values of j. For j = 0, it is isomorphic to σ0 ⊕ σp,2. For
j = p-1

2
, it is isomorphic to σ1 ⊕ σp,1.

The reductions modulo m of κ, ζ, and ρ are related as follows:

(7.2.b) κ̃ss ∼= ζ̃ss, ρ̃ss ∼=
(
κ̃ss
)p

.

The first isomorphism follows from the fact that γ̃ss ∼=
⊕p-2

j=0 β̃
j as a representation of B.

The second follows easily from proposition 7.2.1.

We also recall the following notation from the introduction. If X is a finitely-generated
Zp[∆]-module, then we obtain a group homomorphism λX : RF(∆) → Z. This is determined
by λX(σ) = λ(X, σ) for all σ ∈ IrrF(∆). For example, we have

(7.2.c) λX(κ) = λX(σ0) + λX(σ1) + λX(σp,1) + λX(σp,2) + 2

p-3
2∑

j=1

λX(σp+1,j) .

Remark 7.2.9. One can use proposition 7.2.4 to determine the multiplicity of τ in κ̃ss for
any τ ∈ Irrf(∆). It is given by 〈κ̃ss, τ〉 = 1 if n(τ) = 1 or p, 〈κ̃ss, τ〉 = 2 if 1 < n(τ) < p. ♦

7.3 The groups PGL2(Z/p
r+1Z) for r ≥ 1.

Suppose that r ≥ 1 and that p is an odd prime. We let ∆r = PGL2(Z/p
r+1Z). We have

already discussed the representation theory of ∆0 = PGL2(Z/pZ) in section 7.2. Since the
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kernel of the map ∆r → ∆0 is a normal p-subgroup of ∆r, we therefore know the irreducible
representations of ∆r in characteristic p.

A. Characteristic zero. We will now summarize some results about the representation
theory of ∆r. They are extracted from [Sil]. The irreducible complex representations are
described there, but the results apply to an extension F of Qp containing enough roots of
unity, as in the introduction. The field F may depend on r and we denote it by Fr. An
element of IrrFr(∆r) is called r-primitive if it doesn’t factor through the quotient group ∆r-1.
There are exactly pr+1 such representations. Their dimensions will be one of the following
possibilities

(7.3.a) ar = (p+ 1)pr, br = (p− 1)pr, cr = (p+ 1)(p− 1)pr-1 .

Let Ar, Br, and Cr denote the corresponding subsets of IrrFr(∆r). Then

(7.3.b) |Ar| = 1
2
(p− 1)2pr-1, |Br| = 1

2
(p− 1)(p+ 1)pr-1, |Cr| = pr .

The representations in Ar are easily described. Let Br denote the image of the 2 × 2
upper triangular matrices over Z/pr+1Z in ∆r and let Ur denote the image of the upper
triangular matrices with 1’s along the main diagonal. Thus Ur is a normal subgroup of Br and
Ur ∼= Z/pr+1Z. Also, Br/Ur ∼= (Z/pr+1Z)×. Every σ ∈ Ar is of the form σ = Ind∆r

Br
(ψ), where

ψ is a primitive character of (Z/pr+1Z)×, viewed as a 1-dimensional representation of Br. If
ψ′ is a 1-dimensional representation of Br, then the corresponding induced representation is
isomorphic to σ if and only if ψ′ ∈ {ψ, ψ-1}. The cardinality of Ar is just the number of such
pairs of primitive characters. We denote these representations by σar ,j, where 1 ≤ j ≤ |Ar|.
Each has degree ar because [∆r : Br] = ar. The irreducible representations just described
are the elements of the so-called “principal series.” This phrase also includes the irreducible
representations of ∆0 of dimension p+ 1.

We won’t describe the other r-primitive elements of IrrFr(∆r) at all, except for the so-

called Steinberg representation. It is a constituent in Ind∆r
Br

(1Br), which we denote by σ
(r)
st ,

and is characterized by the isomorphism

Ind∆r
Br

(1Br)
∼= σ

(r)
st ⊕ Ind∆r-1

Br-1
(1Br-1) ,

where we view the second summand as a representation of ∆r through the canonical homo-
morphism ∆r → ∆r-1. Alternatively, letting Nr-1 denote the kernel of that homomorphism,
one can identify the second summand with the representation of ∆r induced from the trivial
representation of BrNr-1. One sees easily that n(σ

(r)
st ) = cr and therefore σ

(r)
st is in Cr. The

elements of Br are the irreducible representations in the so-called “unramified discrete series”
which also includes all σ ∈ IrrF(∆0) with n(σ) = p− 1.
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A number of different subgroups of ∆r will intervene in the following discussion. We’ve
already defined Br, Ur and Nr-1. For any s, 0 ≤ s ≤ r−1, we define Ns to be the “congruence
subgroup” ker

(
∆r → ∆s

)
. Thus, Ns is the image of I + psM2(Zp) in ∆r under the obvious

map GL2(Zp) → ∆r. Here M2(Zp) denotes the ring of 2 × 2 matrices over Zp. In the proof
of proposition 7.3.1 below, we will define other subgroups of ∆r, denoted by Hr, Cr, and
Πr.

B. Decomposition numbers, congruence relations, and the indecomposable projectives. We
now discuss the modular representation theory for ∆r and the prime p. All of the irreducible
representations of ∆r over f are actually defined over Fp. They all factor through ∆0 and
were described completely in section 7.2. We now want to obtain the decomposition numbers
d(σ, τ) for σ in Ar and Cr. We will describe the results in terms of the representations κ
and σp+1,j of ∆0 which were defined in section 7.2, part D. The decomposition numbers for
those two representations are given in remark 7.2.9 for κ and in proposition 7.2.4 for σp+1,j.
We can regard them as representations of ∆r. We also will refer to the character β of the
group that was denoted by B in section 7.2, and which we now will denote by B0. Since B0

is a quotient of Br, we can also regard β as a character of Br. It factors through Br/Ur.

Since we are now considering the family of groups ∆r, where r is allowed to vary, it is
important to note that the λ-invariants for a given σ are well-defined. To be precise, suppose
that σ is an irreducible representation of a finite group G over F and that X is a finitely-
generated Zp[G]-module. We can then define the invariants λ(X, σ) as before. If N is a
normal subgroup of G such that N ⊆ ker(σ), and if we also regard σ as a representation of
G/N , then we have λ(X, σ) = λ(XN , σ), where XN is the largest quotient of X on which N
acts trivially. If X is a projective Zp[G]-module, then XN is a projective Zp[G/N ]-module.
These statements are easily verified.

We will sometimes use the following abbreviated notation. If ρ1 and ρ2 are representations
of a group G over F , then we will write ρ1 ≈ ρ2 (mod m) if ρ̃1

ss ∼= ρ̃2
ss as f-representations

of G. We will also use the notation σp+1,j as in part D of section 7.2, where we allow j to be
in the range 0 ≤ j ≤ p− 2. This representation of ∆0 is reducible for j = 0 and j = p-1

2
. For

the other j’s, the representation is irreducible, but the isomorphism class only determines
the pair {j, p-1-j}.

Proposition 7.3.1. Suppose that r ≥ 1. If σ ∈ Cr, then we have an isomorphism

σ̃ss ∼=
(
κ̃ss
)pr-1

.

Furthermore, suppose that ψ is any character of Br/Ur (primitive or not) and that ψ̃ = β̃j,
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where 0 ≤ j ≤ p− 2. Let dr = pr-1
p-1

. Then, if σ = Ind∆r
Br

(ψ), we have

σ̃ss ∼=
(
κ̃ss
)dr ⊕ σ̃p+1,j

ss
.

In particular, if σ ∈ Ar, then this isomorphism for σ̃ss will hold for the value of j determined
as follows: the character ψ will be primitive and can be uniquely chosen so that ψ̃ = β̃j, where
0 ≤ j ≤ p−1

2
.

Suppose that X is a quasi-projective Zp[∆r]-module and that k = λX(κ), the quantity
defined in (7.2.c). We then have the following congruence relations: If σ ∈ Cr, then
λ(X, σ) = pr-1k. If σ ∈ Ar, then λ(X, σ) = drk + λ(X, σp+1,j), where j is as above.

Proof. The stated congruence relations follow from the isomorphisms. We will prove the
first isomorphism for σ = σ

(r)
st and then extend it to all σ ∈ Cr by using the following result

(whose proof will only be given in remark 7.4.7): If σ1, σ2 ∈ Cr, then σ̃1
ss ∼= σ̃2

ss.
Let Hr denote the inverse image of B0 under the canonical homomorphism ∆r → ∆0.

Thus, Hr is a subgroup of ∆r containing Br and we have [∆r : Hr] = p+ 1, [Hr : Br] = pr.
The group Hr will play an important role in this proof. Note that Hr has a normal subgroup
Πr of index p − 1 which is a p-group. In fact, Πr is a Sylow p-subgroup of ∆r and Hr is a
semidirect product of Πr with a subgroup Cr of order p− 1. We can take Cr to be the image

in ∆r of the group of matrices of the form

(
1 0
0 c

)
where c ∈ (Z/pr+1Z)× has order dividing

p− 1. Thus, Cr is cyclic of order p− 1.
Consider the representation εr = IndHr

Br
(1Br) of Hr. We have n(εr) = pr. We regard the

powers of β as characters of B0 and hence of Hr (without a change of notation). Then ε̃r
ss

is a direct sum of the β̃j’s with certain multiplicities. To determine those multiplicities, it
suffices to consider the restriction εr|Cr . We must look at the action of Cr on the left coset
space Hr/Br. An element of Cr acts as the permutation of the left cosets induced by left
multiplication.

Each left coset in Hr/Br has a unique representative of the form

(
1 0
a 1

)
, where 1 and

a are in Z/pr+1Z and a is divisible by p. If one multiplies that matrix (on the left) by(
1 0
0 c

)
, which is a representative for some element of Cr, then one obtains

(
1 0
ca c

)
which

is in the same left coset as

(
1 0
ca 1

)
. Thus the action of

(
1 0
0 c

)
as a permutation of Hr/Br

corresponds to the action of c on the set pZ/pr+1Z by multiplication. It is clear that there
is one orbit of length 0 and dr orbits of length p− 1. This means that εr|Cr is isomorphic to
the direct sum of 1Cr and dr copies of the regular representation of Cr. Consequently, the
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multiplicity of β̃j in ε̃r
ss is dr except when β̃j is the trivial character. The multiplicity is

then dr + 1.
We will use the abbreviated notation ρ1 ≈ ρ2 (mod m) described before in the rest of

this proof. We have εr ≈ γdr ⊕ β0 (mod m) as representations of Hr. Recall that γ is an

irreducible representation of B0 and that γ̃ss is isomorphic to the direct sum of the β̃j’s for
0 ≤ j ≤ p− 2. It follows that

Ind∆r
Hr

(εr) ≈
(
Ind∆0

B0
(γ)
)dr ⊕ σp+1,0 ≈ ζdr ⊕ σp+1,0 (mod m) .

as representations of ∆r. We have used the fact that we can regard γ as a representation
of Hr which factors through B0 and so ζ = Ind∆0

B0
(γ) can be identified with Ind∆r

Hr
(γ). Of

course, since induction is transitive, Ind∆r
Hr

(εr) ∼= Ind∆r
Br

(1Br). Consequently, using (7.2.b),
we have

Ind∆r
Br

(1Br) ≈ κdr ⊕ σp+1,0 (mod m)

for any r ≥ 1. The fact that dr − dr-1 = pr-1 then implies the first isomorphism in the
proposition for the special case where σ = σ

(r)
st . As mentioned above, the isomorphism then

follows for all σ ∈ Cr.
For the second isomorphism, we consider the restrictions of βj, viewed as a character of

Hr, to Br. Then we have
εr ⊗ βj ∼= IndHr

Br
(βj|Br)

and so
IndHr

Br
(ψ) ≈ εr ⊗ βj ≈ γdr ⊕ βj (mod m) .

Inducing from Hr to ∆r then gives the stated isomorphism. �

Remark 7.3.2. The decomposition numbers d(σ, τ) can now be easily determined for all σ
in Ar or Cr and for any τ ∈ Irrf(∆r) = Irrf(∆). (Such τ ’s are defined over Fp, but we simply
take f to be the residue field for Fr, which is independent of r.) First note that d(κ, τ) = 1
for the four τ ’s satisfying n(τ) = 1 or p, and d(κ, τ) = 2 for all other τ ’s. We then have
d(σ, τ) = pr-1d(κ, τ) for all σ ∈ Cr. For σ ∈ Ar, one can use the second isomorphism in
proposition 7.3.1 together with proposition 7.2.4 which gives the decomposition numbers
d(σp+1,j, τ).

It is interesting to note that if σ is in Ar or Cr, where r ≥ 1, then d(σ, τ) ≥ 1 for all
τ . This implies that all other elements of IrrFr(∆r) are in the same block as σ. Therefore,
there is only one block for the group ∆r and the prime p, assuming that r ≥ 1. ♦

Remark 7.3.3. We haven’t said anything about the σ’s in Br when r ≥ 1. For any such
σ, we will later show that σ|Br is the unique faithful, irreducible representation of Br. This
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will be proved in proposition 7.4.1. It will then be clear that σ|Hr ≈ γp
r

as representations
of Hr. This puts a strong constraint on the possibilities for σ̃ss. We omit the details, but
one finds that

σ̃ss ∼=
p-1
2⊕

j=1

(
σ̃p-1,j

ss)mj ⊕
(
σ̃p,1

ss ⊖ σ̃1

)u ⊕
(
σ̃p,2

ss ⊖ σ̃0

)v
.

This should be interpreted as an equality in the Grothendieck group Rf(∆r). Here, the
multiplicities m1, ...,m p-1

2
, u, and v are nonnegative integers whose sum is pr. However,

we don’t know which possibilities actually occur. In any case, if X is a quasi-projective
Zp[∆]-module and if σ ∈ Br, then λ(X, σ) is determined if one knows the quantities

λ(X, σp-1,j) for 1 ≤ j ≤ p-1

2
, λ(X, σp,1) − λ(X, σ1), and λ(X, σp,2) − λ(X, σ0) ,

together with the corresponding multiplicities m1, ...,m p-1
2

, u, and v. ♦

Remark 7.3.4. Howe [How] completely determines det(σ) for all σ ∈ IrrFr(∆r) and all
r ≥ 0. He assumes that p is odd as we do. It turns out that we can recover his result by
using remark 7.2.3 for r = 0 and the modular representation theory for ∆r when r ≥ 1.
Proposition 7.3.1 suffices for the σ’s covered by that result. Recall that det(σp,1) = σ0 and
det(σp,2) = σ1. The definition of κ then makes it clear that det(κ) = σ0. Since p is odd,
det(σ) is determined by det(σ̃ss), as one easily sees. It follows that det(σ) = σ0 for all σ ∈ Cr.
As for any of the induced representations σ covered in proposition 7.3.1, we have det(σ) = σ1.
This follows because the same thing is true for the σp+1,j’s. In particular, det(σ) = σ1 for all
σ ∈ Ar. Later, in remark 7.4.8, we will give a modular representation proof that det(σ) = σ1

for all σ ∈ Br. ♦

Remark 7.3.5. The congruence relations in proposition 7.3.1 give some simple parity
statements which will be useful later. Note that dr ≡ r (mod 2). For compactness, we let

λ0(X) = λ(X, σ0), λ1(X) = λ(X, σ1), and λn,j(X) = λ(X, σn,j)

for the dimensions n = p, p− 1 or p+ 1 and the appropriate j’s. The representations listed
here all factor through ∆0. We take X to be a Zp[∆r]-module, but if X0 denotes the maximal
quotient of X on which N = ker(∆r → ∆0) acts trivially, then those invariants can also be
defined in terms of the Zp[∆0]-module X0. (See the remark before proposition 7.3.1.)

If r ≥ 1, we will consider the following irreducible representations of ∆r. Suppose that
θ is a character of Br/Ur of order exactly pr. For any t satisfying 1 ≤ t ≤ p-3

2
, let ψt = βtθ.
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We also consider β1θ. All of these characters of Br/Ur are primitive and the following
representations are all in Ar:

σ
(r)
θ = Ind∆r

Br
(θ), σ

(r)
θ ⊗ σ1 = Ind∆r

Br
(β1θ), σ

(r)
ψt

= Ind∆r
Br

(ψt) .

We assume r ≥ 1. Then, if X is a quasi-projective Zp[∆r]-module, we have

1. λ(X, σ
(r)
θ ) ≡ (r + 1)

(
λ0(X) + λp,2(X)

)
+ r

(
λ1(X) + λp,1(X)

)
(mod 2) ,

2. λ(X, σ
(r)
θ ⊗ σ1) ≡ r

(
λ0(X) + λp,2(X)

)
+ (r + 1)

(
λ1(X) + λp,1(X)

)
(mod 2) ,

3. λ
(
X, σψt

)
≡ λ0(X) + λ1(X) + λp,1(X) + λp,2(X) + λp+1,t(X) (mod 2) .

For σ ∈ Cr, the congruence is even simpler. We then have

4. λ(X, σ) ≡ λ0(X) + λ1(X) + λp,1(X) + λp,2(X) (mod 2) .

Thus, if we let λ = λ(X, σ0) + λ(X, σp,2) and λ′ = λ(X, σ1) + λ(X, σp,1), then the parities of

λ(X, σ
(r)
θ ) and λ(X, σ

(r)
θ ⊗ σ1) are completely determined by the parities of λ and λ′. The

other elements of Ar are of the form σ = Ind∆r
Br

(ψ), where ψ̃ 6= β̃0 or β̃1. We then again
obtain a parity result for λ(X, σ), but this time the parity of λ(X, σp+1,j) is also involved.
However, for σ ∈ Cr, the parity of λ(X, σ) is determined just by the parity of the single
quantity λ+ λ′. ♦

We now prove a result about the indecomposable projective modules for Zp[∆r]. In the
introduction, we consider the corresponding modules for the group ring over the integers O
in a sufficiently large, finite extension F of Qp, which we have been denoting by Fr. However,
in this example, O and F would vary with r. This is rather inconvenient. Now the elements
of Irrf(∆r) = Irrf(∆0) are actually realizable over Fp. Thus, for every τ ∈ IrrFp(∆r), we

can define an indecomposable, projective Zp[∆r]-module P
(r)
τ whose unique simple quotient

is isomorphic to Uτ , the Fp-irreducible representation space of ∆r corresponding to τ . It is
uniquely determined up to isomorphism as a Zp[∆r]-module. (See chapter 14.4, proposition
42, in [Se77].) Then, for any O as above, the corresponding indecomposable, projective

O[∆]-module is P
(r)
τ ⊗Zp O, which has Uτ ⊗Fp f as its unique simple quotient. In particular,

the Zp[∆0] module P
(0)
τ has Zp-rank p or 2p, just as indicated in corollary 7.2.6.

We also use the following notation. If r1 > r2 ≥ 0, then there is a surjective group
homomorphism ∆r1 → ∆r2 whose kernel is Gal(Kr1/Kr2). This can be extended to a Zp-
algebra homomorphism Zp[∆r1 ] → Zp[∆r2 ] whose kernel will be denoted by I(r1/r2). The first
part of the following result extends corollary 7.2.6.
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Proposition 7.3.6. Suppose that τ ∈ IrrFp(∆0) and r ≥ 0. We have rankZp

(
P

(r)
τ

)
= p3r+1

if n(τ) = 1 or n(τ) = p, and rankZp

(
P

(r)
τ

)
= 2p3r+1 for all other τ ’s. Furthermore, for

r1 > r2 ≥ 0, we have an isomorphism

P (r1)
τ

/
I(r1/r2)P

(r1)
τ

∼= P (r2)
τ

as Zp[∆r2 ]-modules.

Proof. First note that I(r/0) annihilates Uτ . This is clear because the action of ∆r on
Uτ factors through ∆0. Thus, for any r1 > r2 ≥ 0, I(r1/r2) annihilates Uτ . Therefore,

P
(r1)
τ

/
I(r1/r2)P

(r1)
τ has Uτ as a quotient module. This is the only nontrivial semisimple quo-

tient of P
(r1)
τ

/
I(r1/r2)P

(r1)
τ . If X is a free Zp[∆r1 ]-module, then it is clear that X/I(r1/r2)X is

a free Zp[∆r2 ]-module. It follows that if P is a projective Zp[∆r1 ]-module, then P/I(r1/r2)P

is a projective Zp[∆r2 ]-module. Therefore, as a Zp[∆r2 ]-module, P
(r1)
τ

/
I(r1/r2)P

(r1)
τ has the

properties which characterize P
(r2)
τ , and so the two are indeed isomorphic.

Let N(r1/r2) = ker(∆r1 → ∆r2). We regard P
(r1)
τ as a Zp[N(r1/r2)]-module. It is a free

module because it is projective and N(r1/r2) is a p-group. Now

P (r1)
τ

/
I(r1/r2)P

(r1)
τ =

(
P (r1)
τ

)
N(r1/r2)

.

Since P
(r1)
τ is free over Zp[N(r1/r2)] and N(r1/r2) has order p3(r1-r2), we have

rankZp

(
P (r1)
τ

)
= p3(r1-r2) · rankZp

(
(P (r1)

τ )N(r1/r2)

)
.

The statement about ranks then follows immediately from corollary 7.2.6. �

Remark 7.3.7. Let ∆∞ = PGL2(Zp) and let Zp[[∆∞]] be the completed group algebra for
∆∞ over Zp. These are the inverse limits of the ∆r’s and their group algebras Zp[∆r] under
the maps mentioned above, respectively. For every τ ∈ IrrFp(∆0), there exists a projective

indecomposable Zp[[∆∞]]-module P
(∞)
τ which has Uτ as a quotient. It is uniquely determined

up to isomorphism. The existence follows from proposition 7.3.6 since we can define P
(∞)
τ

as the inverse limit of the P
(r)
τ ’s. One sees that this is a direct summand in Zp[[∆∞]], and

hence projective. The uniqueness can be deduced from the corresponding fact for the P
(r)
τ ’s.

One also sees that if Π∞ is a Sylow pro-p subgroup of ∆∞, then P
(∞)
τ is a free Zp[[Π∞]]-

module of rank 1 if n(τ) = 1 or n(τ) = p, and of rank 2 for all other τ ’s. Furthermore, any
finitely-generated projective Zp[[∆∞]] is isomorphic to a finite direct sum of those projective
indecomposable modules. ♦
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7.4 Extensions of (Z/pZ)× by a p-group.

Assume that p is odd. We will consider various groups ∆ which are extensions of (Z/pZ)×

by a finite p-group Π. Thus, Π will be a Sylow p-subgroup of ∆ and will be normal. We
then have an exact sequence

(7.4.a) 1 −→ Π −→ ∆ −→ Ω −→ 1 ,

where we will fix an isomorphism Ω → (Z/pZ)×. That isomorphism will be of the form ω̃,
where ω : Ω → Z×

p is an injective homomorphism. In illustration 8.3 of the next chapter,
we will take Ω = Gal(Q(µp)/Q) and ω will be the Teichmüller character. We will regard
the powers ωi, 0 ≤ i ≤ p − 2, as representations of Ω and also of ∆. The irreducible
representations of ∆ over a field of characteristic p factor through Ω and are all defined over
Fp. They are the powers τi = ω̃i, where 0 ≤ i ≤ p − 2. The trivial representation will be
denoted by τ0.

We will refer to such a group ∆ as a ΠΩ-group. It will be understood that Π is a p-group
and that Ω is as above. We have a well-defined homomorphism Ω → Aut(Π)/Inn(Π) in this
situation, where Inn(Π) is the subgroup of Aut(Π) consisting of inner automorphisms of Π.
This action is defined by conjugation. The group ∆ is isomorphic to a semidirect product;
one can identify Ω with a subgroup of ∆ (non-canonically) and one then has a homomorphism
Ω → Aut(Π). Such an identification will sometimes be helpful in the discussion. We then
have ∆ ∼= Π ⋊ Ω.

A. Relationship between IrrF(∆) and IrrF(Π). The homomorphism Ω → Aut(Π)/Inn(Π)
defines an action of Ω on the set IrrF(Π). Each orbit for that action has length dividing
p − 1. If σ ∈ IrrF(∆), then σ|Π is isomorphic to a direct sum of irreducible representations
of Π. Those summands constitute one orbit. Since Ω is cyclic, it follows that each summand
occurs in σ|Π with multiplicity 1. (See [Fei], proposition 9.12.) Their degrees are equal and
must divide |Π|. If π is any one of these irreducible constituents in σ|Π, then n(π) = pa,
where a ≥ 0, and n(σ) = dpa, where d is the length of the corresponding orbit. Suppose
that N is the unique subgroup of ∆ containing Π and of index d. Then there exists an
irreducible representation η of N such that η|Π ∼= π and Ind∆

N(η) ∼= σ. (See proposition 9.11
in [Fei].) Furthermore, the irreducible constituents of Ind∆

Π(π) are the twists σ ⊗ ωj, where
0 ≤ j < p-1

d
. They are not isomorphic because their determinants are distinct.

There is a natural action of Ω on IrrF(Π). Let Ω̂ denote the character group of Ω, which

is just IrrQp(Ω) and consists of the distinct powers of ω. There is also a natural action of Ω̂

on IrrF(∆) which is defined as follows. If α ∈ Ω̂, then α defines a permutation of IrrF(∆)
by sending any σ to σ⊗ α. To summarize the remarks in the previous paragraph, there is a
one-to-one correspondence between the set of Ω-orbits in IrrF(Π) and the set of Ω̂-orbits in
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IrrF(∆). The correspondence is defined by induction in one direction, and restriction in the
other, as described above. In this correspondence, the product of the orbit lengths is p− 1.

B. Π-induced irreducible representations. We will be especially interested in the case
where n(σ) = (p − 1)pa. Then σ ∼= Ind∆

Π(π), where π is an irreducible representation of Π
and n(π) = pa. This occurs precisely when the orbit of π under the action of Ω has length
p− 1. We will then say that σ is “Π-induced.” Thus, we have a one-to-one correspondence
between the Ω-orbits in IrrF(Π) of length p − 1 and the Π-induced elements σ in IrrF(∆).
One property that such σ’s have is that

(7.4.b) σ̃ss ∼=
( p−2⊕

i=0

τi

)pa

.

The reason is that π̃ss ∼= (π̃0)
pa

, where π0 is the trivial representation of Π, and Ind∆
Π(π0)

is just the regular representation of Ω, regarded as a representation of ∆. The congruence
relations for Π-induced irreducible representations take a rather simple form. Suppose that
X is a quasi-projective Zp[∆]-module. If σ ∈ IrrF(∆) is Π-induced, we then have

(7.4.c) λ(X, σ) =
n(σ)

p− 1

( p−2∑

i=0

λ(X,ωi)

)
.

Alternatively, one can also deduce (7.4.c) from the equalities

λ(X, σ) = λ(X, π),

p-2∑

i=0

λ(X,ωi) = λ(X, π0)

which follow from Frobenius Reciprocity. (See remark 2.1.8.) One then uses the equality
λ(X, π) = n(π)λ(X, π0), a consequence of the fact that X ⊗Zp Qp is a free Qp[Π]-module.

Of course, it may be that ∆ has many irreducible representations which are not Π-
induced. Some of the examples below will have no Π-induced irreducible representations;
others will have many. Suppose that Z is the center of Π. Then Ω acts on the abelian group
Z and on the dual of that group. Suppose that ζ is a character of Z whose orbit under the
action of Ω has length p− 1. Such ζ’s exist if and only if the map Ω → Aut(Z) is injective.
If π is any irreducible constituent of IndΠ

Z(ζ), then Z acts on the underlying space of π by ζ.
That is, π has ζ as its central character. The orbit of π under the action of Ω also has length
p− 1. It follows that if σ is any irreducible constituent in Ind∆

Z (ζ), then σ is Π-induced.

We remark that if ∆ has at least one Π-induced representation σ, then ∆ has just one
block. This is so because σ̃ss has all the elements of Irrf(∆) as its constituents.
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C. The indecomposable projective modules. Before discussing the examples, we make
some remarks about the indecomposable projective Zp[∆]-modules Pτi . These are defined
for 0 ≤ i ≤ p− 2. Their direct sum is a free Zp[∆]-module of rank 1. Each of the Pτi ’s is a
free Zp[Π]-module of rank 1. Furthermore, one has

(7.4.d) Pτi
∼= Pτ0 ⊗ ωi

as Zp[∆]-modules. Here, when we write P ⊗ ωi, where P is a Zp[∆]-module, we mean
P ⊗Zp Lωi , where Lωi is a free Zp-module of rank 1 on which ∆ acts by ωi. Thus, Pτi is just
a twist of Pτ0 . The justification is simply to observe that the Zp[∆]-module on the right side
of (7.4.d) has Uτi as a quotient module and that it is projective and indecomposable. The
last fact follows by noting that it is a free Zp[Π]-module of rank 1.

The Pτi ’s have the following description which was suggested by R. Pollack. For each i,
the idempotent eωi ∈ Zp[Ω] can be regarded as an element of Zp[∆]. The left ideal Zp[∆]eωi

of the ring Zp[∆] is a direct summand and hence is a projective Zp[∆]-module. The maximal
semisimple quotient of Zp[∆] is isomorphic to the direct sum of all the Uτj ’s, each with
multiplicity 1. The maximal semisimple quotient of Zp[∆]eωi is then seen to be Uτi . Thus,
Zp[∆]eωi is indeed isomorphic to the projective hull of Uτi , which is Pτi . In effect, Pτi can be
described as Ind∆

Ω (Lωi). The fact that the direct sum of these modules (over 0 ≤ i ≤ p− 2)
is a free Zp[∆]-module of rank 1 follows immediately from the fact that the direct sum of
the Lωi ’s is a free Zp[Ω]-module of rank 1.

D. Various families of ΠΩ-groups. We consider certain specific families of groups in the
rest of this chapter. We are primarily interested in these groups because they can arise as
Galois groups in a natural way.

The simplest examples occur when Π is cyclic. For each i, 0 ≤ i ≤ p− 2, we will let Γi
denote a group isomorphic to Zp on which Ω acts by the character ωi : Ω → Z×

p . We will use

a multiplicative notation for Γi. For any r ≥ 0, we let Π = Γi/Γ
pr+1

i . We then have an action
of Ω on Π. The corresponding semidirect product ∆ = Π ⋊ Ω has order (p − 1)pr+1 and is
a quotient of the profinite group Γi ⋊ Ω. The representation theory of ∆ is rather easy to
describe. Let di denote the order of the character ωi. Then, apart from the orbit of π0, the
orbits in IrrF(Π) for the action of Ω have length di. Thus, the irreducible representations of
∆ are either of degree 1 or of degree dip

a where a ≥ 0. If gcd(i, p−1) = 1, then di = p−1 and
every σ ∈ IrrF(∆) is either a power of ω or is Π-induced. Somewhat more general examples

occur if Π is a direct product of groups of the form Γi/Γ
pj

i for various i’s and j’s.

The next example gives generalizations of the profinite groups Γi and Γi ⋊ Ω. Suppose
that t =

(
t0, ..., tp-2

)
is a (p − 1)-tuple of nonnegative integers. Let g =

∑p−2
i=0 ti. We will

let Γt denote a free pro-p group on g generators with an action of Ω defined as follows. Fix
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the generating set G. Partition G as a disjoint union of p− 1 subsets Gi, each of cardinality
ti, where 0 ≤ i ≤ p − 2. If α ∈ Ω and x ∈ Gi, we define α(x) to be xω

i(α). Since Γt is
free, α extends uniquely to a continuous automorphism of Γt. This defines a homomorphism
Ω → Aut(Γt). The semidirect product Γt ⋊ Ω is a profinite ΠΩ-group, where one takes
Π = Γt.

D1. The groups Br. Next we consider the groups Br which occurred in section 7.3. We
let β be as defined there. The Sylow p-subgroup of Br is precisely ker(β). We will denote it
by Pr. It is normal and β gives an isomorphism Br/Pr ∼= (Z/pZ)×. (We use β instead of ω
here to avoid confusion in section 8.3. In fact, β and ω will not necessarily be the same.) We
will continue to use the notation from section 7.3. Thus, we let ∆r denote PGL2(Z/p

r+1Z)
for r ≥ 0. For r = 0, B0 is the group B discussed in section 7.2. See remark 7.2.2 for its
irreducible representations. The representation γ defined there will now be denoted by γ0.

Assume that r ≥ 1 from here on. The subgroup Ur of Br is normal and is cyclic of order
pr+1. The quotient group Br/Ur is cyclic of order (p−1)pr and acts faithfully on Ur. All the
characters of Ur of order pr+1 are conjugate by this action. The number of such characters
is (p− 1)pr. Suppose that ur is one of those characters. Let

γr = IndBr
Ur

(ur) ,

a representation of Br of degree br = (p − 1)pr. If γ′ is any irreducible constituent of γr,
then γ′|Ur has ur and all of its conjugates as constituents. Hence γ′ has degree at least br. It
follows that γr is an irreducible representation of Br. It is also clear that if ρ is an irreducible
representation of Br such that ρ|Ur is faithful, then ρ ∼= γr. One sees easily that γr is faithful
and is therefore the unique irreducible representation of Br with that property. It will play
an important role for studying representations of other groups.

If 0 ≤ s < r, then we have a natural surjective homomorphism Br → Bs and so γs can be
considered as an irreducible representation of Br. The irreducible representations of Br are
of the following types: the one-dimension representations ψ corresponding to the characters
of Br/Ur, the representations of the form γs⊗ψ, where 0 ≤ s ≤ r and ψ is one-dimensional.
The second type have degree divisible by p − 1 and hence are Pr-induced. Furthermore, If
ψ and ψ′ are one-dimensional, then γs⊗ψ ∼= γs⊗ψ′ if and only if ψ′ψ-1 factors through Bs.
The above remarks are easily verified. They also follow from a standard theorem about the
irreducible representations of a semidirect product. (See [Se77], chapter 8.2.) In this case,
Br is the semidirect product of Tr and Ur, where Tr is the subgroup of ∆r represented by
diagonal matrices.

Apart from γr, the kernels of all of the other irreducible representations of Br contain
Ur[p], the unique subgroup of Ur of order p. This subgroup Ur[p] is the center of Pr. It will
be useful to define Ωr to be the unique subgroup of Tr of order p−1. It is the group denoted
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by Cr in the proof of proposition 7.3.1 and is identified with Br/Pr in the obvious way. One
sees easily that Ωr acts on Ur, and hence on Ur[p], by the character β.

D2. Some groups containing Br. Fix an r ≥ 1. Assume that H is a subgroup of ∆r which
contains Br. We will also assume that the image of H in ∆0 is precisely B0. Let Π denote
the inverse image of U0, which is the Sylow p-subgroup of H. Thus, Π is a normal subgroup
and H/Π ∼= Ω. It is not difficult to show that any such subgroup H is the inverse image of
Bs under the map ∆r → ∆s, where 0 ≤ s ≤ r. The kernel of that map is precisely the image
of I + ps+1M2(Zp) in ∆r, where we let M2(Zp) denote the ring of 2× 2 matrices over Zp and
I denotes its identity element.

One of the main examples that we have in mind is the group Hr defined in the proof of
proposition 7.3.1, which corresponds to s = 0. Another example corresponds to s = 1, the
inverse image of B1 under the map ∆r → ∆1. We denote that group by H ′

r. Both groups
will occur naturally as Galois groups in section 8.3. In particular, see the remarks following
proposition 8.3.7. We denote their Sylow p-subgroups by Πr and Π′

r, respectively.
The following result singles out a special class of irreducible representations of any H

satisfying the above assumptions. The notation in the statement and proof comes from the
preceding discussion of the irreducible representations of Br. The properties of γr play an
important role, especially the facts that n(γr) = (p − 1)pr and that this is equal to br, the
degree of the elements of Br. The results concern irreducible representations ξ of H which
are r-primitive. This just means that ξ does not factor through the image of H under the
map ∆r → ∆r-1.

Proposition 7.4.1. Suppose that ξ is an irreducible representation of H. Then we have the
inequality n(ξ) ≤ (p− 1)pr. The following statements are equivalent:

(i) n(ξ) = (p− 1)pr, (ii) ξ is faithful, (iii) ξ|Br
∼= γr .

If ξ satisfies any of these statements, then ξ is r-primitive and Π-induced.

If σ is any r-primitive, irreducible representation of ∆r, then σ|H has exactly one irre-
ducible constituent ξ which has degree (p−1)pr. The multiplicity of ξ in σ|H is 1. If σ ∈ Br,
then σ|H is irreducible.

If ξ is any r-primitive, irreducible representation of H, then ξ is a constituent in σ|H
for some r-primitive, irreducible representation σ of ∆r. If ξ has degree (p− 1)pr, then the
number of such σ’s is at most [∆r : H].

Proof. Suppose that ξ is an irreducible representation of H. If ξ|Br has a constituent ψ of
degree 1, then ξ is a constituent in IndHBr

(ψ). We would then have n(ξ) ≤ pr since [H : Br]
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divides [Hr : Br] = pr. On the other hand, if none of the irreducible constituents in ξ|Br has
degree 1, then their degrees are divisible by p− 1 and hence the same is true for the degree
of ξ. Since n(ξ) divides |H|, we therefore have n(ξ) = (p − 1)pt for some t ≥ 0. Now any
such ξ will be a constituent in σ|H for some σ ∈ IrrF(∆r). One can just take σ to be any
irreducible constituent in Ind∆r

H (ξ). It follows that

n(ξ) ≤ n(σ) ≤ ar = (p+ 1)pr .

One deduces that t ≤ r. In both cases, we have n(ξ) ≤ (p− 1)pr.
The equivalence of (i) and (iii) is obvious. If (ii) is true, then ξ|Br is also faithful

and must therefore contains γr as an irreducible constituent. Otherwise, we would have
Ur[p] ⊆ ker(ξ). We’ve shown that n(ξ) ≤ (p − 1)pr. Since n(γr) = (p − 1)pr too, we
must have ξ|Br

∼= γr. Therefore, (ii) implies (iii). For the opposite implication, we assume
temporarily that H = Hr, which slightly simplifies the argument. Assume that ξ satisfies
(iii). Then ξ|Br is faithful. Thus, so are ξ|Ωr and ξ|Ur . Since all subgroups of Hr of order
prime to p are conjugate to a subgroup of Ωr, it follows that ker(ξ) is a p-group. Thus,
ker(ξ) is a normal subgroup of Πr. Let Zr be the center of the p-group Πr. If ker(ξ) is
nontrivial, then so is ker(ξ) ∩ Zr. However, we will next show that Zr = Ur[p]. Since ker(ξ)
can’t contain Ur[p], it follows that ker(ξ) is indeed trivial, and so (ii) is true. Also, it is then
clear that ξ is r-primitive. Its degree is divisible by p− 1 and so ξ is also Π-induced.

Let Ns be the kernel of the map ∆r → ∆s for 0 ≤ s ≤ r − 1. In fact, Ns is the image
of I + ps+1M2(Zp) in ∆r, as previously mentioned. Then N0 is a p-group and it is easy to
verify that the center of N0 is precisely Nr-1 and consists of the elements of order dividing p
in N0. (Note that for p = 3, ∆r contains elements of order p which are not in N0.) We have
N0 ⊂ Πr and the index is p. There is a well-defined action (by conjugation) of Πr/N0 on the
3-dimensional Fp-vector space Nr-1. Now Πr/N0 can be identified with the image of Πr in
B0, which is just the subgroup U0 of B0. One verifies easily that NU0

r-1 = Ur[p]. Thus, Ur[p] is
indeed the center of Πr.

For the rest, we need some observations about σ|Br , where σ is an r-primitive, irreducible
representation of ∆r. The restriction σ|Ur must be faithful. To see this, consider the normal
subgroup Nr-1 of ∆r defined above. It is a vector space over Fp of dimension 3. The action
of ∆r (by conjugation) on Nr-1 factors through ∆0 and coincides with τ3,1 (in the notation
from part B of section 7.2). Thus ∆r acts irreducibly on Nr-1 and hence there are no proper
subgroups of Nr-1 which are normal in ∆r. In particular, since ker(σ) doesn’t contain Nr-1,
σ|Nr-1 is faithful. The unique subgroup Ur[p] of Ur of order p is contained in Nr-1. Therefore,
σ|Ur is indeed faithful.

It follows that σ|Br must contain γr as a constituent. Otherwise, ker(σ) would contain
Ur[p]. Furthermore, σ|Br has degree n(σ) = ar, br, or cr (as defined in section 7.3) and γr
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has degree br. We have the inequalities

(7.4.e) br < cr < ar ≤ 2br .

Also, if σ ∈ Ar, then σ|Br contains two 1-dimensional representations of Br. It follows that
the multiplicity 〈σ|Br , γr〉 must be 1. (For p ≥ 5, this can be seen more easily because the
last inequality in (7.4.e) is then strict.) If σ ∈ Br, then n(σ) = n(γr) and so we obviously
have σ|Br

∼= γr.
Still assuming that σ is an r-primitive element of IrrF(∆), consider σ|H . Exactly one

irreducible constituent ξ in σ|H will have the property that ξ|Br has γr as an irreducible
constituent. However, since n(ξ) ≤ n(γr), it is clear that we have ξ|Br

∼= γr, that ξ is the
unique constituent in σ|H satisfying (iii), or the equivalent statement (i). That ξ will be
referred to as the “γr-constituent” of σ|H in the rest of this argument. It has multiplicity 1.
If σ ∈ Br, then we clearly have σ|H ∼= ξ.

Now suppose that ξ is any irreducible representation of H. Let σ be an irreducible con-
stituent in Ind∆r

H (ξ). Then Frobenius Reciprocity implies that ξ is an irreducible constituent
in σ|H . If ξ is r-primitive, then σ will clearly be r-primitive too. If n(ξ) = (p− 1)pr, then ξ
must be the γr-constituent in σ|H . We can now show that ξ satisfies (ii). For it is clear that
ξ is the restriction to H of the γr-constituent of σ|Hr , which we’ve shown is faithful. The
restriction ξ to H will also be faithful.

Finally, if we assume that n(ξ) = br, then the degree of Ind∆r
H (ξ) is [∆r : H]br. Each

irreducible constituent is r-primitive and hence has degree at least br. Therefore, the number
of such constituents is at most [∆r : H] as stated. �

Remark 7.4.2. If H = Hr and ξ satisfies n(ξ) = br, then each irreducible constituent in
Ind∆r

H (ξ) will be r-primitive and hence of degree ar, br, or cr. The triplet (x, y, z) giving the
number of constituents of each type will satisfy the equation

arx+ bry + crz = (p+ 1)br

and one finds that there are just the following possible triplets:

(0, 0, p), (0, p+ 1, 0), (p− 1, 0, 0), ( 1
2
(p− 1), 1

2
(p+ 1), 0) .

We don’t know if all these possibilities occur. ♦

Remark 7.4.3. We will introduce another type of irreducible representation of H. Sup-
pose that ψ is a primitive character of Br/Ur and that H is a subgroup of ∆r of the kind
considered in proposition 7.4.1. Let ξH,ψ denote IndHBr

(ψ). Since Ind∆r
H (ξH,ψ) is isomorphic

to the irreducible representation σ = Ind∆r
Br

(ψ) of ∆r, it follows that ξH,ψ is an irreducible
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representation of H. It is an irreducible constituent in σ|H which must be different than
the faithful irreducible constituent ξ described in proposition 7.4.1. This is simply because
n(ξH,ψ) = [H : Br], which is a power of p. Also, note that ξH,ψ|Br has ψ as a constituent.
This implies that ξH,ψ is r-primitive.

Now ψ−1 is also a constituent in σ|Br and hence ξH,ψ-1 is another irreducible constituent
in σ|H . Both ξH,ψ and ξH,ψ-1 have degree equal to [H : Br], which is a power of p, but they
are not isomorphic. To see this, note that ψ = βjθ, where 0 ≤ j ≤ p− 2 and θ is a character
of Br/Ur of order pr. Here β is the basic character of B0 defined in section 7.2, viewed as a
character of Br and also of H. If IndHBr

(ψ) ∼= IndHBr
(ψ-1), then IndHBr

(β2jθ) ∼= IndHBr
(θ-1). We

would then have Ind∆r
Br

(β2jθ) ∼= Ind∆r
Br

(θ-1). Such an isomorphism can only occur if β2jθ and
θ-1 are either equal or inverses of each other, neither of which is possible since p is odd and
r ≥ 1.

It follows that ψ is the only 1-dimensional constituent of ξH,ψ|Br . A similar statement is
true for ξH,ψ-1 . Furthermore, the 1-dimensional constituents in σ|Br are just ψ and ψ−1. All
other irreducible constituents in σ|Br have degree divisible by p− 1. Therefore, all the other
irreducible constituents in σ|H have degree divisible by p− 1. Those degrees must be of the
form (p− 1)ps and hence those constituents are certainly Π-induced. In contrast, since ξH,ψ
and ξH,ψ-1 are of degree ps for some s, their restrictions to Π must remain irreducible.

In summary, if [H : Br] = ps, then H has (p − 1)2pr-1 non-isomorphic, r-primitive
irreducible representations of degree ps. They all occur as constituents in σ|H for some
σ ∈ Ar. ♦

D3. The groups Hr and H ′
r. We continue to assume that r ≥ 1. The following result

about the irreducible constituents of σ|Hr , where σ is any r-primitive element in IrrF(∆r),
gives complete information about the degrees of the r-primitive, irreducible representations
of Hr.

Proposition 7.4.4. If σ ∈ Ar, then σ|Hr has three non-isomorphic irreducible constituents,
two of degree pr and one of degree (p−1)pr. If σ ∈ Br, then σ|Hr is irreducible. If σ ∈ Cr, then
σ|Hr has two irreducible constituents, one of degree (p− 1)pr, the other of degree (p− 1)pr-1.
All of the above irreducible representations of Hr are r-primitive. Up to isomorphism, there
are pr of degree (p− 1)pr, pr of degree (p− 1)pr-1, and (p− 1)2pr-1 of degree pr.

Proof. Remark 7.4.3 and proposition 7.4.1 show that if σ ∈ Ar, then σ|Hr indeed has at least
three irreducible constituents and their degrees are as stated. No others constituents exist
because the sum of those degrees is n(σ). They are indeed r-primitive. The irreducibility
of σ|Hr for σ ∈ Br is already in proposition 7.4.1. That representation is faithful and hence
certainly r-primitive. Suppose now that σ ∈ Cr. Let ξ be the faithful, irreducible constituent
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of σ|Hr . Then
σ|Hr

∼= ξ ⊕ ξ′

where n(ξ′) = cr − br = (p − 1)pr−1. Observe that if ξ′′ is an irreducible constituent of ξ′,
then Frobenius Reciprocity implies that σ is a constituent in Ind∆r

Hr
(ξ′′), a representation of

degree (p+ 1)n(ξ′′). Hence

n(ξ′′) ≥ n(σ)

p+ 1
= (p− 1)pr-1 = n(ξ′)

and therefore ξ′′ = ξ′. This proves the irreducibility of ξ′. We also see that σ ∼= Ind∆r
Hr

(ξ′).
Now since r ≥ 1, Hr contains Nr-1 = ker(∆r → ∆r-1). This subgroup of ∆r is normal and
hence, if Nr-1 ⊆ ker(ξ′), then Nr-1 is also contained in the kernel of Ind∆r

Hr
(ξ′) = σ. Since this

isn’t possible, ξ′ must indeed be r-primitive.
Concerning the numbers of irreducible, r-primitive representation of the three possible

degrees, the stated result follows in a straightforward way by using the fact that for any
finite group H, we have

∑
ξ n(ξ)2 = |H|, where ξ varies over IrrF(H). The ξ’s where

n(ξ) = (p− 1)pr are characterized as follows: they are the irreducible representations of Hr

which do not factor through Hr/Ur[p]. Hence, if ξ varies over just those representations, then∑
ξ n(ξ)2 = |Hr| ·

(
1− 1

p

)
. For the ξ’s such that n(ξ) = pr, they are of the form ξHr,ψ, where

ψ is a uniquely determined primitive character of (Z/pr+1Z)×. Their number is obviously as
stated. The remaining ξ’s all have degree n(ξ) = (p− 1)pr-1, and their number is then easily
determined since if ξ varies over all the r-primitive, irreducible representations of Hr, then∑

ξ n(ξ)2 = |Hr| − |Hr-1|. �

Remark 7.4.5. The above result shows the existence of pr irreducible representations ξ of
Hr of degree br = pr(p− 1). These are precisely the faithful, irreducible representations. We
don’t have an equally precise statement about H ′

r. However, there are also many faithful,
irreducible representations of H ′

r according to proposition 7.4.1. Every such ξ is a constituent
in σ|H′r for some irreducible, r-primitive representation σ of ∆r, and has multiplicity 1.
Furthermore, the number of such σ’s is at most [∆r : H ′

r] = (p + 1)p. It follows that the
number of isomorphism classes of such ξ’s is bounded below by c1p

r and above by c2p
r for

some positive constants c1, c2. We also have many irreducible representations of H ′
r of degree

[H ′
r : Br] = pr-1. The number of isomorphism classes has similar upper and lower bounds. ♦

Remark 7.4.6. The Hr’s form an inverse system under the obvious maps. We will let
H∞ denote the corresponding inverse limit. The surjectivity of those maps shows that all
of the Hr’s are quotients of the profinite groups H∞. Thus, proposition 7.4.4 gives us the
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degrees of the irreducible representations of H∞ with open kernel. Each such representation
is r-primitive for a certain value of r. Similarly, we will let H ′

∞ denote the inverse limit of
the H ′

r’s and consider representations of H ′
r for r ≥ 0 as representations of H ′

∞. Both of
those groups are examples of p-adic Lie groups of dimension 3. We also will consider B∞,
the inverse limit of the Br’s under the obvious maps. We can identify B∞ with a subgroup
of H ′

∞, which in turn is a subgroup of H∞. However, B∞ is a p-adic Lie group of dimension
2. We also define U∞ to be the inverse limit of the Ur’s, which is a normal subgroup of B∞.
It is clear that U∞ is isomorphic to the additive group of Zp and is a p-adic Lie group of
dimension 1. ♦

Remark 7.4.7. The proof of proposition 7.4.4 shows that if σ ∈ Cr, then σ ∼= Ind∆r
Hr

(ξ′),
where ξ′ is an irreducible representation of Hr of degree divisible by p− 1. Since ξ′ must be
Πr-induced, if one lets π′ be any irreducible constituent in ξ′|Πr , then σ ∼= Ind∆r

Πr
(π′). We

have n(π′) = pr-1. Furthermore, π̃′
ss ∼= π̃0

n(π′). Therefore, we have

σ ≈ Ind∆r
Πr

(π0)
pr-1

for any σ ∈ Cr. Here we use the notation from the proof of proposition 7.3.1. Consequently,
it follows that σ̃ss is the same for all such σ’s, a fact already used in the proof of proposition
7.3.1. ♦

Remark 7.4.8. Suppose that σ ∈ Br. We can use proposition 7.4.4 to determine det(σ),
which was left unresolved in remark 7.3.4. Of course, det(σ) is either σ0 or σ1. Thus, it is
clearly determined by the irreducible representation ξ = σ|Hr of Hr. The abelianization of
Hr is isomorphic to (Z/pZ)×. It follows that the determinant of any representation of Hr is
a power of β and is determined completely by the reduced representation. Thus, it suffices
to determine det(ξ̃). Since ξ is Πr-induced, we can apply (7.4.b). It follows that

det(ξ̃) =
(
ω̃

p-1
2

)pr

= ω̃
p-1
2

which has order 2. Consequently, det(σ) = σ1 for all σ ∈ Br. That assertion can also be
deduced easily just using the fact that σ|Br

∼= γr.
The same argument shows that if ξ is any irreducible representation of Hr of degree

divisible by p− 1, then det(ξ) is the quadratic character of Hr. ♦

Remark 7.4.9. Now we discuss the congruence relations for Hr. One can simply apply
(7.4.c) for the representations which have degree divisible by p−1. The remaining irreducible
representations are of the form ξHr,ψ and have degree pr. The congruence relations for those
irreducible representations are somewhat different, but also easily described. We refer to the
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very end of the proof of proposition 7.3.1. Let dr = pr−1
p−1

as in that proposition. Suppose

that ψ is a primitive character of Br/Ur and let j be such that ψ̃ = β̃j. Then we have

ξHr,ψ ≈
( p−2⊕

i=0

βi
)dr

⊕ βj .

As before, we fix an isomorphism ω : Ω → (Z/pZ)×. The map β will be a power ωb for some
b satisfying gcd(b, p− 1) = 1. Thus, if X is a quasi-projective Zp[Hr]-module, then one has
the congruence relation

(7.4.f) λ
(
X, ξHr ,ψ

)
= dr

p−2∑

i=0

λ(X,ωi) + λ(X,ωbj) .

Similar comments apply to the group H ′
r for all the irreducible representations which have

degree divisible by p− 1 and for the additional ones of the form ξH′r,ψ. ♦

8 Some arithmetic illustrations.

We will discuss a number of special cases illustrating the results of the previous chapters
under various sets of simplifying assumptions. We will not strive for generality. We always
assume that E has good, ordinary reduction at p. Our objective is mainly to describe the
behavior of λE(σ) for various families of irreducible Artin representations σ of GF . It will
be useful to note that λE(σ) really depends just on σ and E. That is, if ∆ = Gal(K/F ) and
if σ ∈ IrrF(∆) factors through ∆′ = Gal(K ′/F ), where K ′ is a subfield of K and is Galois
over F , then the multiplicities of σ in XE(K∞) ⊗Zp F and in XE(K ′

∞) ⊗Zp F are equal.
This follows immediately from proposition 4.3.1. A similar remark is true for the invariants
λΣ0
E (σ).

8.1 An illustration where Σ
0
is empty.

One of the principal examples that we have in mind arises in the following way. We assume
that p ≥ 5. Suppose that A is an elliptic curve defined over F (which might or might not
be related to E). We will use A just to generate interesting extensions of F . Assume that A
is non-CM and that p is a prime for which the representation ρA : GF −→ AutZp

(
Tp(A)

)
is

surjective. This will be true for all but finitely many primes p by a well-known theorem of
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Serre [Se72]. Therefore, for every r ≥ 0, Gal
(
F (A[pr+1])/F

) ∼= GL2(Z/p
r+1Z). We denote

the fixed field for the center of this group by Kr. Thus, we can identify Gal(Kr/F ) with
the group ∆r = PGL2(Z/p

r+1Z) studied in section 7.2 and 7.3. Since ρA is assumed to be
surjective, the Weil pairing implies that F (µp) ⊂ F (A[p]) and that [F (µp) : F ] = p− 1. Let
F ♯ = F (µp) ∩Kr. That field doesn’t depend on r. In fact, one sees easily that [F ♯ : F ] = 2

and that F ♯ = F (
√
d), where d = p if p ≡ 1 (mod 4) and d = −p if p ≡ 3 (mod 4). For any

r ≥ 0, F ♯ is the maximal abelian extension of F contained in Kr. Since p is odd, we have
Kr ∩ F∞ = F .

We will also consider the intermediate field Jr = KBr
r , which is a non-Galois extension

of F of degree pr(p+ 1). Now Br has a unique subgroup of index 2. The fixed field for that
subgroup is the quadratic extension J ♯r = JrF

♯ of Jr. The fields Jr form an increasing tower
and [Jr : Jr-1] = p for all r ≥ 1. A similar statement is true for the fields J ♯r .

Let jA denote the j-invariant of A. The simplest situation to consider is when jA is an
algebraic integer and p ≥ 5. Then, if v is a prime of F and v 6∈ Σp ∪ Σ∞, the ramification
index for v in Kr/F divides 24, and hence is prime to p. Thus, ΦKr/F is empty and we will
take Σ0 to be empty in applying proposition 3.2.1. We will assume that E is an elliptic curve
defined over F with good, ordinary reduction at the primes of F lying over p.

For each r ≥ 0, let Kr,∞, Jr,∞, and J ♯r,∞ denote the cyclotomic Zp-extensions of Kr, Jr,
and J ♯r , respectively. We will assume that SelE(K0,∞)[p] is finite. By proposition 4.2.5, it
then follows that the Selmer atoms SelE[p]⊗τ (F∞) are finite for all τ ∈ Irrf(∆0). That same
proposition then implies that SelE(Kr,∞)[p] is finite for any r ≥ 0. One could also see this
by using one of the results from [HaMa] since Kr/K0 is a p-extension. Consequently, the
Pontryagin dual XE(Kr,∞) is quasi-projective as a Zp[∆r]-module. Proposition 7.3.1 then
implies the following result.

Proposition 8.1.1. Assume that jA is an algebraic integer, that E has good ordinary
reduction at the primes of F lying above p, and that SelE(K0,∞)[p] is finite. Let

k = λE(σ0) + λE(σ1) + λE(σp,1) + λE(σp,2) + 2

p-3
2∑

j=1

λE(σp+1,j) .

Then λE(Kr,∞) = p3r+1k for r ≥ 0. For the other fields defined above, we have

λE(Jr,∞) = drk + λE(σ0) + λE(σp,2) ,

λE(J ♯r,∞) = 2drk + λE(σ0) + λE(σ1) + λE(σp,1) + λE(σp,2)

for all r ≥ 0, where dr = pr-1
p−1

. If σ ∈ Ar, then σ = Ind∆r
Br

(ψ), where ψ is a primitive

character of Br/Ur. We can choose ψ so that ψ̃ = β̃j, where 0 ≤ j ≤ p-1
2

. Then

λE(σ) = drk + λE(σp+1,j) .

122



for all r ≥ 0. For σ ∈ Cr, where r ≥ 1, we have λE(σ) = pr-1k.

Proof. To simplify notation, we define λE(φ) for all F -representations φ of ∆r by letting it
be additive for direct sums. Under the stated assumptions, XE(K0,∞) is a quasi-projective
Zp[∆0]-module, and hence V0 = XE(K0,∞) ⊗Zp Qp is free as a Qp[Π0]-module, where Π0 is
the Sylow p-subgroup of B0. This explains why λE(K0,∞) is divisible by p. That divisibility
and the value of k follow from the second isomorphism in (7.2.b), which gives λE(K0,∞) =
λE(ρ) = pλE(κ). Thus, we should take k = λE(κ). This is indeed the value stated above.
The relationship between λE(Kr,∞) and k follows from the Riemann-Hurwitz formula proved
in [HaMa]. It also follows from chapter 6 of this paper, by using the facts that [Kr : K] = p3r

and that Σ0 is empty. If σ ∈ Ar, or if r ≥ 1 and σ ∈ Cr, then the stated relationships between
λE(σ) and k follow immediately from proposition 7.3.1.

To prove the results concerning Jr,∞, note that the restriction map

SelE(Jr,∞)p −→ SelE(Kr,∞)Br
p

has finite kernel and cokernel. Therefore, the Zp-corank of SelE(Jr,∞)p is equal to the mul-
tiplicity of 1Br in the representation space Vr = XE(Kr,∞)⊗Zp Qp for Br. We can regard Vr
as a representation space for ∆r. If σ ∈ IrrFr(∆r), then the multiplicity of σ in Vr is λE(σ).
It follows that

corankZp

(
SelE(Jr,∞)p

)
=
∑

σ

〈σ|Br ,1Br〉 .

Now 〈σ|Br ,1Br〉 = 〈σ, Ind∆r
Br

(1Br)〉, which is equal to 1 if σ = σ
(j)
st for 1 ≤ j ≤ r and if

σ ∈ {σ0, σp,2}, but this multiplicity is equal to 0 for all other σ’s. In particular, we have
λE(J0,∞) = λE(σ0) + λE(σp,2) and

λE(Jr,∞) = λE(σ0) + λE(σp,2) +
r∑

j=1

λE(σ
(j)
st ) ,

from which the stated result follows easily. One uses the fact that σ
(j)
st ∈ Cj for j ≥ 1 together

with the formula already proven for those σ’s.

If B♯
r is the unique subgroup of Br of index 2, then

Ind∆r

B♯
r
(1B♯

r
) ∼= Ind∆r

Br
(1Br) ⊕

(
Ind∆r

Br
(1Br) ⊗ σ1

)
.

The formula for λE(J ♯r,∞) can then be derived exactly as above. One uses the facts that

σp,2 ⊗ σ1
∼= σp,1 and that σ

(j)
st ⊗ σ1

∼= σ
(j)
st for all j ≥ 1. �
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Remark 8.1.2. In principle, under the assumptions in the above proposition, one can
determine the invariants λE(σ) for all r and all irreducible representations σ of ∆r just
from the λE(σ)’s for the irreducible representations σ of ∆0. One can then determine the
invariants λE(M∞) for any extension M of F contained in any of the Kr’s. The above
proposition partially illustrates this principle. However, we also see that knowing λE(M∞)
for certain subfields M of K0 suffices to determine some of the λE(σ)’s. A theorem of Artin
states that every rational-valued character of a finite group ∆ can be expressed as a Q-linear
combination of characters for representations of the form Ind∆

H(1H), where H varies over
all subgroups (or even just cyclic subgroups) of ∆. (See theorem 17, chapter 9.2 in [Se77].)
Thus, one can determine λE(ρ) for all ρ’s with rational-valued character from the λE(M∞)’s.
In fact, it suffices to consider subfields M of K0. In particular, the useful quantities

λE(σp+1,0) = λE(σ0) + λE(σp,2), λE(σp+1, p-1
2

) = λE(σ1) + λE(σp,1)

associated to the induced representations Ind∆0
B0

(β0) and Ind∆0
B0

(β1) are determined by λE(J0,∞)

and λE(J ♯0,∞) under the assumptions of proposition 8.1.1. This is clear since dr = 0 for
r = 0. Of course, λE(σ0) = λE(F∞) and λE(σ1) = λE(F ♯

∞) − λE(F∞). Thus, the four
quantities λE(σ0), λE(σ1), λE(σp,1), and λE(σp,2) are determined by the four quantities

λE(F∞), λE(F ♯
∞), λE(J0,∞), and λE(J ♯0,∞), again under the assumptions of the above propo-

sition. Furthermore, k is obviously determined by λE(K0,∞). ♦

Remark 8.1.3. We make the assumptions in proposition 8.1.1. If k ≥ 1, then λE(σ) will be

positive for many σ’s, including all σ ∈ Ar and the Steinberg representations σ
(r)
st for r ≥ 1.

In fact, all those λ-invariants would then be unbounded as r → ∞. By definition, k ≥ 1 if
and only if λE(σ) ≥ 1 for at least one σ ∈ IrrF(∆0) with n(σ) 6= p− 1. A sufficient condition
for k ≥ 1 is that λE(σ) ≥ 1 for at least one σ ∈ IrrF(∆0) with n(σ) = p − 1. That follows
from proposition 7.2.1.

Suppose that we are in a situation where XE(K0,∞) is known to be projective, or at
least strictly quasi-projective. Then the ∆0-representation space V0 = XE(K0,∞) ⊗Zp Qp is
isomorphic to a direct sum of representations of the form Pτ ⊗Zp Qp, where τ ∈ Irrf(∆0). If
n(τ) 6= p, then Pτ ⊗Zp Qp is a direct sum of two irreducible representations σ and σ′ such
that one of them has dimension p− 1, and the other has dimension 1 or p+ 1. We referred
to such a pair σ, σ′ of irreducible representations of ∆0 as a “linked pair” in remark 7.2.8.
Remark 7.2.7 leads to the following conclusion under the above assumption about XE(K0,∞).

If λE(σ) ≥ 1 for some σ ∈ IrrF(∆0) of dimension p+ 1, then there are two non-isomorphic
representations σ′ ∈ IrrF(∆0) of dimension p−1 linked to σ, and λE(σ′) ≥ 1 for at least one
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of them. If λE(σ) ≥ 1 for some σ ∈ IrrF(∆0) of dimension p − 1, then there are two non-
isomorphic representations σ′ ∈ IrrF(∆0) of dimension 1 or p+1 linked to σ, and λE(σ′) ≥ 1
for at least one of them.

One gets a more precise result if λE(σ) ≥ 1 for either one of the two σ’s of dimension
1. Such a σ is linked to just one irreducible representation σ′, namely σ′ = σp-1,1 if σ = σ0

or σ′ = σp-1, p-1
2

if σ = σ1. This follows from proposition 7.2.4. We therefore obtain the

inequalities
λE(σp-1,1) ≥ λE(σ0), λE

(
σp-1, p-1

2

)
≥ λE(σ1)

under the assumptions in proposition 8.1.1. Not much more can be said. For example, if
it turned out that V0

∼= Pτ0 ⊗Zp Qp, then one would simply have λE(σ0) = λE(σp-1,1) = 1,
λE(σ) = 0 for all the other σ’s in IrrF(∆0), and k = 1. As another illustration, suppose that

V0
∼= (Pτ0 ⊗Zp Qp) ⊕ (Pτp-2,2 ⊗Zp Qp). Proposition 7.2.4 and the fact that ch(τp-2,2) = β̃1

imply that λE(σ0) = 1, λE(σp-1,1) = 2, λE(σp+1,1) = 1, and λE(σ) = 0 for all the other σ’s
in IrrF(∆0). Also, k = 3 in that example. ♦

The Qp-representation spaces Vr for ∆r occurring in the above proof are also determined
up to isomorphism by the λE(σ)’s for σ ∈ IrrF(∆0). However, we can make the following
considerably more precise statement under some mild additional assumptions about A,E and
p. We use the notation from proposition 7.3.6 for the indecomposable, projective Zp[∆r]-
modules.

Proposition 8.1.4. In addition to the assumptions in proposition 8.1.1 about A, E, and
p, assume that (i) A does not have supersingular or potentially supersingular reduction at p,
(ii) E(F ♯)[p] = 0, (iii) p is non-anomalous for E/F , and (iv) F (µp)/F is totally ramified at
all v ∈ Σp. For each τ ∈ IrrFp(∆0), let w0(τ) denote w(XE(K0,∞), τ). Then, for all r ≥ 0,

XE(Kr,∞) ∼=
⊕

τ

(
P (r)
τ

)w0(τ) .

as Zp[∆r]-modules. Thus, the isomorphism class of the Zp[∆r]-module XE(Kr,∞) is deter-
mined for all r by the weights w0(τ) for τ ∈ IrrFp(∆0).

Proof. The first point is that if v ∈ Σp, then assumption (i) implies that the residue field
for any prime of K0 lying above v coincides with the residue field for v itself. That is, the
corresponding decomposition and inertia subgroups of ∆0 coincide. To see this, note that
the decomposition subgroup of Gal(F (E[p])/F ) can be identified with a subgroup of the

group of triangular matrices
{(∗ ∗

0 ∗

)}
and the inertia subgroup of Gal(F (E[p])/F ) can
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be identified with a subgroup of
{(∗ ∗

0 1

)}
. Furthermore, the inertia subgroup has order

divisible by p − 1 because of assumption (iv). This is sufficient to imply that the images
of those two subgroups in ∆0 indeed coincide. It follows from assumption (iii) that p is
non-anomalous for E/K0, and therefore, by proposition 4.1.9, also for E/Kr for all r ≥ 1.

Secondly, note that E(K0)[p] is a representation space for ∆0 over Fp. SinceK0 is a proper
subfield of F (E[p]), the Fp-dimension of E(K0)[p] is at most 1. Hence if E(K0)[p] 6= 0, then
the action of ∆0 on E(K0)[p] is by a 1-dimensional character. Now ∆0 has two 1-dimensional
characters, the two characters which factor through Gal(F ♯/F ). Hence E(K0)[p] = E(F ♯)[p],
and this is trivial by assumption (ii). It then follows that E(Kr)[p] = 0 for all r ≥ 0, using
either proposition 4.1.3 or the fact that Gal(Kr/K0) is a p-group.

The hypotheses in Proposition 3.1.1 (or theorem 1) are satisfied. Hence XE(Kr,∞) is a

projective Zp[∆r]-module for all r ≥ 0. Therefore, XE(Kr,∞) is a direct sum of the P
(r)
τ ’s

and we must just show that the corresponding multiplicities are independent of r. This will
follow from proposition 7.3.6 if we show that

XE(Kr1,∞)
/
I(r1/r2)XE(Kr1,∞) ∼= XE(Kr2,∞)

for r1 ≥ r2 ≥ 0. This statement amounts to proving that the restriction map

SelE(Kr2,∞)p −→ SelE(Kr1,∞)
N(r1/r2)
p

is an isomorphism. However, the argument for this is quite standard. The kernel and cokernel
of the inflation-restriction map

H1(Kr2,∞, E[p∞]) −→ H1(Kr1,∞, E[p∞])N(r1/r2)

are both trivial because H0(Kr,∞, E[p∞]) = 0 for all r. It remains to show that the local
restriction maps are injective. For primes above p, this is so because p is non-anomalous
for E/Kr. For all other primes v ∈ Σ, the injectivity holds because the local degree for the
extension Kr1,∞/Kr2,∞ is prime to p. �

Remark 8.1.5. In terms of the notation in the above proposition, one sees easily that

k =
∑

τ

w0(τ)kτ

where kτ = 1 if n(τ) = 1 or p, kτ = 2 for all other τ ’s in IrrFp(∆0). ♦

Remark 8.1.6. Instead of considering the fields obtained from p-power division points on
an elliptic curve A, one gets other interesting examples from modular forms. As an example,
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consider the normalized cusp form f12 of weight 12 for SL2(Z). Then, for every prime p, there
is an associated representation ρp of GQ with values in GL2(Zp). If p 6∈ {2, 3, 5, 7, 23, 691},
then the image of ρp coincides with the set of matrices whose determinant is in (Z×

p )11. It
follows that the corresponding projective representation is surjective. That is, except for
the six listed primes, the field cut out by the representation ρp contains a tower of subfields
Kr such that Gal(Kr/Q) ∼= PGL2(Z/p

r+1Z). The only prime ramified in Kr/Q is p. Thus,
propositions 8.1.1 and 8.1.4 and the associated remarks apply exactly as stated. ♦

8.2 An illustration where Σ
0
is non-empty.

We continue discussing the situation in the previous illustration, but now we assume that
jA is not an algebraic integer. We still assume that p ≥ 5 and that ρA is surjective. Let

Σ0 = {v
∣∣ v ∤ p,∞ and ordv(jA) < 0 } .

Thus, A has multiplicative or potentially multiplicative reduction at all v ∈ Σ0. The field
Kr is unchanged if one replaces A by a quadratic twist over F . Thus, the field Kr actually
depends only on jA. By replacing A by a suitable quadratic twist, we can therefore simply
assume that A has split multiplicative reduction at all v ∈ Σ0. One then sees that the v-adic
completion of Kr,∞ is Fv(µp∞ , q

p-(r+1)

v ). Here qv is the Tate period for A over Fv. One has
ordp(jA) = −ordp(qv). Also, Fv(µp∞) = F∞,v(µp), an unramified, cyclic extension of F∞,v.
Let wv = [F∞,v(µp) : F∞,v], a divisor of p − 1. As in chapter 5, we let Gv = GF∞,v . Then
Mv = GF∞,v(µp) is a normal subgroup of Gv of index wv. The character ωv is a faithful
representation of Gv/Mv and has order wv.

Note that ΦKr/F ⊆ Σ0 for all r ≥ 0 and that equality holds if r is sufficiently large. We
make the simplifying assumption that ordv(jA) 6≡ 0 (mod p) for all v ∈ Σ0. This implies
that ΦKr/F = Σ0 for all r ≥ 0. Let ∆r,v denote the decomposition subgroup of ∆r for a
prime of Kr,∞ lying above v, which is determined up to conjugacy in ∆r. Identifying ∆r

with PGL2(Z/p
r+1Z), and choosing a prime above v suitably, we can identify ∆r,v with the

unique subgroup of Br containing Ur such that [∆r,v : Ur] = wv. Recall that Ur ∼= Z/pr+1Z.
Thus, the inertia subgroup of ∆r,v is identified with Ur. The corresponding quotient group
is Gal(F∞,v(µp)/F∞,v) and ωv can be regarded as a character of ∆r,v whose kernel is Ur.

As in section 8.1, we want to study the behavior of the λE(σ)’s. We always assume that
SelE(K0,∞)[p] is finite. The λΣ0

E (σ)’s then behave just as described in proposition 8.1.1 since
XΣ0
E (Kr,∞) will be quasi-projective as a Zp[∆r]-module. The corresponding value of k is now

(8.2.a) k = λΣ0
E (κ) = λE(κ) +

∑

v∈Σ0

gvδE,v(κ)
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where we define λΣ0
E (φ), λE(φ), and δE,v(φ) for an arbitrary F -representation φ of ∆r by

making it additive for direct sums. Alternatively, we have

k =
1

p
λΣ0
E (K0.∞) =

1

p

(
λE(K0,∞) +

∑

v∈Σ0

dimQp

(
Hv(K0,∞, E)

))

Proposition 5.1.1 can be used to determine the Qp-dimension of Hv(K0,∞, E).

Since we assume that p ≥ 5, the representations χ of Gv for which 〈ρE,v, χ〉 ≥ 1 factor
through a quotient group of Gv of order prime to p. Such a χ factors through ∆r,v if and
only if χ = ωjv for some integer j. This means that χ must be 1-dimensional, unramified,
and of order dividing wv. In the notation of section 5.2, this rules out the possibilities where
χ = ϕv is 2-dimensional or where χ = ϕv is 1-dimensional, but ramified. Thus, if E has
additive reduction at v, then Hv(Kr,∞, E) = 0. If E has non-split multiplicative reduction
at v, then ϕv = ωvεv, where εv is unramified and has order 2. Hence ϕv factors through ∆r,v

if and only if wv is even. If E has split multiplicative reduction at v, then ϕv = ωv which
does factor through ∆r,v.

Finally, we discuss the case where E has good reduction at v. There are then two
characters ϕv and ψv to consider, both unramified. We have ϕvψv = ωv and so if one of
the characters factors through ∆r,v, then so does the other. As discussed in section 5.2,
those characters are determined by the two roots of the polynomial cv(x) = x2 − avx + bv,
where bv = N(v), the cardinality of the residue field for v, and where 1 − av + bv is the
cardinality of the set of points on Ev over the residue field for v. It suffices to know the
roots of c̃v(x) ∈ Fp[x], the reduction of cv(x) modulo p. The two roots are in F×

p2 in general.

Now wv, the order of ωv, is just the order of b̃v in F×
p . These remarks show that ϕv factors

through ∆r,v if and only if some power of b̃v is a root of c̃v(x). Then the other root will also

be a power of b̃v. This is a stringent requirement. If p = 5, only 6 of the 20 polynomials
of the form x2 − ãx + b̃ in Fp[x], with b̃ 6= 0, have powers of b̃ as its roots. For p = 7, the
property is satisfied by 12 out of the 42 polynomials of that form.

In summary, we have proved the following result, where we implicitly make the assump-
tions described above. However, the assumption that ordv(jA) 6≡ 0 (mod p) is not needed.
Note also that the conditions for the nonvanishing of Hv(Kr,∞, E) don’t involve r. This is
so because we are assuming that p ≥ 5, and therefore a character χ for which 〈ρE,v, χ〉 ≥ 1
has order prime to p. If χ factors through ∆r,v, then χ also factors through ∆0,v.

Proposition 8.2.1. Assume that p ≥ 5. Suppose that v ∈ Σ0. Then Hv(Kr,∞, E) 6= 0 if
and only if one of the following statements is true:

(i) E has split multiplicative reduction at v,
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(ii) E has non-split multiplicative reduction at v and wv is even,

(iii) E has good reduction at v and the roots of c̃v(x) = x2 − ãvx+ b̃v are powers of b̃v.

In case (i), 〈ρE,v, χ〉 = 1 for χ = ωv. In case (ii), 〈ρE,v, χ〉 = 1 for χ = ωvεv, where εv is
the unramified character of order 2. In case (iii), one either has 〈ρE,v, χ〉 = 1 for exactly
two χ’s, namely χ = ϕv and χ = ψv if ϕv 6= ψv, or 〈ρE,v, χ〉 = 2 for exactly one χ, namely
χ = ϕv if ϕv = ψv. We have 〈ρE,v, χ〉 = 0 for all other χ’s.

If it turns out that Hv(Kr,∞, E) = 0 for all v ∈ Σ0 and if SelE(K0,∞)[p] is finite, then
XE(Kr,∞) is quasi-projective as a Zp[∆r]-module for all r ≥ 0. Consequently, all of the
congruence relations for the λE(σ)’s stated in proposition 8.1.1 would then hold. On the
other hand, if (i), (ii), or (iii) is satisfied, then proposition 3.3.1 implies that XE(Kr,∞)
is not quasi-projective as a Zp[∆]-module. In particular, XE(Kr,∞) 6= 0. Assuming that
SelE(K0,∞)[p] is finite, it would then follow that λE(σ) ≥ 1 for at least one σ. We will make
some more precise statements below.

In formula (5.2.a) for δΣ0
E (σ), the contribution for each v ∈ Σ0 involves terms of the form

gv〈σv, χ〉〈ρE,v, χ〉. Thus, we need only consider cases (i), (ii), (iii) and we may assume that
χ is such that 〈ρE,v, χ〉 ≥ 1. In cases (i) and (ii), there is one such χ. In case (iii), there will
be one or two such χ’s. The factor gv is an elementary invariant and depends only on v and
F . It remains to discuss 〈σv, χ〉 for σ ∈ IrrFr(∆r,v), which will be positive for some σ’s. The
assumption that ordv(jA) 6≡ 0 (mod p) for all v ∈ Σ0 will now be useful for simplifying the
discussion. The problem is purely group theoretic. The value of wv plays an important role.
Note that the χ’s now being considered are 1-dimensional and their kernel contains Ur.

For r = 0, the discussion in section 7.2 gives complete information. The decomposition
of σ|B0 is given there for all σ ∈ IrrF(∆0). One can then deduce the value of 〈σv, χ〉. For
that purpose, it is useful to note that γ|U0 is isomorphic to the direct sum of the nontrivial
characters of U0. Here γ denotes the irreducible (p− 1)-dimensional representation of B0. It
follows that χ is not a constituent in γ|∆0,v . One can then see that the value of 〈σv, χ〉 is 0,
1, or 2. The possibilities for 〈σv, χ〉 depend on n(σ) in the following way:

If n(σ) = p− 1, then 〈σv, χ〉 = 0. Thus, δE,v(σ) = 0.

If n(σ) = 1 or p, then 〈σv, χ〉 = 0 unless χ = χ-1. In cases (i) or (ii), χ = χ-1 if and only if
wv ≤ 2. In case (iii), there may be one or two χ’s, and the condition for χ = χ-1 for one or
both is a simple congruence condition on av and bv modulo p. We have the following results
in these cases. If χ = χ0, then 〈σv, χ〉 = 1 for either two or all four of those σ’s, depending
on whether (p-1)/wv is odd or even, respectively. If χ has order 2, then 〈σv, χ〉 = 1 for
either none or two of those σ’s, depending on whether (p-1)/wv is even or odd, respectively.
Otherwise, 〈σv, χ〉 = 0.
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Finally, if n(σ) = p + 1, then σ|B0 has two 1-dimensional constituents ψ and ψ-1, where
ψ 6= ψ-1. One can view those constituents as characters of the cyclic group B0/U0. The value
of 〈σv, χ〉 is determined by the restrictions of ψ and ψ-1 to the subgroup ∆0,v/U0 of order
wv. Either one of those restrictions might or might not turn out to be χ. Thus, the value of
〈σv, χ〉 is 0, 1,or 2 when n(σ) = p+ 1.

In all cases, for r = 0, the possible values of δE,v(σ) are 0, 1, 2, or 4. Furthermore, if
Hv(K0,∞) 6= 0, then δE,v(σ) ≥ 1 for at least one σ ∈ IrrF(∆0). For such a σ, we have
n(σ) 6= p− 1. However, in all cases, there exists such a σ with n(σ) = 1 or p+ 1.

If r ≥ 1 and σ ∈ IrrFr(∆r), then 〈σv, χ〉 can be determined if one knows the characters of
Br/Ur which occur in σ|Br , and their multiplicities. The number of such characters, counting
multiplicity, is 〈σ|Ur ,1Ur〉. For example, if σ ∈ Ar, then there are just two such characters,
ψ and ψ-1, where ψ is a primitive character of Br/Ur. The value of 〈σv, χ〉 just depends on
the restrictions of ψ and ψ-1 to the unique subgroup of Br/Ur of order wv. That restriction

is determined by ψ̃. Thus, 〈σv, χ〉 is 0, 1, or 2 if σ ∈ Ar.
Note that 〈σ|Ur ,1Ur〉 is closely related to the Artin conductor of σ, which we denote by

cσ. It is clear that σ is tamely ramified at v (since v ∤ p) and so, if we let Iv denote the inertia
subgroup of GFv , then the image of Iv in ∆r is conjugate to Ur (under our assumption that
ordv(jA) is not divisible by p) and we therefore have

ordv
(
cσ
)

= dimF

(
Wσ

)
− dimF

(
W Iv
σ

)
= n(σ) − 〈σ|Ur ,1Ur〉 .

In particular, if ordv
(
cσ
)

= n(σ), then δE,v(σ) = 0. For example, this remark applies to any
σ ∈ Br since we then have σ|Br

∼= γr. In contrast, if σ ∈ Ar, then ordv
(
cσ
)

= n(σ) − 2 and
δE,v(σ) can be positive. For σ ∈ Cr, the value of ordv

(
cσ) depends on σ.

In particular, if σ = σ
(r)
st and r ≥ 1, then it turns out that 〈σ|Ur ,1Ur〉 = (p − 1)p[(r-1)/2].

More precisely, every character of Br/Ur which factors through the unique quotient of order
(p− 1)p[(r-1)/2] occurs in σ|Br with multiplicity 1; no others characters occur. (See [Sil], the
last part of theorem 3.3, page 59. I thank Ryota Matsuura for this reference.) Thus, every
character χ of ∆r,v/Ur occurs in σv. To be precise, we have

(8.2.b) 〈σv, χ〉 =
p − 1

wv
· p[(r-1)/2]

which is unbounded as r → ∞. Thus, if (i), (ii), or (iii) in proposition 8.2.1 is satisfied for at

least one v ∈ Σ0, then δΣ0
E (σ

(r)
st ) = ap[(r-1)/2] for all r ≥ 1, where a is some positive constant.

It follows that λΣ0
E (σ

(r)
st ) is nonzero and hence that k ≥ 1. Therefore, λΣ0

E (σ
(r)
st ) ≥ pr-1. As a

consequence, we see that λE(σ
(r)
st ) → ∞ as r → ∞. Some other conclusions are given in the

following result.
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Proposition 8.2.2. Assume that jA is not an algebraic integer, that p ∤ ordv(jA) for all
v ∈ Σ0, that E has good ordinary reduction at the primes of F lying above p, and that
SelE(K0,∞)[p] is finite. Assume also that (i), (ii), or (iii) in proposition 8.2.1 is satisfied for
at least one v ∈ Σ0. Then λE(σ) ≥ 1 for at least one σ ∈ IrrF(∆0) such that n(σ) = p − 1.
If λΣ0

E (σ0) ≥ 1, then λE(σp-1,1) ≥ 1. If λΣ0

E (σ1) ≥ 1, then λE(σp-1, p-1
2

) ≥ 1. Furthermore, the

integer k defined in (8.2.a) is positive and we have

λE(σ) = drk +O(1)

for all r ≥ 1 and all σ ∈ Ar. Also, λE(σ
(r)
st ) = pr-1k +O(pr/2).

Proof. The Pontryagin dual XΣr
E (Kr,∞) of SelΣ0

E (Kr,∞) is a quasi-projective Zp[∆r]-module
for any r ≥ 0. Let

Vr = XE(Kr,∞)⊗Zp Qp, V Σ0
r = XΣ0

E (Kr,∞)⊗Zp Qp, UΣ0
r =

⊕

v∈Σ0

Ĥv(Kr,∞, E)⊗Zp Qp .

We then have the following isomorphisms of Qp-representation spaces of ∆r.

V Σ0
r

∼= Vr ⊕ UΣ0
r .

First consider r = 0. The assumption that (i), (ii), or (iii) holds for at least one v ∈ Σ0

implies that UΣ0
0 6= 0. As remarked above, it follows that UΣ0

0 has at least one constituent
σ with n(σ) = 1 or p. Choose such a σ. That σ is obviously a constituent in V Σ0

0 . Now
V Σ0

0 is a direct sum of representation spaces of the form Pτ ⊗Zp Qp, where τ ∈ Irrf(∆0).
If Pτ ⊗Zp Qp contains σ as a constituent, then it also contains a constituent σ′ such that
n(σ′) = p − 1. (See remark 7.2.7.) However, that σ′ is not a constituent in UΣ0

0 and hence
must be a constituent in V0. This means that λE(σ′) ≥ 1.

If λΣ0
E (σ0) ≥ 1, then Pτ0 ⊗Zp Qp is a direct summand in V Σ0

0 . Thus, the linked irreducible
representation σp-1,1 must also be a constituent in V Σ0

0 . (See (7.2.a.) Just as above, it follows
that λE(σp-1,1) ≥ 1. The same argument works if λΣ0

E (σ1) ≥ 1.
Now consider r ≥ 1. We have already observed that k ≥ 1 under the stated assumptions.

Thus, we have λΣ0
E (σ) = drk + O(1) as r → ∞ for any σ ∈ Ar according to proposition

7.3.1. However, for each v ∈ Σ0 and each such σ, gv is fixed and δE,v(σ) ≤ 4. Hence δΣ0
E (σ)

is bounded as σ varies over Ar for r ≥ 1. The final result follows from the equation

λE(σ
(r)
st ) = λΣ0

E (σ
(r)
st ) − δΣ0

E (σ
(r)
st ) = pr-1k − ap[(r-1)/2]

which was pointed out before. �
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Remark 8.2.3. We have made the simplifying assumption that ordv(jA) is not divisible by
p. Suppose that this assumption is not satisfied. Let pa be the highest power of p dividing
ordv(jA), where a ≥ 1. Then ∆r,v will be a somewhat smaller subgroup of Br. In fact, one
can show that ∆r,v is conjugate to a subgroup of Br. Choosing v suitably, we can assume
that ∆r,v ⊂ Br and we will then have ∆r,v ∩ Ur = Upa

r . This may have a possibly significant
effect on the value of δE,v(σ). ♦

8.3 An illustration where the σ̃ss’s have abelian image.

First of all, note that if ∆ is any finite group and if σ̃ss has an abelian image for all σ in
IrrF(∆), then ∆ must have a normal Sylow p-subgroup Π and ∆/Π must be abelian. Indeed,
one sees that each τ ∈ Irrf(∆) must have an abelian image of order prime to p and that
Π =

⋂
τ ker(τ) has the stated properties, where τ varies over Irrf(∆). The converse is also

clear. Furthermore, if Ω = ∆/Π, then Ω has order prime to p and every element of Irrf(∆)
factors through Ω. If τ ∈ Irrf(Ω), then there exists a unique σ ∈ IrrF(Ω) such that σ̃ ∼= τ .
Thus, if X is a quasi-projective Zp[∆]-module, then one can determine (in principle) all
the invariants λ(X, σ) for σ ∈ IrrF(∆) if one knows those invariants for all σ ∈ IrrF(Ω).
The special case where Ω ∼= (Z/pZ)× was discussed in some detail in section 7.4. We will
concentrate on that special case in this illustration. Also, it is sometimes convenient to
assume that Ω has been identified with a subgroup of ∆ in some way. We will then have a
certain homomorphism Ω → Aut(Π).

This situation is easily realized in the setting where ∆ is a Galois group. For simplicity,
we will take p to be any odd prime, F = Q, and L = Q(µp) throughout this illustration. We
can take K to be any finite p-extension of L which is Galois over Q. Then Ω = Gal(L/Q) is
cyclic of order p−1. We let ω : Ω → Z×

p be the Teichmüller character which is characterized
by the fact that ω̃ gives the action of Ω on µp. The elements of IrrF(Ω) are the powers
ωi, 0 ≤ i ≤ p− 2.

Many such K’s exist. We will first consider examples where only p is allowed to ramify.
Later, starting in part D, we will allow more primes to be ramified. One simple type of
example is the following. Class field theory shows that L has p+1

2
independent Zp-extensions

which are Galois over Q. One of them is the cyclotomic Zp-extension L∞ = Q(µp∞) of L. The

others are characterized as Galois extensions L
(i)
∞ of Q containing L such that Gal(L

(i)
∞/Q)

is isomorphic to a semi-direct product Γi ⋊ Ω, where Γi ∼= Zp and Ω acts on Γi by ωi. Such

a Zp-extension of L exists for every odd i, 1 ≤ i ≤ p− 2. We identify Γi with Gal(L
(i)
∞/L).

One can take K to be a layer in any one of the L
(i)
∞ ’s for odd i. Then K ∩ Q∞ = Q and

K/Q is ramified only at p and ∞.
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Since the only ramified prime in L/Q is p, it is clear that if l is a prime and l 6= p,
then l ∈ ΦK/Q if and only if l is ramified in K/Q. For the examples in the previous
paragraph, ΦK/Q is empty. We now consider the most general examples with that property.
Equivalently, we consider arbitrary finite Galois extensions K of Q such that L ⊆ K ⊂ M ,
where M denotes the maximal pro-p extension of L such that only the prime of L above p
is ramified. Thus, M contains the compositum of all Zp-extensions of L. Furthermore, if K ′

is a finite extension of L contained in M , then M also contains all Zp-extensions of K ′. It is
clear that M is Galois over Q and so Ω acts on Gal(M/L). (This action is only well-defined
modulo inner automorphisms.)

One can take K to be the fixed field for any open, normal subgroup of Gal(M/L) which
is Ω-invariant. If one wants to have K ∩Q∞ = Q, then one can equivalently make a certain
requirement about the action of Ω on the quotient Π = Π

/
Φ(Π), where Φ(Π) is the Frattini

subgroup of Π. The action of Ω on Π by conjugation is well-defined and we can regard Π as

a representation space over Fp for Ω. One sees easily that K ∩Q∞ = Q if and only if Π
Ω

is
trivial. The assumption that K ⊂M is needed for this equivalence.

A. Congruence relations. Under the assumption that ΦK/Q is empty, the congruence
relations take a simple form. One can even describe XE(K∞) as a Zp[∆]-module rather
concretely if one makes an additional mild assumption. Here, just as in section 3.5, we let

(8.3.a) ∆ = Gal(K∞/Q∞) and D = Gal(K/Q) .

We will avoid making the assumption that K ∩ Q∞ = Q, although this will be satisfied in
a number of our later examples. We just assume that L ⊆ K ⊂ M . Note that both of the
groups ∆ and D are extensions of Ω by a pro-p subgroup. We will usually use the letter σ
for an irreducible representation of either group, although sometimes we follow the notation
of section 3.5, using ρ for elements of IrrF(D) and σ for elements of IrrF(∆).

Suppose that E is an elliptic curve over Q with good, ordinary reduction at p. We will
assume that SelE(L∞)[p] is finite. Then all the invariants λE(σ) for σ ∈ IrrF(∆) can be
determined if one just knows the invariants λE(ωi) for 0 ≤ i ≤ p − 2. An especially simple
case is described in the next proposition.

Proposition 8.3.1. Assume that L ⊆ K ⊂M and that SelE(L∞)[p] is finite. Then XE(K∞)
is quasi-projective as a Zp[∆]-module. If σ ∈ IrrF(∆) is of degree divisible by p− 1, then

λE(σ) =
n(σ)

p− 1
· k , where k =

p-2∑

i=0

λE(ωi) = λE(L∞) .
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Furthermore, if one assumes that p is non-anomalous for E/Q and that E has no Q-isogeny
of degree p, then XE(K∞) is projective as a Zp[∆]-module. One has an isomorphism

XE(K∞) ∼= Pτ0 ⊗Zp XE(L∞)

of Zp[∆]-modules, where Pτ0 is the indecomposable projective Zp[∆]-module corresponding to
τ0 and XE(L∞) is regarded as a Zp[∆]-module via the natural homomorphism Zp[∆] → Zp[Ω].

If ρ ∈ IrrF(D), then we can still define λE(ρ) as explained in section 3.5. We have

(8.3.b) λE(ρ) =
n(ρ)

p− 1
· k

if n(ρ) is divisible by p− 1. Here k is just as in the above proposition. This formula follows
immediately from the proposition by using (3.5.a) and noticing that any σ ∈ Orbρ will also
have degree divisible by p− 1. The ratio n(ρ)/n(σ) is a power of p.

Proof. The first statement follows from proposition 3.2.1. One can take Σ0 to be empty.
The congruence relation then follows from the fact that if n(σ) is divisible by p− 1, then σ
is Π-induced. See formula (7.4.c). Actually, this congruence relation can be deduced just by
using the formula of Hachimori and Matsuno for p-extensions. This follows by using remarks
2.1.8 and 6.1.2.

For projectivity, note first that the residue field for the unique prime of L lying above
p is just Fp. Hence if p is non-anomalous for E/Q, then the same is true for E/L and
therefore even for E/K since K/L is a p-extension. Also, if E(K)[p] 6= 0, then E(L)[p] 6= 0.
Obviously, E(L)[p] is GQ-invariant. If E(L)[p] has order p, then that subgroup defines a
Q-isogeny of degree p. If E(L)[p] = E[p], then E[p] is an Fp-representation space for Ω. It
must be reducible and semi-simple. Hence E would then have two distinct Q-isogenies of
degree p. Therefore, the stated assumptions imply that the hypotheses in proposition 3.1.1
are satisfied. Hence, XE(K∞) is indeed projective as a Zp[∆]-module.

Thus, under the assumptions in the last part, and using (7.4.d), we have isomorphisms

XE(K∞) ∼=
p-2⊕

i=0

PwE(τi)
τi

∼= Pτ0 ⊗Zp X, where X ∼=
p-2⊕

i=0

(
Zp ⊗ ωi

)wE(τi)

of Zp[∆]-modules. Here we have written Zp ⊗ ωi for a free Zp-module of rank 1 on which
Ω acts by ωi. We view it as a Zp[∆]-module on which ∆ acts through the homomorphism
∆ → Ω. Finally, since ωi is a lifting of τi, we have wE(τi) = λE(ωi) for all i. Thus,
X ∼= XE(L∞) as Zp[Ω]-modules. The last statement follows from these remarks. �
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Remark 8.3.2. Instead of assuming that E has no Q-isogeny of degree p, it is sufficient to
assume that E ′(Q)[p] = 0 for every E ′ which is Q-isogenous to E. That assumption implies
that E(L)[p] = 0 and hence that E(K)[p] = 0. To see this, assume to the contrary that
E(L)[p] 6= 0. Now Ω acts semisimply on E(L)[p] and so E[p] must contain a subgroup Φ
of order p such that Φ ⊆ E(L) and Φ is Ω-invariant. Thus, Ω acts on Φ by an F×

p -valued
character ϕ. Since E has good, ordinary reduction at p, either ϕ or ωϕ-1 must be unramified
at p. Since p is totally ramified in L/Q, either ϕ is trivial or ϕ = ω. In the first case, we
would have E(Q)[p] 6= 0. In the second case, we would have E ′(Q)[p] 6= 0, where E ′ = E/Φ.
♦

B. Letting K and σ vary. We regard λE(σ) as a function of σ and study its behavior as σ
varies. We can let K vary since λE(σ) depends only on E and σ (assuming that p is fixed),
but not on K, as we remarked at the beginning of this chapter. Thus, we might simply
consider all the irreducible Artin representations σ of Gal(M/Q). However, describing all
those representations in a useful way would be difficult. Irreducible representations σ whose
degree is divisible by p − 1 seem to be quite ubiquitous. Such a representation is induced
from an irreducible Artin representation π of the normal, pro-p subgroup Gal(M/L), as
explained in part A of section 7.4. That is, if p − 1 divides n(σ), then σ is Π-induced,
where Π = Gal(M/L). Any irreducible Artin representation σ of Gal(M/Q) is at least
a constituent in such an induced representation, along with all the twists σ ⊗ ωi. To be
precise, there is a one-to-one correspondence between the set of Ω-orbits of irreducible Artin
representations of Gal(M/L) and the set of Ω̂-orbits of irreducible Artin representations of
Gal(M/Q). The Ω-orbits of length p − 1 correspond to the irreducible representations of
Gal(M/Q) which are induced from Gal(M/L).

Rather than considering all the irreducible Artin representations, we tend to restrict to
more manageable families. For example, choose a fixed tower K0, K1, ..., Kr, ... of subfields
of M such that Gal(Kr/Q) ∼= Hr for r ≥ 0. Note that Kr ∩ Q∞ = Q for each r in this
situation because the group Hr has no nontrivial quotient of order p. We can consider the
various irreducible representations of the Hr’s which were described in proposition 7.4.4 as
Artin representations of Gal(M/Q). Their degrees are unbounded. The inverse limit H∞ of
the Hr’s can be identified with an open subgroup of PGL2(Zp) of index p + 1. Its Sylow
pro-p subgroup Π∞ is normal, the corresponding quotient group is isomorphic to Ω, and the
action of Ω on the Frattini quotient Π∞ can be determined. These are ingredients in the
proof of the following proposition. The assumption that p is regular is important in that it
implies that Gal(M/L) is a free pro-p group, a result which is proved in [MoNg], and that
fact allows us to easily define homomorphisms of Gal(M/L) onto Π∞. Carefully taking into
account the action of Ω on Π∞, it turns out that we can define homomorphisms which can
be extended to Gal(M/Q). The argument will be presented in [Gr09a]. We state the result
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here because it shows that many towers of extensions Kr of the above type exist, at least
when p is a regular prime. In general, we do not know if such a tower exists if p is irregular.

Proposition 8.3.3. Suppose that p is an odd, regular prime. Then there exist an uncountable
family of surjective homomorphisms f : Gal(M/Q) → H∞, all with distinct kernels.

Remark 8.3.4. Each such homomorphism f would determine a tower of fields K0, K1, ...
such that Gal(Kr/Q) ∼= Hr and

⋃
rKr = Mker(f). That subfield of M is an extension of L

with Galois group isomorphic to Π∞ and an extension of Q with Galois group isomorphic to
H∞. Two different f ’s correspond to distinct subfields of M . In fact, since the Lie algebra
of the p-adic Lie group Π∞ is sl2(Qp), which is simple, the intersection of any two of those
subfields will just be a finite extension of L. Hence the fields Kr in the corresponding towers
must differ for sufficiently large r. ♦

Another quite different approach is to consider Artin representations of a given degree. It
is known that finite p-groups are monomial groups. That is, if π ∈ IrrF(Π), then there exists
a subgroup Π′ of Π and a 1-dimensional representation π′ of Π′ such that π ∼= IndΠ

Π′(π
′).

Thus, if σ is any irreducible representation of ∆ which is Π-induced, then σ is induced from
a 1-dimensional representation of some subgroup of Π. The index is determined by n(σ).
Even if σ is not Π-induced, the direct sum of all the distinct (non-isomorphic) twists of σ by
powers of ω will be isomorphic to Ind∆

Π′(π
′) for some choice of Π′ and 1-dimensional π′.

To simplify the discussion, we modify the notation for induced representations. Suppose
that L′ is a finite extension of L contained in M . If π′ is any representation of Gal(M/L′),
then we let IndQ

L′(π
′) denote the representation of Gal(M/Q) induced from π′. Assuming that

n(π′) = 1, this induced representation has degree [L′ : Q] = (p − 1)pa, where pa = [L′ : L].
We will use the notation L′ for the maximal abelian extension of L′ contained in M . We
continue to assume for simplicity that p is a regular prime. Then Gal(L′/L′) is a free Zp-
module of rank p-1

2
pa+1. Thus, L′ is just the compositum of all Zp-extensions of L′. Let CL′

denote the group of Artin characters of Gal(L′/L′), which is simply the Pontryagin dual of
Gal(L′/L′). Thus, CL′ is a cofree Zp-module of that same corank. If one fixes the field L′, then
one obtains a family of Artin representations of Gal(M/Q) parametrized by CL′ , all of degree
(p− 1)pa. Namely, if π′ ∈ CL′ , then one obtains the representation IndQ

L′(π
′). One can view

this from a “deformation theory” point of view. Namely, consider the completed group ring
RL′ = Zp[[Gal(L′/L′)]] (which is isomorphic to a formal power series ring over Zp in p-1

2
pa+1

variables). One has the natural injective homomorphism κL′ : Gal(L′/L′) → GL1(RL′). One
then obtains the induced representation IndQ

L′(κL′) : Gal(L′/Q) → GLn(RL′), where n =
(p− 1)pa. Now every π′ ∈ CL′ can be extended to a continuous, Zp-algebra homomorphism
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from RL′ to the ring of integers of F , where F is generated over Qp by the values of the

character π′. We refer to this homomorphism as “specialization” at π′. Then IndQ

L′(π
′) is just

the corresponding “specialization” of IndQ

L′(κL′). Of course, there will usually be repetitions
since different π′’s can have isomorphic specializations.

We believe that “almost all” of these specializations will be irreducible. To explain what
this means, let Pπ′ denote the kernel of the specialization homomorphism corresponding to
some π′ in CL′ . Of course, Pπ′ is a prime ideal of RL′ . If I ′ is an ideal in RL′ , then we say
that π′ vanishes on I ′ if I ′ ⊆ Pπ′ . With this terminology, we believe that there should exist
a nonzero ideal I ′ in RL′ with the following property:

IndQ

L′(π
′) is irreducible for all π′ which do not vanish on I ′.

The following proposition implies this assertion if we make the extra assumption that L′/Q
is Galois.

Proposition 8.3.5. Suppose that J is a finite, totally complex, Galois extension of Q.
Let J denote the compositum of all Zp-extensions of J and let RJ = Zp[[J /J)]]. Let CJ
denote the Pontryagin dual of Gal(J /J). Then there exists a nonzero ideal I of RJ with the
following property: If φ ∈ CJ and IndQ

J (φ) is reducible, then φ vanishes on I.

Proof. Let G = Gal(J/Q) and let N = Gal(J /J), a normal subgroup of G = Gal(J /Q).
Let n = |G|. Thus, G acts on CJ by conjugation and each orbit has length dividing n. The
representation IndQ

J (φ) has degree n. Suppose that IndQ
J (φ) is reducible and that ρ is one

of its irreducible constituents. Then n(ρ) < n. Now φ and all of its conjugates under the
action of G are constituents in ρ|N . Consequently, the G-orbit of φ has length < n. Thus,
the stabilizer of φ is nontrivial. Let H be a nontrivial cyclic subgroup of that stabilizer. The
character φ of N factors through the maximal quotient NH on which H acts trivially. There
is a ring homomorphism

RJ = Zp[[N ]] −→ Zp[[NH ]]

whose kernel IH is the ideal generated by elements g − idN , where g varies over a set of
topological generators for the kernel of the homomorphism N → NH . We will show that
H acts nontrivially on N . That fact implies that IH is a nonzero ideal. It is clear that φ
vanishes on IH .

Consider N ⊗Zp Qp as a representation space for G. Its dimension is bounded below by
1
2
[J : Q]+1; Leopoldt’s conjecture for J and p asserts that equality holds. However, by class

field theory, one can at least say that N ⊗Zp Qp has IndGGη
(ε) as a direct summand. Here η

is an archimedean prime of J , Gη is the corresponding decomposition subgroup of G, and ε
is the nontrivial character of Gη. It suffices to show that any nontrivial element h of G acts
nontrivially on IndGGη

(ε). This is rather easy. For if h acts trivially, then h induces a trivial
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permutation of the left coset space G/Gη. Hence, h ∈ Gη. However, h then acts by ε(h) on
some subspace of IndGGη

(ε), and hence acts nontrivially on that subspace.
Let I =

⋂
H IH , where H varies over all nontrivial cyclic subgroups of G. Then I is a

nonzero ideal of RJ and has the property stated in the proposition. �

C. Some specific examples. We return now to Selmer groups. We continue to take
L = Q(µp) throughout this illustration. Then L∞ = Q(µp∞). As we pointed out at the end
of chapter 4, it is possible to verify the finiteness of SelE(L∞)[p] for specific elliptic curves
and primes p by calculating the coefficients in a certain expansion of the p-adic L-functions
Lp(s, E, ω

i) associated to E and the characters ωi. Such calculations were done many years
ago by T. McCabe and more recently by R. Pollack. Actually, the first such calculations can
be found in [MaSw]. All of those calculations deal with the analytic λ- and µ-invariants,
which we will denote by λanalE (ωi) and µanalE (ωi). The calculations verify that µanalE (ωi) = 0
for all i in the cases where that is expected to be so. The value of the λanalE (ωi)’s is also
determined. If the map GQ → Aut

(
Tp(E)

)
is surjective, then one can use theorem 17.4

in [Kat] to conclude that SelE(L∞)[p] is indeed finite. But one only gets the inequality
λE(ωi) ≤ λanalE (ωi) for the λ-invariants. Kato’s theorem establishes that inequality even
without the assumption of surjectivity. Recent work of Skinner and Urban should give the
opposite inequality under rather general assumptions.

Our main example will concern the three elliptic curves of conductor 11 and various
choices of the prime p. Those curves are related by isogenies of degree 5 and so the λ and
µ-invariants actually don’t depend on which curve we choose, except for p = 5. However, we
will consider that prime first.

Conductor 11, p = 5. It is convenient to choose E to be the curve defined by the equation
y2 +y = x3−x2. That is the curve 11A3 in [Cre]. It is verified in [CS00] that SelE(L∞)p = 0.
Therefore we can apply proposition 8.3.1 to E. We have k = 0. Consequently, it follows that
λE(σ) = 0 for all Artin representations σ of Gal(M/Q). In this situation, exactly the same
result follows directly from the main theorems in [HaMa]. We remark that the µ-invariants
for 11A1 and 11A2, the other two elliptic curves of conductor 11, are actually positive.
One can’t apply proposition 8.3.1 directly to those curves. However, the λ-invariants are
unchanged by isogeny and so the conclusion is the same. If E ′ is any one of those elliptic
curves, then λE′(σ) = 0 for all σ as above.

We will consider a few other primes based on calculations of Mazur and Swinnerton-Dyer.
Table 5 on page 58 of [MaSw] gives the values of the λanalE (ωi)’s for all primes p where E
has good, ordinary reduction in the range 7 ≤ p ≤ 347. They verified that µanalE (ωi) = 0
for those primes and all i, 0 ≤ i ≤ p − 2. Now the map GQ → Aut

(
Tp(E)

)
is surjective

for all p ≥ 7. (This is verified in section 5.5.1 of [Se72].) Thus, Kato’s theorem can be
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applied and so SelE(L∞)[p] is indeed finite for all those p’s. As for the λ-invariants, the table
shows nonzero values of some of the λanalE (ωi)’s for 49 of the 69 primes p in the above range.
Thus, for the remaining 20 primes, one has k = 0 and therefore we have λE(σ) = 0 for all
irreducible Artin representations σ of Gal(M/Q). For the other primes, one expects to have
k ≥ 1. The list includes 14 of the 17 irregular primes in the range of the table. We select
regular primes so that we can apply proposition 8.3.3.

Conductor 11, p = 7. The first case where k ≥ 1 is p = 7. The table gives λanalE (ω3) = 1
and λanalE (ωi) = 0 for i ∈ {0, 1, 2, 4, 5}. Thus, λE(ωi) = 0 except possibly for i = 3. For
i = 3, we use the fact that the Mordell-Weil group of the quadratic twist E7 ( which is one of
the curves 539D) turns out to have rank 1. Thus, SelE7(Q) contains a subgroup isomorphic
to Qp/Zp and hence so does SelE7(Q∞). Since the quadratic character of conductor 7 is
ω3, we have 1 ≤ λE(ω3) ≤ λanalE (ω3) and hence λE(ω3) = 1. Thus, k = 1 for p = 7. As a
consequence, using proposition 8.3.1, it follows that

(8.3.c) λE(σ) =
n(σ)

6

for all the irreducible representations of Gal(M/Q) with degree divisible by p− 1 = 6.
Continuing to take p = 7, we consider certain irreducible Artin representations σ of

degree pr. Consider any quotient of Gal(M/Q) isomorphic to Hr and a representation σ
of the form ξHr,ψ, where ψ is a primitive character of Br/Ur. Such representations were
described in remark 7.4.3. The corresponding congruence relations were discussed in remark
7.4.9. There are p− 1 = 6 possibilities for ψ̃. We have

(8.3.d) λE(ξHr,ψ) = dr + 1 if ψ̃ ∼= ω̃3 , λE(σ) = dr otherwise .

This follows immediately from (7.4.f).
The prime p = 7 is non-anomalous for E/Q. (In fact, if p > 5, then p is non-anomalous

for E/Q. See lemma 5.2 in [Gr99].) Proposition 8.3.1 implies that if K is any finite Galois
extension of Q contained in M , then XE(K∞) is projective as a Zp[Gal(K∞/Q∞)]-module.
The same remark applies to all the other primes p in the range 7 ≤ p ≤ 347.

Conductor 11, p = 127. The largest value of k indicated in the table is for p = 127. The
table gives λanalE (ωi) = 1 for i = 29, 63, 97, and also for all i’s such that ωi has order 9. For
the other i’s, one has λanalE (ωi) = 0. This suggests that k = 9. Except for i = 29 and 97,
the contribution to SelE(L∞)p probably comes from the Mordell-Weil group E(L). This is
stated in [MaSw] as likely, but not verified. Assuming this is so, it then follows (just as for
p = 7) that λE(ωi) = 1 for at least those seven values of i. The contribution for i ∈ {29, 97}
should come from the Tate-Shafarevich group (although this is mislabeled in [MaSw]) and
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so it is not clear how to verify that λE(ωi) = 1 for those two i’s. Thus, applying Kato’s
theorem gives the inequality 7 ≤ k ≤ 9 under the above assumption about the Mordell-Weil
group for E over L. In fact, we would have k = 7 or k = 9 because λE(ω29) = λE(ω97).
Thus, those λ-invariants are either both 1 (which is conjecturally so) or both 0.

We have just used the symmetry in the λ-invariants. One always has the equalities
λanalE (ωi) = λanalE (ωp-1-i). This is a consequence of the functional equation for the twisted
Hasse-Weil L-functions, and their p-adic analogues. On the algebraic side, the analogous
equalities λE(ωi) = λE(ωp-1-i) also hold. This result is a special case of corollary 10.1.3 since
the dual of ωi is ωp-1-i.

Assuming one has determined k, one then gets exact formulas for λE(σ) for every ir-
reducible Artin representation σ of Gal(M/Q) which is induced from Gal(M/L), just as
described in proposition 8.3.1. In principle, one can get formulas for other σ’s too. For
example, one can use (7.4.f) for some σ’s, assuming that the above value for λE(ω29) has
been confirmed.

Conductor 11, p = 211. The table gives λanalE (ωi) = 1 for i ∈ {23, 41, 90, 105, 120, 169, 187}
and λanalE (ωi) = 0 for the other i’s. Thus, one should have k = 7, but this seems difficult to
verify. However, as remarked above, recent work of Skinner and Urban may settle this. In
this case, only one of those nonzero λ-invariants comes from the Mordell-Weil group, namely
λE(ω105). Note that ω105 is the quadratic character of conductor 211.

D. Allowing more ramification. The H-trivial case. The assumption that K/Q be ramified
only at p is rather restrictive. One can usually weaken that assumption considerably and
still find that the conclusions in proposition 8.3.1 are valid. Although it is not essential,
we assume that p ≥ 5 to simplify the statements and discussion. We will now consider
extensions K/Q where ΦK/Q may be nonempty. Let Σ0 be a finite set of primes of Q not
containing p or ∞ and let Σ = Σ0 ∪{p,∞}. Let QΣ, the maximal extension of Q unramified
outside of Σ and let MΣ denote the maximal pro-p extension of L contained in QΣ. Then
L ⊂ M ⊆ MΣ, with equality only if Σ0 is empty. We will now assume that K is a finite,
Galois extension of Q and that L ⊆ K ⊂MΣ. We let ∆ = Gal(K∞/Q∞) as before.

Suppose that E is an elliptic curve over Q with good, ordinary reduction at p. We now
consider examples where the set Σ0 is chosen so that the primitive and non-primitive Selmer
groups that we consider actually coincide. The following proposition describes when this is
the case.

Proposition 8.3.6. Assume that p ≥ 5 and that every l in Σ0 satisfies one of the following
conditions:

(a) E has non-split, multiplicative reduction at l and l has odd order modulo p,
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(b) E has good reduction at l and no power of l̃ is a root of x2 − ãlx+ l̃ ,

(c) E has additive reduction at l .

Then Hl(K∞, E) = 0 for all l ∈ Σ0. Consequently, SelΣ0

E (K∞)p = SelE(K∞)p. If SelE(L∞)[p]
is finite, then the Pontryagin dual of SelE(K∞)p is quasi-projective as a Zp[∆]-module and
all of the conclusions stated in proposition 8.3.1 are valid.

A set Σ0 satisfying the above hypothesis will be said to be “H-trivial for E and p”. In (b),
the quadratic polynomial is in Fp[x] and is just as in proposition 8.2.1, taking F = Q. It is
that condition which sometimes allows for an H-trivial set to be arbitrarily large.

Proof. The proof of the vanishing of Hl(K∞, E) is essentially the same as for proposition
8.2.1 and depends just on the fact that the completion of K at a prime above l is a p-
extension of Ql(µp). The stated conditions guarantee that we have 〈ρE,l , ωjl 〉 = 0 for all j.
We also have the inclusion ΦK/Q ⊆ Σ0 since we are assuming that K ⊂MΣ. The assumption
that SelE(L∞)[p] is finite implies the finiteness of SelE(K∞)[p] since K/L is a p-extension.
Proposition 3.2.1 then implies that the Pontryagin dual of SelE(K∞)p is quasi-projective as
a Zp[∆]-module. �

Under the assumptions of the above proposition, all of the congruence relations described
before for the case where Σ0 is empty will be valid for the larger class of Artin representations
which factor through Gal(K/Q) for some K chosen as above. In particular, if σ is such an
Artin representation and has degree divisible by p− 1, then the formula for λE(σ) given in
proposition 8.3.1 applies.

Conductor 11, p = 7 again. Returning to the special case where E has conductor 11, here
is an example of an H-trivial set for E and p = 7:

Σ0 = {2, 3, 13, 17, 23, 29, 41, 43, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 109, 127} .

The set of primes l for which (b) fails to be satisfied has a positive Dirichlet density. We’ve
included the first 20 such primes in Σ0. One can find arbitrarily large H-trivial sets for E
and all the other primes p too, except for p = 5. In that case, one easily sees that the roots
of x2 − ãlx+ l̃ are 1̃ and l̃ . Hence it is not possible to find a nonempty H-trivial set Σ0 for
E and p = 5.

Let Σ = Σ0 ∪ {p,∞}. We continue to consider p = 7. Suppose that A is an elliptic
curve defined over Q whose conductor is divisible only by primes in Σ. Suppose also that
A(Q)[p] 6= 0. It then follows that Q(A[p∞]) ⊂ MΣ. It also follows that ρA is not surjective.

In fact, for a suitable basis of Tp(A), we have ρ̃A =

(
1 ∗
0 ω

)
. Many such A’s exist and

141



so this construction provides an ample source of specific Galois extensions K/Q satisfying
the assumptions in this illustration. Here are some choices of A found by perusing [Cre]:
26B, 174B, 258F, 294B, 546F, 574I, and 762G. For each of those curves and for any r ≥ 0,
we have L ⊆ Q(A[pr+1]) ⊂ MΣ. It turns out that the image of GQ in PGL2(Z/p

r+1Z) is
isomorphic to Hr for all of those elliptic curves, as we will explain below. Therefore one
obtains certain quotients of Gal(MΣ/Q) isomorphic to Hr and our earlier remarks apply to
the Artin representations that factor through those quotients. In particular, either (8.3.c)
or (8.3.d) will valid for each such Artin representation, depending just on the degree.

The next rather general proposition shows that under certain assumptions the image of
ρA is determined by the image of ρ̃A. It implies the assertion made above. The proof will
be given in [Gr09a]. This result is probably not new, although we haven’t found it stated
in the literature. Some version of it was previously pointed out by T. Fisher. One can also
include p = 5 in the statement, but only by making additional assumptions.

Suppose that A is an elliptic curve defined over Q which has a Q-isogeny of degree
p. Let Φ denote the kernel of the isogeny and let Ψ = A[p]/Φ. The actions of GQ on
Φ and Ψ are described by F×

p -valued characters ϕ and ψ, respectively. The statement

below refers to a Sylow pro-p subgroup of Aut
(
Tp(A)

)
. One can identify AutZp

(
Tp(A)

)

and AutFp

(
Tp(A)/pTp(A)

)
with GL2(Zp) and GL2(Fp), respectively, by choosing a basis

for Tp(A) over Zp and the image of that basis in Tp(A)/pTp(A) ∼= A[p]. One Sylow pro-p
subgroup of GL2(Zp) is the group of matrices whose image in GL2(Fp) is upper triangular
and unipotent. The others are conjugate to that subgroup. Note also that ϕψ = ω is an odd
character. Therefore, ϕψ−1 is also odd and hence its order is even.

Proposition 8.3.7. Assume that p ≥ 7. Assume also that ϕψ−1 is not of order 2. Then
the image of ρA contains a Sylow pro-p subgroup of AutZp

(
Tp(A)

)
.

Of course, im(ρA) ∼= Gal
(
Q(A[p∞])/Q

)
. For any r ≥ 0, we can also interpret the image of

im(ρA) in ∆r = PGL2(Z/p
r+1) as a Galois group. We let Kr denote the corresponding Galois

extension of Q and identify Gal(Kr/Q) with the corresponding subgroup of ∆r. Under the
assumptions of the above proposition, and choosing a suitable basis for Tp(A), the Sylow p-
subgroup of Gal(Kr/Q) is normal and is identified with the subgroup Πr. The corresponding
fixed field is an extension of Q of degree dividing p − 1 and is precisely the fixed field for
ker(ϕψ−1). If this field turns out to be L, then the fields Kr are extensions of exactly the
kind we are considering in this illustration. It turns out that we even have Kr ∩ Q∞ = Q,
although this is not really needed. (See section 3.4.)

One case where ϕψ−1 is not of order 2 occurs if A(Q)[p] 6= 0 and p ≥ 5. We can then
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take ϕ to be trivial and ψ = ω. Assuming that p ≥ 7, proposition 8.3.7 implies that

im(ρA) =

{ (
a b
c d

) ∣∣∣∣ a ∈ 1 + pZp, b ∈ Zp, c ∈ pZp, d ∈ Z×
p

}
.

The image of that group in PGL2(Zp) is precisely the group H∞ defined in remark 7.4.6
and the image in PGL2(Z/p

r+1Z) for any r ≥ 0 is precisely Hr, as mentioned above. More
generally, under the assumptions of the proposition, the image of GQ in PGL2(Zp) arising
from ρA is equal to H∞ if and only if ϕψ−1 has order p− 1. 0therwise, the image will be the
unique subgroup of H∞ of index (p− 1)/e, where e denotes the order of ϕψ−1.

We’ve already listed a number of examples where A(Q)[p] 6= 0 when p = 7. Such
examples are abundant. If p > 7, then A(Q)[p] = 0 and such examples can’t exist. However,
for p = 11, we can take A to be one of the curves 121A or 121C in [Cre]. Each has a
Q-isogeny of degree 11. For one of them, one finds that ϕ = ω7, ψ = ω4 and hence the ratio
is ω3 which has order p − 1 = 10. Thus, if A is any one of those curves, then Q(A[11∞])
contains a tower of subfields Kr such that Gal(Kr/Q) ∼= Hr. Furthermore, we do actually
have L ⊂ Kr ⊂M and so we can simply take Σ0 to be empty.

On the other hand, if A is one of the curves 121B, then A has complex multiplication by
the ring of integers in Q(

√
−11) and hence has a Q-isogeny of degree p. For one of them,

one finds that ϕ = ω8, ψ = ω3 and hence the ratio is ω5 which has order 2. (This must be
so in the CM-case.) The image of ρA is just a 2-dimensional p-adic Lie group. Its image in
PGL2(Zp) is not even of finite index.

If p > 11, then it is still possible for ϕψ−1 to have order p− 1. One sees easily that this
will be true if the conductor of A is not divisible by p. This happens for p = 37. If A is
either one of the two elliptic curves of conductor 1225 which have a Q-isogeny of degree 37,
then A has good, ordinary reduction at 37. Thus, even when one restricts ϕψ−1 to an inertia
group for 37, its order is p− 1 = 36. We can then apply proposition 8.3.7 to ρA to obtain a
tower of extensions Kr of Q such that Gal(Kr/Q) ∼= Hr for all r ≥ 0. However, the fields Kr

don’t quite fit into this illustration. Although the fixed field for Πr is a cyclic extension of Q
of degree p− 1 = 36, that field is ramified at 5, 7, and 37, and can’t be L = Q(µ37). Similar
remarks can be made if p = 17. There exist elliptic curves A of conductor 2 · 52 · 172 which
have a cyclic Q-isogeny of degree p. Since ϕψ = ω has order p− 1 = 16, one sees easily that
ϕψ−1 also has order 16. Hence proposition 8.3.7 can again be applied to ρA. However, ϕψ−1

is ramified at 5 and 17, and hence the corresponding cyclic extension of Q cannot be L.

For p = 5, there is a variant of proposition 8.3.7. If A(Q)[5] 6= 0, then there exists a
tower of Galois extensions Kr of Q which are p-extensions of L and such that Gal(Kr/Q) is
isomorphic to either Hr or to H ′

r. Examples of both possibilities abound. If we take A to be

143



in 38B in [Cre], then it turns out that Gal(Kr/Q) ∼= Hr, but if we take A to be 11A3, then
we have Gal(Kr/Q) ∼= H ′

r. This will also be discussed in [Gr09a].

E. Allowing arbitrary ramification. Suppose now that Σ = Σ0∪{p,∞} is an arbitrary finite
set of primes containing p and ∞. We assume again that K is a finite Galois extension of Q
and that L ⊆ K ⊂ MΣ. There may be primes l ∈ Σ0 such that Hl(K∞, E) 6= 0. If so, then
we will have λΣ0

E (σ) > λE(σ) for some irreducible Artin representations σ of Gal(MΣ/Q).
The difference λΣ0

E (σ) − λE(σ) involves the quantities δE,l(σ), where l varies over Σ0. We
will use the notation from the beginning of section 8.2, where we are now taking F = Q and
v = l . Let wl denote the order of the character ωl of GQl

. Thus, wl is the order of l modulo
p. We will usually regard ωl as a character of Gl = GQ∞,l

. Let Ml ⊆ Gl denote its kernel, a
normal subgroup of Gl of index wl .

We assume that l 6= p. Let Il denote the inertia subgroup of Gal(MΣ/Q) for some fixed
prime of MΣ lying above l . Its choice will not be important. Then Il ⊂ Gal(MΣ/L∞) and
Il ∼= Zp as a group. We will assume as before that p ≥ 5. According to the discussion in
chapter 5, if χ is an irreducible representation of Gl such that 〈ρE,l , χ〉 ≥ 1, then χ must be of
degree 1, unramified, and of order prime to p. The decomposition subgroup of Gal(MΣ/Q)
(for the fixed prime above l) can be identified with a certain quotient group of Gl , namely
Gl/Jl , where Jl is characterized as follows: Jl is the smallest closed normal subgroup of
Ml such that Ml

/
Jl is a pro-p group. In fact, by local class field theory, one sees that

Ml

/
Jl

∼= Zp and can be identified with Il . With this notation, the fixed field of Ml is
Q∞,l(µp) and the fixed field for Jl is the unique Zp-extension of Q∞,l(µp).

Suppose that σ is an irreducible Artin representation of Gal(MΣ/Q). Let Wσ be the un-
derlying F -representation space for σ. We can regard σl as a representation of Gl . However,
σl factors through the quotient group Gl/Jl . Its irreducible constituents are of two types,
either unramified or ramified, depending just on whether their restriction to Ml is trivial
or nontrivial. The unramified constituents are precisely the irreducible constituents in W Il

σ .
They are 1-dimensional. In fact, any such constituent must be a character of Gl which factors
through Gl

/
Ml and so must be a power of ωl .

The definition of δΣ0
E (σ) involves the quantities δE,l(σ) which, in turn, involve terms of

the form 〈σl , χ〉〈ρE,l , χ〉. The above remarks show that we need only consider terms where
χ = ωjl for some j. Thus, we have

δΣ0
E (σ) =

∑

l∈Σ0

glδE,l(σ) , where δE,l(σ) =

wl -1∑

j=0

〈σl , ω
j
l 〉〈ρE,l , ωjl 〉 .

The factor gl is a power of p, the highest power dividing the Fermat quotient (lp-1 -1 )/p.
The expression for δE,l(σ) sometimes takes a simpler form. If σ ∈ IrrF(∆), then n(σ) = dpa
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for some a ≥ 0, where d is a divisor of p− 1. We denote d by d(σ). With this notation, we
have the following result.

Proposition 8.3.8. Assume that p ≥ 5 and that gcd
(
p−1
d(σ)

, wl

)
= 1. Then

δE,l(σ) =
dimF

(
W Il
σ

)

wl

· α(E, l)

where α(E, l) = 0 if any of the conditions (a), (b), or (c) in proposition 8.3.6 is satisfied,
α(E, l) = 1 if either E has split, multiplicative reduction at l or if E has nonsplit, multiplica-
tive reduction at l and l has even order modulo p, and α(E, l) = 2 if E has good reduction

at l and the roots of the polynomial x2 − ãlx+ l̃ are powers of l̃ .

Proof. As mentioned above, the constituents in the Gl -representation space W Il
σ are powers

of ωl . We know that σ ⊗ ωj ∼= σ if ωj has order dividing d = d(σ). This just means that j
is divisible by (p − 1)/d. We have σl ⊗ ωjl

∼= σl for all such j. The stated assumption then
implies that σl ⊗ωl

∼= σl . Thus, all of the multiplicities 〈σl , ω
j
l 〉 are equal. Consequently, we

have

δE,l(σ) =
dimF

(
W Il
σ

)

wl

·
wl -1∑

j=0

〈ρE,l , ωjl 〉 .

However, the sum is precisely α(E, l). �

Remark 8.3.9. Since l is tamely ramified in MΣ/Q, there is a simple relationship between
the dimension of W Il

σ and the power of l dividing the Artin conductor cσ for σ:

ordl

(
cσ
)

= n(σ) − dimF

(
W Il
σ

)
.

This is true by definition. Thus, δE,l(σ) is closely related to cσ. We can pick a field K
containing L such that σ factors through Gal(K/Q). The image of Il in Gal(K/Q) is the
inertia subgroup for some prime above l , a cyclic subgroup Il(K/Q) of Gal(K/L). Hence,
dimF

(
W Il
σ

)
is just the multiplicity of 1Il (K/Q) in σ|Il (K/Q).

As an example, suppose that ∆ = Hr for some r ≥ 1, that Il(K/Q) is conjugate to Ur,
and that σ is an irreducible representation of Hr of degree (p− 1)pr. Thus, σ|Ur is faithful,
we have dimF

(
WUr
σ

)
= 0, and therefore δE,l(σ) = 0 in that case. In contrast, suppose that σ

is the irreducible constituent in σ
(r)
st |Hr of degree (p−1)pr-1. (See proposition 7.4.4.) Then, as

mentioned in the discussion before proposition 8.2.2, we have dimF

(
WUr
σ

)
= (p− 1)p[(r-1)/2]

and hence δE,l(σ) will be positive if α(E, l) 6= 0 , and is unbounded as r increases. Note that
Il(K/Q) is determined only up to conjugacy as a subgroup of Hr. The simplest case is when
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Il(K/Q) is conjugate to Ur. A necessary condition for this is that the image of Il(K/Q)
under the map Hr → B0 is nontrivial. That condition is also easily seen to be sufficient. If
it holds, then we can simply assume that we have the equality Il(K/Q) = Ur. ♦

Conductor 11, p = 7 again. We will discuss an example where Σ0 is not quite H-trivial
for E and p = 7. There is one elliptic curve A of conductor 678 = 2 · 3 · 113 such that
A(Q)[p] 6= 0. Suppose that r ≥ 0. The discussion following proposition 8.3.7 tells us that
Q(A[pr+1]) contains a subfield Kr such that Gal(Kr/Q) ∼= Hr. Fixing such an isomorphism,
we identify the two groups. The irreducible representations σ of Gal(Kr/Q) correspond to
those of Hr. Proposition 7.4.4 describes those representations. We will determine λE(σ) for
all of them.

We can take Σ0 = {2, 3, 113} and Σ = {p,∞} ∪ Σ0. The set Σ0 is not H-trivial for
E and p, although the subset {2, 3} is. We have δE,l(σ) = 0 for l = 2 and l = 3 and
all σ factoring through Gal(Kr/Q). Now w113 = 1 and so we can use proposition 8.3.8
to determine δE,113(σ). One finds that α(E, 113) = 2. We will also need the fact that
ord113(jA) 6≡ 0 (mod 7). This tells us that the image of the inertia group I113 in Hr is
conjugate to Ur. We can assume that the prime above l = 113 (in Kr) is chosen so that
this image is precisely Ur. These remarks together with the fact that g113 = 1 give us the
formula

(8.3.e) λΣ0
E (σ) = λE(σ) + 2dimF

(
WUr
σ

)

for any σ ∈ IrrF(Hr).
As stated before, we have λE(ω3) = 1, but λE(ωi) = 0 for i ∈ {0, 1, 2, 4, 5}. Since the

ωi’s are unramified at l = 113 , their kernels contain Ur. Thus, (8.3.e) implies that

(8.3.f) λΣ0
E (ωi) =

{
2 if i = 0, 1, 2, 4, or 5
3 if i = 3

and therefore that λΣ0
E (L∞) = 13.

The proof of proposition 8.3.1 shows that XΣ0
E (Kr,∞) is a projective Z7[Hr]-module. If σ

has degree divisible by p− 1 = 6, then σ is Πr-induced and we therefore have the following
congruence relation for the non-primitive λ-invariant:

λΣ0
E (σ) =

n(σ)

6
·

5∑

i=0

λΣ0
E (ωi) =

n(σ)

6
· λΣ0

E (L∞) =
13

6
n(σ) .

Hence we find the following formula for the primitive λ-invariant:

λE(σ) =
13

6
n(σ) − 2dimF

(
WUr
σ

)
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for any irreducible representation of Hr of degree divisible by 6. Remark 8.3.9 includes some
comments about the quantity dimF

(
WUr
σ

)
. It is interesting to note that λE(σ) is odd for all

such σ. The significance of this will be pointed out in chapter 13.

Now consider a representation of the form ρHr,ψ of Hr. This has degree 7r. We have

ψ̃ = ω̃i = τi for a unique integer i in the range 0 ≤ i ≤ 5. We then have the formula

λE
(
ρHr,ψ

)
= 13 · 7r − 1

6
+

{
0 if ψ̃ ∈ {τ0, τ1, τ2, τ4, τ5}
1 if ψ̃ = τ3

To see this, one applies the congruence relation (7.4.f) to X = XΣo
E (Kr,∞). One then uses

(8.3.e) for σ = ρHr,ψ. Note that 1Ur occurs as a constituent in ρHr,ψ|Ur with multiplicity 1,
a consequence of the fact that ρHr,ψ|Br has only one irreducible constituent of degree 1. For
the final term, one uses (8.3.f).

Conductor 11, p = 5 again. As before, we let E be the curve 11A3. However, we will
now take A = E. It turns out that Q(E[p∞]) contains a tower of subfields Kr such that
Gal(Kr/Q) ∼= H ′

r for all r ≥ 1. We mentioned this before and will discuss this further in
[Gr09a]. However, it is also a consequence of a result in [Fis]. We clearly have L ⊂ Kr ⊂MΣ,
where Σ = {∞, 5, 11}. We take Σ0 = {11}.

As mentioned before, we have XE(L∞) = 0. Thus, λE(ωi) = µE(ωi) = 0 for 0 ≤ i ≤ 3.
Now w11 = 1 and g11 = 1. Also, identifying Gal(Kr/Q) with H ′

r, we can assume that the
image of the inertia group I11 in Gal(Kr/Q) is precisely Ur. This is because 5 ∤ ord11(jA).
As a consequence of these facts, we have

δΣ0
E (σ) = dim

(
WUr
σ

)

for all irreducible representations of Gal(Kr/Q). In particular, for the 1-dimensional repre-
sentations ωi, where 0 ≤ i ≤ 3, we have λΣ0

E (ωi) = δΣ0
E (ωi) = 1. Thus, λΣ0

E (L∞) = 4.
If σ is a faithful, irreducible representation of H ′

r, then σ is Π′
r-induced and WUr

σ = 0. It
follows that

λE(σ) = λΣ0
E (σ) =

n(σ)

4
· λΣ0

E (L∞) = n(σ)

for all the faithful σ’s. More generally, this formula is valid whenever σ|Br has no irreducible
constituents of degree 1. The irreducible representations of the form σ = ξH′r,ψ have the
property that σ|Br has exactly one irreducible constituent of degree 1, the character ψ.
Thus, we have the formula

λE(ξH′r,ψ) = λΣ0
E (ξH′r,ψ) − 1 =

5r-1 − 1

4
· λΣ0

E (L∞) − 1 = 5r-1 − 2

since ξH′r,ψ has degree 5r-1.
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8.4 False Tate extensions of Q.

Now we consider a class of examples where the Galois groups are isomorphic to the Br’s
discussed in part D1 of section 7.4. Thus, we will continue to be in the situation of section
8.3. Fix an integer m. For simplicity, we will assume that p ∤ ordq(m) for all primes q which
divide m. If r ≥ 0, we will let

(8.4.a) Kr = Q
(
µpr+1 , pr+1√

m
)
,

a Galois extension of Q with Gal(Kr/Q) ∼= Br. We will identify the two groups to simplify
the discussion and we will use the notation from section 7.4, part D1. Letting Qr denote
the r-th layer in the cyclotomic Zp-extension Q∞ of Q, we then have

KUr
r = Q(µpr+1) = Qr(µp), KPr

r = Q(µp) = L .

Thus, we can identify Gal
(
Kr/Qr(µp)

)
with Ur and Gal

(
Qr(µp)/Q

)
with the quotient group

Br/Ur. Our assumption about m implies that if q is a prime dividing m, and q 6= p, then
the inertia subgroup Iq(Kr/Q) of Gal(Kr/Q) for a prime lying above q is precisely Ur.

Now let E be an elliptic curve over Q with good ordinary reduction at p. Assume that
SelE(L∞)[p] is finite and that p ≥ 5. We take Σ0 = {l

∣∣ l |m, l 6= p}. Then XΣ0
E (Kr,∞/Q∞)

is quasi-projective as a Zp[Br]-module. Note that Kr ∩ Q∞ = Qr and so, if r ≥ 1, then
we are in the situation discussed in section 3.5. As explained there, if ρ is an irreducible
representation of Br, then we can still define λE(ρ) and λΣ0

E (ρ) even though Br = Gal(Kr/Q)
doesn’t actually act on XE(Kr,∞) and XΣ0

E (Kr,∞).
Note that Br is a ΠΩ-group, with Π = Pr. We have described the irreducible repre-

sentations of Br in section 7.4, part D1. The unique faithful irreducible representation is
γr and has degree (p − 1)pr. The others have smaller degree and those degrees are also
divisible by p− 1, except for the 1-dimensional representations, all of which factor through
Gal(Qr(µp)/Q). It follows that all of the irreducible representations of Br of degree > 1 are
Pr-induced. We obtain

λΣ0
E (ρ) =

n(ρ)

p− 1

( p−2∑

i=0

λΣ0
E (ωi)

)
=

n(ρ)

p− 1
· λΣ0

E (L∞)

by applying (7.4.c) together with the remark following proposition 8.3.1 to all those ρ’s.

To determine λΣ0
E (ρ) − λE(ρ), we apply proposition 8.3.8. Assume that p ≥ 5. That

proposition doesn’t apply to the powers of ω unless l ≡ 1 (mod p). However, the argument
does apply without change to the direct sum of the ωi’s and gives us the formula

p-1∑

i=0

δE,l(ω
i) =

p− 1

wl

· α(E, l) .
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Furthermore, if ρ is any irreducible representation of Br which is not 1-dimensional, then
we have 〈ρ|Ur ,1Ur〉 = 0. It follows that δΣ0

E (ρ) = 0 and therefore that λE(ρ) = λΣ0
E (ρ).

Combining these remarks, and assuming that p ≥ 5, we obtain the formula

(8.4.b) λE(ρ) =
n(ρ)

p− 1
· λE(L∞) + n(ρ) ·

∑

l∈Σ0

gl ·
α(E, l)

wl

for any irreducible representation ρ of Gal(Kr/Q) which is not 1-dimensional.

It is interesting that the above formula takes the very simple form λE(ρ) = c ·n(ρ), where
c is a certain rational constant depending on E, p, and m. The denominator of c divides
p − 1. If we view this example from the point of view of section 3.5, the behavior becomes
even simpler. The group Br plays the role of D and ∆r plays the role of ∆. The restriction
map identifies ∆r with the unique subgroup of Br containing Ur and such that ∆r/Ur has

order p− 1. Note that ∆r is isomorphic to the semidirect product
(
Γ1/Γ

pr+1

1

)
⋊ Ω. Here we

are using the notation from the beginning of section 7.4, part D, and so Γ1 is isomorphic to
Zp as a group and Ω acts by the character ω. Apart from the p− 1 representations of ∆r of
degree 1, all the other irreducible representations σ of ∆r have degree p − 1. Furthermore,
every such σ is a constituent in ρ|∆r for some irreducible representation ρ of Br with n(ρ) 6= 1.
The definition of λE(ρ) in section 3.5 implies that

λE(ρ)

λE(σ)
=

n(ρ)

n(σ)

and therefore we have the formula λE(σ) = c · λE(σ) = c(p− 1) for any irreducible represen-
tation σ of ∆r which is not 1-dimensional.

The union Km =
⋃
rKr is called a “false Tate extension” in [CFKS]. It is a Galois exten-

sion of Q and Gal(Km/Q) is isomorphic to B∞, a two-dimensional p-adic Lie group which
is defined in remark 7.4.6. The Artin representations ρ which factor through Gal(Km/Q)
correspond to the irreducible representations of the Br’s for r ≥ 0. They are described com-
pletely in part D1 of section 7.4. Ignoring the 1-dimensional representations, which factor
through Gal

(
Q(µp∞)/Q

)
, we have n(ρ) = (p−1)pt for all the others, where t ≥ 0. Of course,

t varies over all the nonnegative integers. However, the restriction of ρ to GQ∞ breaks up as
a direct sum of pt irreducible representations, all of degree p − 1. As mentioned above, the
invariant λE(σ) is actually constant as σ varies over all such irreducible representations of
Gal(Km/Q∞).

There is an interpretation of that constant c(p − 1). It coincides with an invariant
defined in chapter 4 of [CFKS] whose definition we will now recall. Consider the Selmer
group SelE(Km)p, which one can regard as a discrete module over the completed Zp-group
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algebra Zp[[B∞]]. Here we will fix an identification of Gal(Km/Q) with B∞ to simplify the
discussion. The subgroup U∞ of B∞ is then identified with Gal(Km

/
L∞) and so we can also

regard SelE(Km)p as a module over the ring Zp[[U∞]]. Since U∞
∼= Zp, that ring is isomorphic

to a formal power series ring over Zp in one variable. The assumption that SelE(L∞)[p] is
finite implies that the Pontryagin dual XE(Km) of SelE(Km)p is a finitely-generated module
over Zp[[U∞]]. Its rank is denoted by τ in [CFKS]. We will denote it by τ(E,m).

One then has λE(σ) = τ(E,m) for all the irreducible representations σ of Gal(Km/Q∞)
of degree > 1. Since this is proved in [CFKS], we will simply mention the various ingredients
used in verifying this fact.

(1) The Sylow pro-p subgroup of Gal(Km/Q∞) is the normal subgroup U∞. Its index is p−1.
Each irreducible constituent in σ|U∞ is 1-dimensional, nontrivial, and occurs with multiplicity
1. If u is one of them, then λE(σ) = λE(u). This follows from Frobenius Reciprocity.

(2) There is a control theorem for the behavior of the Selmer groups for E in the Zp-extension
Km/L∞, almost like the case of a Zp-extension of a number field. However, one finds that the
cokernel of the restriction map can be infinite, but that U∞ acts trivially on that cokernel.
Thus, if u is a nontrivial character of U∞, then λE(u) is equal to the multiplicity of u in the
Qp-representation space

(8.4.c) XE(Km)
Upt
∞

⊗Zp Qp ,

where pt is the order of the character u.

(3) Our assumptions about E imply that XE(Km) is a torsion-free Zp[[U∞]]-module. This is
a consequence of the fact that XE(Km) has no nonzero, pseudo-null Zp[[B∞]]-submodules.
(See theorem 3.1 in [HaVe].) Hence the multiplicity of u in (8.4.c) is indeed equal to the
rank τ(E,m).

As a consequence, we get a nice formula for τ(E,m). This formula can also be found in
[CFKS] (where it is mentioned in the proof of proposition 4.1.8) as well as in theorem 3.1 in
[HaVe]. The above remarks and the formula for λE(ρ) show that

τ(E,m) = c(p− 1) = λE(L∞) +
∑

l

gl ·
p− 1

wl

· α(E, l)

where l runs over the primes dividing m, excluding l = p if p|m. Note that the factor gl
p−1
wl

is just the number of primes of L∞ = Q(µp∞) lying over l . The derivation of this formula in
[CFKS] proceeds from a quite different point of view. Also, it is proved there for more general
base fields (and not just Q) and under the following more general assumption. We state it
using the above notation. The subscript div indicates the maximal divisible subgroup.
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Assumption A:
(
SelE(Km)p

)
div

is cofinitely-generated as a Zp[[U∞]]-module.

Our assumption that SelE(L∞)[p] is finite implies that SelE(Km)p itself is a cofinitely-
generated Zp[[U∞]]-module. Furthermore, if E is Q-isogenous to an elliptic curve E ′ for
which SelE′(L∞)[p] is finite, then assumption A is also easily seen to hold. However, the
converse is not known to be true. Our argument would also work in that more general con-
text, but only with our assumption about the vanishing of the µ-invariant for E over L∞.

Note that τ(E,m) depends only on the set of primes q which divide m, and not on
ordq(m). The parity of τ(E,m) determines the parity of all the λE(ρ)’s, where ρ is any
irreducible Artin representation of Gal(Km/Q) of degree divisible by p − 1. This follows
from the formula

λE(ρ) =
n(ρ)

p− 1
· τ(E,m) ,

which holds for all such ρ’s, together with the fact that n(ρ)
p−1

is a power of the odd prime p.

As a specific example, suppose that E is one of the elliptic curves of conductor 11 and
that p = 7. We know that SelE(L∞)[p] is finite and that λE(L∞) = 1. The fact that w11 = 3
implies that τ(E,m) is odd for all m. We have previously listed 20 values of l for which
α(E, l) = 0 , starting with l = 2, 3, 13, 23, and 29, which we refer to as H-trivial primes for
E and p. If m is any product of such primes, then τ(E,m) = 1. 0therwise, τ(E,m) ≥ 3.
One has τ(E,m) = 3 for m = 11 and also for m = q, where q is any prime where α(E, q) = 2,
wq = 6, and gq = 1. For example, τ(E, 5) = 3. The next prime for which α(E, q) = 2 is

q = 19. One has w19 = 6, but g19 = 49, and so τ(E, 19) = 99. Thus, λE(ρ) = 99 · n(ρ)
p−1

for

any irreducible Artin representation ρ of Gal(K19/Q) of degree > 1. The reason this is so
large is that there are 49 primes of L∞ lying above 19.

9 Self-dual representations.

For any representation ρ of ∆ over F , we let ρ̌ denote the contragredient representation.
If Wρ denotes the underlying representation space for ρ, then Wρ̌ = Hom(Wρ,F) is the
underlying representation space for ρ̌, where the action of ∆ on Wρ̌ is defined in the usual
way. We say that ρ is self-dual if ρ and ρ̌ are isomorphic representations. Thus, there would
then be a non-degenerate, ∆-invariant pairing B : Wρ ×Wρ −→ F . If ρ is also absolutely
irreducible, then one easily sees that this pairing B is unique up to a factor in F×. As a
consequence, if one composes B with the map (a, b) → (b, a) of Wρ ×Wρ to itself, then one
obtains another non-degenerate, ∆-invariant pairing B′ and one must have B′ = εB, where
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ε ∈ {±1}. If ε = +1, then B is symmetric and one then says that ρ is “orthogonal”. If
ε = −1, then B is skew-symmetric and one then says that ρ is “symplectic”.

9.1 Various classes of groups.

Certain groups ∆ have the property that all elements of IrrF(∆) are self-dual, and even
orthogonal. The dihedral groups and the symmetric groups have both properties. We will
see other examples of such groups below. If all elements of IrrF(∆) are self-dual, then we
will say that ∆ has property (SD). A simple characterization is:

(SD) Every element of ∆ is conjugate to its inverse.

This condition is easily verified for the dihedral and symmetric groups. A group satisfying
(SD) is sometimes said to be ambivalent. An abelian group ∆ is ambivalent if and only if
∆ is an elementary abelian 2-group. The alternating group An is ambivalent if and only if
n = 1, 2, 5, 6, 10 or 14. (See 1.2.12 in [J-K].)

We will say that ∆ has property (SDO) if all elements of IrrF(∆) are self-dual and
orthogonal. An equivalent characterization is the following counting property:

(SDO)
∑

σ

n(σ) =
∣∣{ δ ∈ ∆

∣∣ δ2 = id∆ }
∣∣ ,

where σ runs over IrrF(∆) and id∆ denotes the identity element of ∆. This characterization
is an immediate consequence of a theorem of Frobenius and Schur. That result and its proof
can be found in proposition 3.7 in [Fei]. We will adopt the notation in [Ro07] to state it. Let

ϑ(∆) =
∑

σ

(sd)
n(σ) = ϑorth(∆) + ϑsymp(∆) ,

where σ varies over Irr
(sd)
F (∆) in the sum, which we then break up into the separate sums

over the orthogonal and symplectic elements of Irr
(sd)
F (∆). Proposition 3.7 in [Fei]

ϑorth(∆) − ϑsymp(∆) =
∣∣{ δ ∈ ∆

∣∣ δ2 = id∆ }
∣∣ .

We refer to this equation as the Frobenius-Schur identity.

If Uα is the underlying vector space for a representation α of ∆ over f, then the dual (or
contragredient) representation α̌ gives the action of ∆ on Uα̌ = Hom(Uα, f). A necessary and
sufficient condition to have τ̌ ∼= τ for all τ ∈ Irrf(∆) is the following variation on (SD):
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(SDp) Every element of ∆ of order prime to p is conjugate to its inverse.

For example, if ∆ is a p-group, then Irrf(∆) consists just of the self-dual representation τ0

and (SDp) is obviously satisfied, but (SD) is not satisfied if p is odd (unless |∆| = 1). It is
sometimes satisfied if p = 2. Obviously, for any p, (SD) implies (SDp) .

Proposition 9.1.1. For any odd prime p and for any r ≥ 0, the group ∆r = PGL2(Z/p
r+1Z)

satisfies property (SDO).

Proof. For ∆0 = PGL2(Fp), the elements of order 2 fall into two conjugacy classes, one
of cardinality 1

2
p(p + 1), represented by a diagonal matrix with eigenvalues 1 and -1, the

other of cardinality 1
2
p(p − 1), represented by a matrix whose eigenvalues are α,−α, where

α2 ∈ F×
p , but α 6∈ F×

p . Thus, { δ ∈ ∆
∣∣ δ2 = id∆ } has cardinality p2 + 1. On the other

hand, the results summarized in part A of section 7.2 show that
∑

σ n(σ) is also p2 + 1.
Now assume that r ≥ 1. We first sum over the primitive σ’s, obtaining

|Ar|ar + |Br|br + |Cr|cr = p2(r+1) − p2r

Hence
∑

σ n(σ) = p2(r+1) + 1. If δ ∈ ∆ has order 2, let δ0 denote its image in ∆0. Now δ0

generates a subgroup of ∆0 of order 2 and the inverse image of that subgroup under the map
∆ −→ ∆0 is a subgroup of ∆ of order 2p3r. Call this subgroup Hδ0 . It contains a subgroup
of index 2, namely ker(∆r → ∆0), which consists of elements represented by matrices of the
form I + pA, where A ∈ M2(Z/p

r+1Z). All elements of order 2 in Hδ0 (including δ itself)
map to δ0 and are conjugate in that group. The cardinality of that conjugacy class is the
index [Hδ0 : Zδ], where Zδ is the centralizer of δ in Hδ0 . The order of Zδ can be determined
by a matrix argument and turns out to be 2pr. Thus, the conjugacy class of δ has cardinality
p2r. There are p2 choices for δ0 and so, altogether, the cardinality of { δ ∈ ∆

∣∣ δ2 = id∆ } is

p2(r+1) + 1. This verifies property (SDO).
The matrix argument alluded to above reduces to determining the cardinality of

{A ∈M2(Z/p
r+1Z)

∣∣ DAD-1 = A } .

Here D is a matrix representing δ and so its square is a scalar matrix. Thus, D defines an
involution on M2(Z/p

r+1Z) by conjugation. The (±1)-eigenspaces are direct summands and
both are isomorphic to (Z/pr+1Z)2. One checks this separately for both types of elements
δ0 of order 2 in ∆0. Noting that the Sylow p-subgroup of Zδ (which has index 2 in Zδ ) is
precisely the image of the group of matrices of the form I + pA, where A is in the (+1)-
eigenspace, and that the subgroup consisting of scalar matrices has order pr, the statement
about the order of Zδ follows easily. �
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The fact that ∆r satisfies property (SD) could also be verified directly by a straightforward
matrix argument.

As we’ve already mentioned, the dihedral groups, symmetric groups, and elementary
abelian 2-groups also satisfy (SDO). An example of a group which satisfies (SD), but not
(SDO) is the quaternionic group of order 8. Its single 2-dimensional irreducible representa-
tion is symplectic. Of course, groups which do not satisfy (SD) are very common.

If ∆ has odd order, then a theorem of Burnside states that Irr
(sd)
F (∆) consists only of

the trivial representation σ0. Groups of odd order are simple examples of groups with the
following property: Every self-dual irreducible representation of ∆ is orthogonal. We will
refer to this as property (O). It can also be characterized by a counting property:

(O) ϑ(∆) =
∣∣{ δ ∈ ∆

∣∣ δ2 = id∆ }
∣∣ .

The equivalence follows immediately from the Frobenius-Schur identity. In addition to groups
of odd order, finite abelian groups satisfy property (O). Another family of examples is
GL2(Z/p

r+1Z) for r ≥ 0 and p odd. Most of the self-dual representations of that group
factor through PGL2(Z/p

r+1Z), and so are orthogonal by proposition 9.1.1. For any others,
the restriction to the center must be the character of order 2. Such self-dual representations
exist, exactly one which is primitive for each r. These are described by Rohrlich in [Ro06].
They are all realizable over Q and so are certainly orthogonal. (We recall that any finite
subgroup of GLn(R) is conjugate to a subgroup of the orthogonal group On(R). Hence any
representation of a finite group which is realizable over R must be an orthogonal, self-dual
representation.)

9.2 ΠΩ groups.

Certain subgroups of GL2(Z/p
r+1Z) satisfy property O. This question is studied in some

detail in [Ro07] for subgroups whose image in ∆0 is contained in B0. Assume that G is an
open subgroup of GL2(Zp) and let Gr denote its image in GL2(Z/p

r+1Z). Assume that the
elements of G0 are upper triangular and that G0 contains a matrix whose eigenvalues are
+1 and −1. Proposition 9 in [Ro07] implies that Gr satisfies property (O). Rohrlich also
obtains asymptotic information on the behavior of ϑ(Gr) as r varies. This implies that the
number of r-primitive representations of Gr is bounded above and below by positive constant
multiplies of pr. These same results apply to the image of Gr in ∆r. This image will be a
subgroup of Hr by definition. As an example, the groups Hr and Br (defined in section 7.4,
part D) satisfy property (O).
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We can verify these facts for Hr by using proposition 7.4.4, which gives specific families
of orthogonal irreducible representations. All of the irreducible representations of Hr, except
for those whose degree is a power of p, are self-dual. To see this, it is enough to consider
just the r-primitive representations. We know that each such ρ occurs as a constituent in
σ|Hr for some r-primitive irreducible representation σ of ∆r and, if we assume that n(ρ) is
not a power of p, then ρ is the only constituent of its dimension. Since σ is self-dual, so is
σ|Hr . It follows that ρ must be self-dual too. Furthermore, ρ must be orthogonal. To see
this, note that since σ is orthogonal, so is σ|Hr . Remark 9.3.2 below then implies that ρ
must be orthogonal. Therefore, Hr indeed satisfies property (O). The number of self-dual,
r-primitive, irreducible representations of Hr is 2pr according to proposition 7.4.4.

For the group H ′
r, one can at least say something about the faithful, irreducible repre-

sentations ρ whose degree is br = (p − 1)pr. Those representations also must be self-dual
and orthogonal. The reason is that each such ρ occurs with multiplicity 1 in σ|H′r for some
irreducible representation σ of ∆r and is the unique irreducible constituent of degree br.
Remark 7.4.5 points out that the number of such representations of H ′

r is bounded above
and below by positive constant multiplies of pr.

The situation is much simpler for the group Br. Referring to the discussion in D1
of section 7.4, there is a unique faithful, irreducible representation γr. Obviously, γr is
self-dual. If 0 ≤ s < r, then we also get a self-dual representation of Br by regarding
γs as a representation of Br via the homomorphism Br → Bs. All the other irreducible
representations of Br are of the form γs ⊗ ψ, where ψ is a character of Br which has a
nontrivial restriction to the subgroup ker(Br → Bs). That restriction has p-power order.
The contragredient of γs⊗ψ is γs⊗ψ-1. The two representations are not isomorphic. This is
so because p is odd and hence the restrictions of ψ and ψ-1 to ker(Br → Bs) will be different.
Therefore, the irreducible, self-dual representations of Br are just the representations γs
where 0 ≤ s ≤ r. The fact that those are all orthogonal follows by a simple application of
the Frobenius-Schur identity, or from the fact that γs is the restriction to Bs (or Br) of a
representation σ ∈ Bs.

The groups Hr, H
′
r, and Br have the property that all of their self-dual irreducible

representations, excluding the two of dimension 1, have degree divisible by p − 1. This
statement (for the first two groups, at least) is actually a special case of a general theorem
proved in [CFKS]. Consider an open subgroupG of PGL2(Zp) whose image in ∆0 is contained
in B0. Then G has a normal pro-p subgroup P such that G/P is isomorphic to a subgroup
of (Z/pZ)×. Consider an irreducible representation ξ which factors through a finite quotient
group of G. Proposition 6.8 in [CFKS] implies that if ξ is self-dual and n(ξ) > 1, then ξ
is P -induced. This general theorem applies to the Hr’s and H ′

r’s by taking G to be H∞ or

H ′
∞. Such a result implies that ξ̃ss is isomorphic to a multiple of the regular representation
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of G/P over f. The argument is the same as for the isomorphism (7.4.b). [CFKS] proves the
same result in corollary 6.9 and exploits it in a way which seems quite parallel to the way it
has been used in this paper.

The group Hr has the unusual property that all of its irreducible representations of degree
divisible by p−1 are self-dual. This is not true for H ′

r and Br if r ≥ 1. We should also point
out a direct reason why the irreducible representations ξHr,ψ of Hr described in remark 7.4.3
are not self-dual. It is clear that the contragredient of ξHr,ψ is ξHr,ψ-1 , which was shown not
to be isomorphic to ξHr,ψ.

Remark 9.2.1. If p ≡ 3 (mod 4), then any ΠΩ-group ∆ will satisfy property (O). This
follows from the lemma after proposition 3 in [Ro07], a very special case of which asserts
that if ∆ is a finite group which contains a normal subgroup of odd order and index 2, then
∆ satisfies property (O). We can give another argument based on modular representation
theory if ∆ is a ΠΩ-group. Of course, Π is a normal subgroup of ∆ and we will regard Ω as
a subgroup of ∆. Let Ω′ be the subgroup of Ω of order 2 and let ∆′ = ΠΩ′, which contains
Π as a subgroup of index 2. We let η0 and η1 denote the two characters of ∆′/Π.

We will first show that ∆′ satisfies property (O). This is true for any odd prime p. Suppose
that ρ is a self-dual irreducible representation of ∆′ over F . Assume that ρ doesn’t factor
through ∆′/Π. Now Π has odd order and hence its only irreducible, self-dual representation
is π0 = 1Π. Therefore, ρ|Π is reducible. We must have ρ|Π ∼= π ⊕ π̌, where π ∈ IrrF(Π) and
π 6= π0. Thus, it follows that ρ ∼= Ind∆′

Π (π). Now n(π) = pa for some a ≥ 0. We then have
π̃ss ∼= π̃0

pa

as representations of Π over f. Since Ind∆′

Π (π0) ∼= η0 ⊕ η1, it follows that

ρ̃ss ∼= η̃p
a

0 ⊕ η̃p
a

1 .

Now consider ρ|Ω′ . It follows that the multiplicities of η0|Ω′ and η1|Ω′ in ρ|Ω′ are both equal
to pa. Now we use proposition 9.3.1 below. The representation η0|Ω′ is orthogonal and occurs
with odd multiplicity in ρ|Ω′ . Therefore, the underlying representation space for ρ|Ω′ cannot
have a nondegenerate Ω′-invariant, symplectic pairing. It follows that ρ itself cannot be
symplectic and hence is orthogonal.

If p ≡ 3 (mod 4), then [∆ : ∆′] = p−1
2

is odd. One can use proposition 9.3.4 below to
see that ∆ indeed satisfies property (O). However, if p ≡ 1 (mod 4), then one can easily
give examples of ΠΩ-groups which fail to satisfy property (O). For example, if Π is cyclic
of order p and if one defines the map θ : Ω → Aut(Π) so that ker(θ) = Ω′, then ∆ = Π ⋊θ Ω
has just one element of order 2. Since Ω′ is in the center of ∆, it is a normal subgroup. One
sees easily that ∆/Ω′ has at least one irreducible, self-dual representation of degree > 1, and
hence so does ∆. The two self-dual representations of degree 1 which factor through ∆/Π
are obviously orthogonal. The Frobenius-Schur identity then shows that ∆ must have at
least one irreducible, symplectic representation. ♦
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Remark 9.2.2. Assume that ∆ is a ΠΩ-group and let ∆′ = ΠΩ′ as defined in remark 9.2.1.
Thus, ∆/∆′ ∼= Ω/Ω′, a cyclic group of order p-1

2
. There is a certain subset of Irr

(sd)
F (∆)

which is closely related to Irr
(sd)
F (∆′). If σ is any irreducible representation of ∆, then

σ|∆′ decomposes as a direct sum of irreducible representations of ∆′, each occurring with
multiplicity 1. Those summands form an orbit for the action of Ω/Ω′. (These remarks

follow from propositions 9.10 and 9.12 in [Fei].) If σ ∈ Irr
(sd)
F (∆), then we will say that σ

is “∆′-orthogonal” if every irreducible constituent in σ|∆′ is self-dual. Those constituents
will be orthogonal since ∆′ satisfies property (O). It would be sufficient to require that just
one irreducible constituent be self-dual. Note that there are two self-dual 1-dimensional
representation of ∆. They factor through Ω and will be denoted by σ0 and σ1. Both are
∆′-orthogonal by definition.

Proposition 9.3.1 below has the following consequence. Assume that σ is an irreducible,
self-dual representation of ∆. If σ is ∆′-orthogonal, then σ is orthogonal. However, the
converse is not true in general.

Suppose that σ ∈ IrrF(∆). Let ρ be an irreducible constituent of σ|∆′ . Let π be an
irreducible constituent of ρ|Π and hence of σ|Π. The set of irreducible constituents of σ|Π is
the orbit of π under the action of Ω. The stabilizer for π under this action will be denoted
by Ωπ and will be called the Ω-stabilizer for π. If d = d(σ) is the length of this orbit, then

n(σ) = dpa for some a ≥ 0. Furthermore, one has an action of Ω̂ on IrrF(∆) defined by

tensoring. More precisely, the action is described by the map Ω̂×IrrF(∆) → IrrF(∆) defined

by sending (χ, σ) to σ ⊗ χ for χ ∈ Ω̂ and σ ∈ IrrF(∆). The Ω̂-orbit of σ has cardinality p−1
d

and consists of the irreducible constituents in Ind∆
Π(π). The stabilizer of σ under the action

of Ω̂ is the unique subgroup of Ω̂ of order d. These facts are explained in part A of section
7.4. We let Ω̂(2) denote the Sylow 2-subgroup of Ω̂.

Suppose that σ ∈ Irr
(sd)
F (∆). With the above notation, we will show that the following

statements are equivalent:

1. The representation σ is ∆′-orthogonal and n(σ) > 1.

2. The ratio p−1
d(σ)

is odd.

3. The Ω-stabilizer of π has odd order.

4. The Ω̂-stabilizer of σ contains Ω̂(2).

5. The Ω′-orbit of π has length 2 and consists of π and π̌.

In statement 1, the inequality n(σ) > 1 just means that σ doesn’t factor through Ω. Thus,

π 6= π0. Statements 2 and 3 are obviously equivalent. As remarked above, the Ω̂-stabilizer
of σ is the subgroup of Ω̂ of order d(σ). Thus, statement 4 means that |Ω̂(2)| divides d(σ),
which is equivalent to statement 2.
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Assume that statement 3 is satisfied. Let Ωπ denote the Ω-stabilizer of π. Then Ω′ 6⊂ Ωπ

and hence the Ω′-orbit of π has length 2. Since σ is self-dual, the Ω-orbit of π contains π̌.
Thus, for some α ∈ Ω, we have π̌ ∼= π ◦ ϕα, where we let ϕα denote the automorphism of Π
defined by conjugation by α. In fact, π̌ ∼= π ◦ ϕα is true for all α’s in a certain coset of Ωπ.
The contragredient of π ◦ ϕα is π̌ ◦ ϕα. Thus,

π ∼= π̌ ◦ ϕα ∼= π ◦ ϕ2
α

∼= π ◦ ϕα2 .

Thus α2 ∈ Ωπ and hence α ∈ Ω′Ωπ. Note that π̌ 6∼= π since Π has odd order and π 6= π0. It
follows that one can take α to be the nontrivial element of Ω′, and so statement 5 is true.
Conversely, if statement 5 is true, then the Ω′-orbit of π has length 2. Therefore, Ω′ 6⊂ Ωπ

which implies statement 3.
Statement 5 implies that Ind∆′

Π (π) is a self-dual, irreducible representation of ∆′. (See re-
mark 9.2.1.) It is the unique irreducible representation of ∆′ whose restriction to Π contains
π as a constituent. Thus, Ind∆′

Π (π) is an irreducible constituent in σ|∆′ . All the irreducible
constituents are of that form and hence are self-dual. Therefore, statement 1 is true. Con-
versely, statement 1 means that every irreducible constituent of σ|∆′ is isomorphic to IndΩ′

Π (π)
for some π whose Ω′-orbit contains π̌. Clearly, π is an irreducible constituent in σ|Π. It is
clear that statement 5 is then true.

The above equivalences have now been justified. As an additional comment, suppose
that ρ is an irreducible, self-dual representation of ∆′ and that n(ρ) > 1. We then have
ρ ∼= IndΩ′

Π (π), where π satisfies statement 5. The Ω-stabilizer of π has odd order and therefore
every irreducible constituent σ in Ind∆

Π(π) satisfies statement 2. Thus, the number of such
irreducible constituents is odd. Since Ind∆

Π(π) is self-dual, at least one such constituent (say,

σ) will be self-dual. The other constituents are isomorphic to twists σ ⊗ χ, where χ ∈ Ω̂. If

σ⊗χ is also self-dual, then σ⊗χ2 ∼= σ. Since the Ω̂-stabilizer of σ has index p−1
d(σ)

, which is again

odd, it follows that σ ⊗ χ ∼= σ. Therefore, Ind∆
Π(π) ∼= Ind∆

∆′(σ) has exactly one irreducible,
self-dual constituent. That is, there exists exactly one self-dual representations σ of ∆ such
that σ|∆′ has ρ an one of its irreducible constituents. By definition, that representation σ is
∆′-orthogonal. Both ∆ and ∆′ have two 1-dimensional, self-dual representations, although
σ0 and σ1 have the same restriction to ∆′ if p ≡ 1 (mod 4).

We use the notation θ∆′-orth(∆) to denote
∑
n(σ), where σ varies over all of the ∆′-

orthogonal irreducible representations of ∆. Since σ and σ|∆′ have the same degree, the
remarks in the previous paragraph give the following relationship:

θ∆′-orth(∆) = θorth(∆
′) .

Note also that all the elements of order 2 in ∆ are in ∆′. Furthermore, θsymp(∆
′) = 0
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according to remark 9.2.1. The Frobenius-Schur identity then implies that

θorth(∆) = θ∆′-orth(∆) + θsymp(∆)

and hence that ∆ satisfies property (O) if and only if every irreducible, self-dual represen-
tation of ∆ is ∆′-orthogonal. ♦

9.3 Some parity results concerning multiplicities.

Our next results concern the parity of the multiplicity for σ ∈ Irr
(sd)
F (∆) in an F -representation

space V for ∆. In the formulation, saying that an F -bilinear form B on V is ∆-invariant
means that B(δv1, δv2) = B(v1, v2) for all δ ∈ ∆ and all v1, v2 ∈ V .

Proposition 9.3.1. Suppose that V is a finite-dimensional representation space for ∆ over
F and that there is a non-degenerate, skew-symmetric, ∆-invariant, F-bilinear form B on
V . Suppose that σ is an orthogonal, irreducible representation of ∆. Then the multiplicity
of σ in V is even.

Proof. For any subspace W of V , we will let W⊥ denote the maximal subspace orthogonal
to W under the pairing for B. Suppose that the multiplicity of σ in V is positive. Let W
be a ∆-invariant subspace of V isomorphic to Wσ, the underlying representation space for
σ. The restriction of B to W is still skew-symmetric. Since σ is orthogonal, that restriction
must be trivial. That is, W ⊆ W⊥. Now W⊥ is also ∆-invariant and so we get a non-
degenerate ∆-invariant pairing W × V/W⊥ −→ F . Thus, V/W⊥ is a representation space
for ∆ isomorphic to Wσ̌. Since σ is self-dual, we see that the multiplicity of σ in V is at least
2. Let V ′ = W⊥/W . Then V ′ is also a representation space for ∆ and the multiplicity for σ
has been reduced by exactly 2. Now B induces a bilinear form B′ on V ′ in the obvious way,
and that form is nondegenerate, skew-symmetric, and ∆-invariant. The proposition follows
by induction. �

Remark 9.3.2. A virtually identical proof gives the following result.

Assume that V has a ∆-invariant, F-bilinear, non-degenerate pairing which is symmetric.
Let σ be a symplectic, irreducible representation of ∆. Then the multiplicity of σ in V must
be even.

We also remark that the proofs of both results are valid for representations over any field
of characteristic 0, or even odd characteristic. We will later apply proposition 9.3.1 to a
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situation where V is a Qp-representation for ∆. We obtain an F -representation space VF
by extending scalars: VF = V ⊗Qp F . By definition, if σ ∈ IrrF(∆), then the multiplicity of
σ in V refers to the multiplicity of Wσ as a direct summand in VF . Also, note that a Qp-
bilinear form B on V extends uniquely to an F -bilinear form BF on VF . Of course, BF is ∆-
invariant if and only if B is ∆-invariant. Similarly, BF is non-degenerate, symmetric, or skew-
symmetric if and only if B is non-degenerate, symmetric, or skew-symmetric, respectively.
♦

Remark 9.3.3. If σ ∈ Irr
(sd)
F (∆), then its Schur index over Qp will be 1 or 2. This follows

from the Brauer-Speiser theorem which states that the Schur index over Q is at most 2 when
σ is self-dual. If the Schur index for σ over Qp is 2 and if V is a Qp-representation space
for ∆,then the multiplicity of σ in V will be even. The Schur index over Qp can turn out
to be 2 for either orthogonal or symplectic σ’s. In contrast, if one considers an irreducible,
self-dual representation σ over C, its character is real-valued and its Schur index over R is
1 if σ is orthogonal and is 2 if σ is symplectic. (See [Se77], chapter 13.2.) ♦

We end this chapter with some results which will be useful in chapters 10 and 12. In
particular, we will sometimes apply the next two propositions to the groups G = D and
N = ∆, in the notation of section 3.5.

Proposition 9.3.4. Suppose that G is a finite group and that N is a normal subgroup of
G such that G/N is a cyclic group of odd order. Suppose that ρ is a self-dual irreducible
representation of G. Let σ be an irreducible constituent in ρ|N . Then σ is self-dual. If ρ is
orthogonal, then so is σ. If ρ is symplectic, then so is σ.

Furthermore, if σ is a self-dual irreducible representation of N , then there exists exactly
one self-dual irreducible representation ρ of G such that ρ|N has σ as a constituent. If σ is
orthogonal, then so is ρ. If σ is symplectic, then so is ρ.

Proof. The irreducible constituents in ρ|N form an orbit in IrrF(N) under the action of G/N
defined by conjugation. Since ρ is self-dual, so is ρ|N . Therefore, if σ is one of the irreducible
constituents of ρ|N , then σ̌ is also an irreducible constituent. The number of constituents is
odd and therefore at least one must be self-dual. It then follows that they are all self-dual.

All of the irreducible constituents in ρ|N occur with equal multiplicity and that multi-
plicity is known to be 1 if G/N is cyclic. This is proved in proposition 9.12 in [Fei]. Now
if ρ is orthogonal (respectively, symplectic), then we can apply proposition 9.3.1 or remark
9.3.2 to ρ|N to conclude that σ is orthogonal (respectively, symplectic). We remark that we
only need to know that σ has odd multiplicity in ρ|N , and this is known to be true if we just
assume that G/N has odd order.
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For the second part, note that if ρ is any irreducible constituent in IndGN(σ), where σ is
an irreducible representation of N , then n(ρ) = dn(σ), where d is the cardinality of the orbit
of σ. Each of those irreducible constituents has multiplicity 1 by Frobenius Reciprocity. The
number of such constituents is therefore odd. If σ is self-dual, then so is IndGN(σ). Pairing
each of those constituents with their contragredients, it follows that at least one of them
is self-dual. Call that constituent ρ. By the first part, ρ is orthogonal if and only if σ is
orthogonal.

Now suppose that ρ′ is a self-dual constituent in IndGN(σ). Then ρ ⊗ ρ′ is also self-dual.
We will show that ρ⊗ ρ′ contains 1G as a constituent, and therefore that ρ′ ∼= ρ̌ ∼= ρ. First
of all, ρ⊗ ρ′|N does contain 1N as a constituent. That is so because σ⊗ σ contains 1N . The
multiplicity is 1. This is true for all the irreducible constituents in ρ|N ∼= ρ′|N . It follows
easily that ρ ⊗ ρ′|N contains 1N as a constituent with multiplicity d. Thus, there exists at
least one irreducible constituent χ in ρ⊗ρ′ such that χ|N has 1N as a constituent. However,
using 9.12 in [Fei] again, it follows that χ must be of degree 1 and so χ|N = 1N . This means
that ker(χ) contains N . The number of such constituents χ in ρ ⊗ ρ′ must be d. Each of
them can regarded as a character of G/N . Since d is odd, at least one of those χ’s must
be self-dual. However, ρ ⊗ ρ′ is self-dual. Hence, at least one of the χ’s must be self-dual.
Since G/N has odd order, their is only one self-dual character of G/N , namely the trivial
character. Consequently, ρ⊗ ρ′ does indeed have 1G as a constituent. �

The next result will be stated in terms of the usual multiplicity pairing 〈ρ, ρ′〉G, which is
defined for all ρ, ρ′ ∈ RF(G). It is a Z-bilinear pairing. If ρ and ρ′ are absolutely irreducible,
one has 〈ρ, ρ′〉G = 1 if ρ ∼= ρ′ and 〈ρ, ρ′〉G = 0 otherwise. The pairing 〈·, ·〉N on RF(N),
where N is a subgroup of G, is defined in the same way.

Proposition 9.3.5. Suppose that G is a finite group and that N is a normal subgroup of G
such that G/N has odd order. Suppose that ρ and ρ′ are self-dual representation of G. Then

〈ρ|N , ρ′|N〉N ∼= 〈ρ, ρ′〉G (mod 2) .

Proof. Since N is a normal subgroup of G, IndGN(1N) is isomorphic to the regular represen-
tation of G/N , viewed as a representation of G. It follows that

IndGN(ρ′|N) ∼=
⊕

ε

(ρ′ ⊗ ε)n(ε) ,

where ε runs over all the irreducible representations of G/N . We use Frobenius Reciprocity,
obtaining the following equalities:

〈ρ|N , ρ′|N〉N = 〈ρ, IndGN(ρ′|N) 〉G = 〈ρ,
⊕

ε

(ρ′ ⊗ ε)n(ε) 〉G =
∑

ε

n(ε)〈ρ, ρ′ ⊗ ε〉G .
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The term where ε = ε0 gives the contribution 〈ρ, ρ′〉G. There is a theorem of Burnside which
asserts that a nontrivial absolutely irreducible representation of a finite group of odd order
cannot be self-dual. Thus, the terms where ε 6= ε0 occur in pairs: ε and ε̌. However, since ρ′

is self-dual, the contragredient of ρ′ ⊗ ε is isomorphic to ρ′ ⊗ ε̌. Also, since ρ is self-dual, we
have

〈ρ, ρ′ ⊗ ε̌〉G = 〈ρ, ρ′ ⊗ ε〉G
where we use the fact that 〈α̌, β̌〉G = 〈α, β〉G for any two representations α and β of G.
The stated congruence follows immediately. �

9.4 Self-dual representations and the decomposition map.

Let ∆ be a finite group. There is a refinement of the theorem of Brauer asserting that
the decomposition map d : RF(∆) → Rf(∆) is surjective. It will be useful in the proof of
corollary 12.1.3. As in Brauer’s theorem, we assume that F contains the m-th roots of unity,
where m is divisible by the orders of all elements of ∆. The groups RF(∆) and Rf(∆) have
natural involutions defined by sending an irreducible representation to its contragredient.
Thus, both groups have an action of a cyclic group C of order 2. We denote RF(∆)C and

Rf(∆)C by R(sd)
F (∆) and R

(sd)
f (∆), respectively. If ρ ∈ RepF(∆), then [ρ] ∈ R(sd)

F (∆) if and

only if ρ is self-dual. If υ ∈ Repf(∆), then [υ] ∈ R(sd)
f (∆) if and only if υ̌ss ∼= υss. Now

consider the induced map

d(sd) : R(sd)
F (∆) −→ R(sd)

f (∆) .

It turns out that this map is also surjective. The proof relies on another well-known theo-
rem of Brauer - his characterization of elements of RF(∆) in terms of their restrictions to
elementary subgroups of ∆.

We can identify RF(∆) with the character ring for ∆. This is a subring of the ring of
class functions on ∆ with values in Z[ζ], where ζ is a primitive m-th root of unity. If ρ is
any representation of ∆ over F , we will denote its character by χρ. The elements of RF(∆)
are differences χρ1 − χρ2 , where ρ1 and ρ2 are representations of ∆. We could write this as
χρ, where ρ = ρ1 ⊖ ρ2 is a “virtual” representation. One identifies a virtual representation
ρ with its character χρ. The ring Z[ζ] has an involution ι induced by ζ → ζ−1. Let Z[ζ]+

denote the subring of Z[ζ] fixed by that involution. If f is any function with values in Z[ζ],
then we will let f denote ι ◦ f . In particular, if ρ ∈ RF(∆), then it is well-known that

χρ̌ = χρ. Hence, ρ ∈ R(sd)
F (∆) if and only if χρ has values in Z[ζ]+. We then say that χρ is

real-valued.
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Let ∆reg be the set of elements in ∆ of order prime to p. The ring Rf(∆) can be identified
with the ring of Brauer characters, which is a subring of the Z[ζ]-valued class functions on
∆reg. If υ is a representation of ∆ over f, then its Brauer character χυ determines and is
determined by the isomorphism class of υss, i.e., by the class [υ] in Rf(∆). We can define
χυ if υ is a virtual representations for ∆ just as above. It is again true that χυ̌ = χυ and

so υ ∈ R(sd)
f (∆) if and only if χυ is real-valued. To show that d(sd) is surjective, it suffices

to show that if [υ] ∈ R(sd)
f (∆), then there exists a ρ ∈ RF(∆) such that χρ is real-valued

and χρ|∆reg = χυ. But this assertion is an immediate consequence of theorem 43 in [Se77].
One defines a class function χ on ∆ as follows: If g ∈ ∆, one can write g = rs, where
r ∈ ∆reg, s has p-power order, and rs = sr. Obviously, r and s are uniquely determined by
g. Define χ : ∆ → Z[ζ] by χ(g) = χυ(r). It is clear that χ is a class function on ∆, that
χ is real-valued, and that χ|∆reg = χυ. Using the characterization theorem of Brauer, Serre
verifies that there is indeed a ρ ∈ RF(∆) such that χ = χρ.

10 A duality theorem.

Suppose that K/F is a finite Galois extension and let D = Gal(K/F ). Suppose that E is
any elliptic curve defined over F . Fix a prime p. The weak Mordell-Weil theorem tells us
that SelE(K)p has finite Zp-corank. The Kummer map

E(K) ⊗Z

(
Qp/Zp

)
−→ SelE(K)p

is an injective D-equivariant map. Its cokernel is isomorphic to XE(K)p. Let XE(K) denote
the Pontryagin dual of SelE(K)p and YE(K) denote the Pontryagin dual of E(K)⊗Z

(
Qp/Zp

)
.

We then have a surjective map XE(K) → YE(K) which is D-equivariant. Therefore,
YE(K) ⊗Zp Qp is a quotient of XE(K) ⊗Zp Qp as a Qp-representation space for D. Of
course, the conjecture that XE(K)p is finite implies that those two spaces are isomorphic.

Both XE(K) ⊗Zp Qp and YE(K) ⊗Zp Qp are self-dual representation spaces for D. This
is obvious for YE(K) ⊗Zp Qp since it is dual to E(K) ⊗Z Qp and the character of that
representation space has values in Q. The fact that XE(K) ⊗Zp Qp is self-dual is proved
in [Dok4] by studying the change in Selmer groups under an isogeny. One can also give
a proof based directly on the Poitou-Tate duality theorems. One must show that if ρ ∈
IrrF(D), then ρ and ρ̌ have the same multiplicities in XE(K) ⊗Zp Qp. According to remark
4.3.2, those multiplicities are equal to the O-coranks of the Selmer groups SelE[p∞]⊗ρ(F ) and
SelE[p∞]⊗ρ̌(F ), respectively. One can compare those O-coranks by using the duality theorems.
A proof of the equality of those O-coranks is found in [Nek2], proposition 12.5.9.5. Nekovář
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assumes that n(ρ) = 1, but this is not really necessary in his argument. Proposition 2 in
[Gr94a] also implies the equality, but that result is only proved for the base field F = Q.
The argument is quite general in nature and can easily be modified to work over any number
field F .

Suppose that ρ ∈ IrrF(D). Let rE(ρ) denote the multiplicity of ρ in the F -representation
space E(K) ⊗Z F , or equivalently, in the representation space YE(K) ⊗Zp F . Let sE(ρ)
denote the multiplicity of ρ in XE(K)⊗Zp F . Of course, sE(ρ) might conceivably depend on
p. If the Tate-Shafarevich group XE(K) turns out to be finite, then sE(ρ) = rE(ρ), which
is independent of p. Conjecturally, this is so. As a consequence of self-duality, we have

(10.0.a) rE(ρ̌) = rE(ρ), and sE(ρ̌) = sE(ρ)

for all ρ ∈ IrrF(D). One can extend the definitions of rE(ρ) and sE(ρ) to all representations
ρ of D so that those functions behave additively for direct sums. Clearly, the equalities
(10.0.a) will continue to be true.

10.1 The main result.

Now assume that E has good, ordinary reduction at p. The main result of this chapter
concerns the Qp-representation space V = XE(K∞)⊗Zp Qp for G = Gal(K∞/F ), where K∞

is the cyclotomic Zp-extension of K. We will let ΓK denote Gal(K∞/K). If SelE(K∞)p is a
cotorsion Zp[[ΓK ]]-module, then V is finite-dimensional. We will show that V is then self-
dual. However, the result is more precise. In the formulation, let Kn denote the n-th layer in
K∞/K, where n ≥ 0. Thus, Gal(Kn/K) is cyclic of order pn. We let ΓKn = Gal(K∞/Kn),
the subgroup of index pn in ΓK . It will not be necessary to make the assumption that
K ∩ F∞ = F . As in section 3.5, we will continue to denote Gal(K∞/F∞) by ∆. We can
identify ∆ with a subgroup of D. In particular, if K ∩ F∞ = F , we will have ∆ = D. Here
is our main result. It is true even if p = 2.

Proposition 10.1.1. Suppose that SelE(K∞)p is cotorsion as a Zp[[ΓK ]]-module. Let G and
V be as defined above. Then V is a finite-dimensional, self-dual Qp-representation space for
G. Furthermore, if t is chosen large enough so that corankZp

(
SelE(Kt)p

)
is maximal, then

the Qp-representation space
W = ker

(
V −→ VΓKt

)

for G admits a Qp-bilinear, non-degenerate, skew-symmetric, G-invariant pairing.

As we will point out in the proof, VΓKt
is isomorphic to XE(Kt) ⊗Zp Qp as a Qp-

representation space for Gal(Kt/F ) and is therefore self-dual. That fact is one ingredient in
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the proof. Another ingredient is the Cassels-Tate pairing on XE(Kn)p for n ≥ t, which is
skew-symmetric. The existence of the skew-symmetric pairing on W will be derived from
the existence of the Cassels-Tate pairing for a sufficiently large value of n. The following
lemma is the key step in doing that. It concerns the existence of bilinear forms of a certain
type. We consider only skew-symmetric forms, which is what we will actually need, but
the analogous result is true for symmetric forms too, with essentially the same proof. We
will just assume that ∆ is a finite group, that G is a profinite group which contains ∆ as a
normal subgroup, and that G/∆ ∼= Γ. 0f course, we have in mind the situation discussed in
section 3.5.

If R is a commutative ring and B is an R-bilinear form on some R-module N , then we will
understand implicitly that the values of B are in R. If B is symmetric or skew-symmetric,
then {n ∈ N | B(n,N) = 0 } will be called the radical of B. It is an R-submodule of N . If
R = Zp and the radical of B is trivial, then B extends to a non-degenerate Qp-bilinear form
on the vector space N ⊗Zp Qp.

Lemma 10.1.2. Suppose that W is a Qp-representation space for ∆ and that L is a ∆-
invariant Zp-lattice in W . For every n ≥ 1, suppose that there exists a (Z/pnZ)-bilinear

form B̃n on L/pnL which is ∆-invariant and skew-symmetric, and whose radical has bounded
exponent as n → ∞. Then there exists a Qp-bilinear form B on W which is ∆-invariant,
skew-symmetric, and non-degenerate. Furthermore, suppose that W is a representation space
for G, that L is invariant under the action of G, and that the forms B̃n can be chosen to be
G-invariant. Then the form B can also be chosen to be G-invariant.

Proof. Let B be the Zp-module consisting of all skew-symmetric, Zp-bilinear forms on L.
Any element B ∈ B induces a skew-symmetric Qp-bilinear form on W . The group ∆ acts
naturally on B. If δ ∈ ∆, then the value of δ(B) at (x, y) is B(δ-1x, δ-1y). We must prove
the existence of an element B ∈ B which is ∆-invariant and such that the bilinear form on
W induced by B is non-degenerate.

For n ≥ 1, let Bn denote the Zp-module consisting of skew-symmetric, (Z/pnZ)-bilinear
forms on L/pnL. The group ∆ acts on Bn and the natural reduction map βn : B → Bn is

a surjective, ∆-equivariant homomorphism. Suppose that B̃n ∈ Bn satisfies the hypotheses
in the proposition. Let B′

n ∈ B be any inverse image of B̃n under the map βn. Define
Bn = N∆(B′

n), where N∆ is the norm map for the action of ∆ on B. Then Bn is ∆-

invariant. The image of Bn under βn is |∆|B̃n. We must just show that the radical of Bn is
trivial if n is sufficiently large. Then we take B to be the extension of Bn to W .

If the radical M of Bn is nonzero, then M is a Zp-submodule of L and must obviously be
a direct summand. Hence the image of M in L/pnL has exponent pn. However, the image
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of M is contained in the radical of |∆|B̃n, which has bounded exponent as n→ ∞. Thus, if
n is sufficiently large, the radical of Bn is indeed trivial.

For the second part, the group G is assumed to act on W continuously. Now G also acts
continuously on B and the Zp-submodule B∆ is invariant under that action. The set B∆

is a closed subset of B and hence is compact. It is sequentially compact. It is also a direct
summand of B as a Zp-module. The action of G on B∆ factors through Γ. Let γ be a
topological generator of Γ and let T = γ − idΓ, viewed as a Zp-linear map on B∆. Assume

that the forms B̃n are G-invariant. Then Bn, as defined above, is in B∆ and TBn ∈ pnB∆.
There exists a subsequence of the Bn’s which converges. Let B∞ ∈ B∆ be the limit of such
a subsequence. Then TB∞ = 0. It is clear that B∞ is G-invariant. Also, by using essentially
the same argument as above, one can verify that the radical of B∞ is trivial. We obtain the
desired B by extending B∞ to W . �

Proof of proposition 10.1.1. Mazur’s control theorem for the extension K∞/K asserts that
the restriction map

sn : SelE(Kn)p −→ SelE(K∞)ΓKn
p

has finite kernel and cokernel, both of bounded order. (See [Ma72] or [Gr99].) It is also
a Gal(Kn/F )-equivariant map. The assumption that SelE(K∞)p is cotorsion as a Zp[[ΓK ]]-
module implies that the Zp-corank of SelE(Kn)p is bounded as n → ∞, and hence becomes
constant for sufficiently large n. Let Mn denote the maximal divisible subgroup of SelE(Kn)p
and let An = SelE(Kn)p/Mn, a finite group. It follows that if t is chosen as in the proposition,
and if m ≥ n ≥ t, then the map Mn → Mm is surjective. Let M∞ = st(Mt) and let
A∞ = SelE(K∞)p/M∞. The map sn induces a map an : An → A∞. The above remarks
imply that |ker(an)| ≤ |ker(sn)| for n ≥ t and hence |ker(an)| is bounded as n→ ∞. Let

λ = corankZp

(
SelE(K∞)p

)
, λ0 = corankZp

(
M∞), λ1 = corankZp

(
A∞) .

Then λ = rankZp

(
XE(K∞)

)
= dimQp(V ) and λ0 + λ1 = λ.

Suppose that n ≥ t. The restriction map sn induces the dual map

ŝn : XE(K∞)ΓKn
−→ XE(Kn) ,

which also has finite kernel and cokernel. Since sn is Gal(Kn/F )-equivariant, so is ŝn. Hence,

VΓKn
∼= XE(Kn) ⊗Zp Qp

as representation spaces for Gal(Kn/F ). The theorem in [Dok4] cited previously therefore
implies that VΓKn

is a self-dual representation space for Gal(Kn/F ). For n ≥ t, we have
dimQp(VΓKn

) = λ0. Also, dimQp(W ) = λ1.
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We now study W . Assume that n ≥ t. From the definitions, we have

sn(Mn) = M∞ ⊆ SelE(K∞)ΓKn
p ⊆ SelE(K∞)p

and correspondingly, we have surjective maps

XE(K∞) −→ XE(K∞)ΓKn
−→ M̂∞ .

The kernel of the second map is finite and the kernel of the composite map is isomorphic to
Â∞. Therefore, we have an isomorphism

W ∼= Â∞ ⊗Zp Qp

as representation spaces for G. If µ
(
XE(K∞)

)
> 0, then the Zp-torsion subgroup of XE(K∞)

would be infinite, but it would be of bounded exponent. Let A∞,div be the maximal divisible
subgroup of A∞. Then A∞,div has finite Zp-corank, which is equal to dimQp(W ), and the

corresponding quotient A∞

/
A∞,div has finite exponent, say pu. Let L be the image of Â∞

in W . It is clear that L is a Galois-invariant Zp-lattice in W and that L ∼= Â∞,div. We will
use lemma 10.1.2 to get a bilinear pairing on W with the stated properties.

Note that for any n ≥ 1, L/pnL is the Pontryagin dual of A∞,div[p
n]. To define a bilinear

form on L/pnL with certain properties, it suffices to define such a form on A∞,div[p
n]. We

will omit the justification, which is not completely trivial. One helpful remark is that if Bn

is as in the proof of lemma 10.1.2, then the Pontryagin dual of (Bn)
∆ is (B̂n)∆, which may

have a different structure than (B̂n)
∆. However, it is enough to show that the kernel and

cokernel of the map (Bn)
∆ → (Bn)∆ has bounded order as n→ ∞, which is not difficult.

Now we have a map an : An → A∞ whose kernel is of bounded order as n varies. The
Cassels-Tate pairing on the group An defines a non-degenerate, skew-symmetric, Zp-bilinear
form on that group. That form is Gal(Kn/F )-invariant. We will use it to define a suitable
bilinear form on A∞,div[p

n]. Note that an
(
puAn) ⊂ A∞,div. We will show that the subgroup

an
(
puAn) of A∞,div is an approximation to A∞,div[p

n] in some sense.

Suppose that we have two sequences {Gn} and {Hn} of finite abelian groups and a
sequence of homomorphisms fn : Gn → Hn. We will say that this sequence {fn} of maps is
kc-bounded if the groups ker(fn) and coker(fn) have bounded exponent as n→ ∞. If such
a sequence {fn} exists, we will write {Gn} ∼ {Hn}. One example we need is the following.
For brevity, we write ΛK for Zp[[ΓK ]]. As usual, we can identify that ring with the formal
power series ring Zp[[TK ]], where TK = γK − idΓK

and γK is a fixed topological generator of
ΓK . Suppose that X = XE(K∞), a finitely generated, torsion ΛK-module. One can use the
classification theorem for such modules to study the growth of the groups XΓKn

as n varies.
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One does this factor-by-factor, reducing to modules of the form ΛK

/(
θ(TK)

)
, where θ(TK)

is a power of an irreducible polynomial in ΛK . This is rather straightforward to do. Some
special attention is needed for factors where the roots of θ(TK) are of the form ζ−1, ζ being a
p-power root of unity. We will omit the details. Applying this to X = XE(K∞), we see that
the Zp-rank of XΓKn

stabilizes and is equal to λ0 for n ≥ t. For the Zp-torsion submodules,

one can show that {(XΓKn
)tors} ∼ {

(
Z/pnZ

)λ1}. The corresponding kc-bounded sequence

of maps fn is not canonical. A second example that we need is that {(XΓKn
)tors} ∼ {Ân}.

This follows from Mazur’s control theorem. Also, Ân ∼= An as a group. Hence, in summary,

we have {An} ∼ {
(
Z/pnZ

)λ1}. Note that A∞,div[p
n] ∼=

(
Z/pn/Z

)λ1 .

The maps an defined above are canonical, and hence Galois-equivariant. The above
discussion shows that one can choose an integer v ≥ u so that an(p

vAn) ⊆ A∞,div[p
n].

Consider the map bn = pvan, which is a Galois-equivariant map from An to A∞,div[p
n].

Furthermore, the sequence {bn} of maps is kc-bounded. The last fact follows from the
remarks in the previous paragraph and the fact that ker(an) is of bounded order.

The assertion that W has a pairing with the stated properties is easily deduced from
lemma 10.1.2. We need to define (Z/pnZ)-bilinear, skew-symmetric, Galois-equivariant pair-
ings on the A∞,div[p

n]’s and this can be done using the maps bn. One uses the following two
observations: (1) Assume that one has a non-degenerate, bilinear form B1 on a finite abelian
group A1 and that A′

1 is a subgroup of A1 of exponent e. Then eB1 defines a bilinear form
B2 on A2 = A1/A

′
1. The radical of B2 will have exponent at most e. (2) Assume that one has

a bilinear form B2 on a finite abelian group A2, that the radical of B2 has exponent e, that
A3 is an abelian group containing A2 as a subgroup, and that A3/A2 has exponent f . Then
one obtains a bilinear form B3 on A3 by composing the map A3 × A3 −→ A2 × A2 defined
by multiplication by f with the form B2. The radical of the form B3 has exponent at most
ef 2. One uses observation (1) for the form B1 defined by the Cassels-Tate pairing on An to
obtain a bilinear form B2 on im(bn). One uses the form B2 and observation (2) to obtain a
bilinear form B3 on A∞,div[p

n]. It is clear that B3 will be skew-symmetric, Galois-invariant,
and that its radical will have exponent which is bounded as n varies.

Having shown that W has a non-degenerate, G-invariant, skew-symmetric, Qp-bilinear
form, it follows that W is self-dual as a representation space for G. Since V/W is also self-
dual, it follows that V is self-dual. �

The following corollary includes the duality relation mentioned in section 1.2. For the
second part, recall that λE(ρ) is defined for ρ ∈ IrrF(D) by the formula (3.5.a).

Corollary 10.1.3. Suppose that SelE(K∞)p is a cotorsion Zp[[ΓK ]]-module. If σ is an
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irreducible representation of ∆ = Gal(K∞/F∞), then λE(σ̌) = λE(σ). Also, if ρ is an
irreducible representation of D = Gal(K/F ), then λE(ρ̌) = λE(ρ).

Proof. The fact that V is self-dual as a ∆-representation space gives the first assertion. The
second follows immediately because the contragredient of ρ|∆ is ρ̌|∆. �

10.2 Consequences concerning the parity of sE(ρ).

We want to now discuss the parity of sE(ρ) for self-dual representations ρ. We will assume
that p is odd. We continue to let D = Gal(K/F ) and ∆ = Gal(K∞/F∞). The first part of
the following proposition concerns self-dual, irreducible representations ρ of D. In the last
part, ρ may be reducible.

Proposition 10.2.1. Suppose that p is odd and that SelE(K∞)p is Zp[[ΓK ]]-cotorsion.
Suppose that ρ is a self-dual, irreducible representation of D and that ρ is orthogonal. Suppose
that σ is an irreducible constituent in ρ|∆. Then

sE(ρ) ≡ λE(ρ) ≡ λE(σ) (mod 2) .

If ρ is any self-dual, orthogonal representation of ∆, then sE(ρ) ≡ λE(ρ) (mod 2).

Proof. We assume that ρ is irreducible until the last part of the proof. First of all, by
definition, we have λE(ρ) = |Orbρ| · λE(σ). Since |Orbρ| is a power of p, and hence odd, the
second congruence is obvious. Let t be as in proposition 10.1.1 and let ∆t denote the image
of ∆ in Dt = Gal(Kt/F ). We identify ∆ with ∆t. Thus, ∆t is a normal subgroup of Dt and
the order of Dt/∆t is a power of p. Consider the representation space XE(Kt) ⊗Zp Qp for
Dt, which we will denote by ρ′ in this proof. We know that ρ′ is self-dual. Regarding ρ as a
representation of Dt, it is clear that its multiplicity as a constituent in ρ′ is equal to sE(ρ).
According to proposition 9.3.5, we have the congruence

sE(ρ) = 〈ρ, ρ′〉Dt ≡ 〈ρ|∆t , ρ
′|∆t〉∆t (mod 2) .

However, regarding σ as a representation of ∆t, it is an irreducible constituent in ρ|∆t and
its orbit under the action of Dt/∆t is just Orbρ. Also, if σ1 and σ2 are in that orbit, then one
sees easily that sE(σ1) = sE(σ2), where these quantities are defined in terms of the action of
∆t on XE(Kt) ⊗Zp Qp. Thus,

〈ρ|∆t , ρ
′|∆t〉∆t = |Orbρ| · 〈σ, ρ′|∆t〉∆t ≡ sE(σ) (mod 2)
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since |Orbρ| is odd. Hence sE(ρ) and sE(σ) have the same parity. We must prove that sE(σ)
and λE(σ) also have the same parity.

We now use proposition 10.1.1. Let W be as defined there. Note that since ρ is or-
thogonal, proposition 9.3.4 implies that σ is orthogonal. Consequently, by proposition 9.3.1,
the multiplicity of σ in the ∆-representation space W is even. Also, VΓKt

is isomorphic to
XE(Kt) ⊗Zp Qp as a representation space for ∆. It follows that λE(σ) has the same parity
as the multiplicity of σ in XE(Kt) ⊗Zp Qp. Therefore, we indeed have

λE(σ) ≡ sE(σ) (mod 2)

which implies the stated congruence.
For the final statement, the representation ρ is isomorphic to a direct sum of irreducible

representations. Symplectic irreducible representations of D must occur with even multiplic-
ity as constituents in ρ by remark 9.3.2. Their contributions to both invariants will therefore
be even. The contributions of each orthogonal irreducible constituent to λE(ρ) and to sE(ρ)
will have the same parity. Any other irreducible constituent θ in ρ which is not self-dual
occurs with the same multiplicity as θ̌. According to corollary 10.1.3 and (10.0.a), their total
contribution to both λE(ρ) and to sE(ρ) will also be even. �

Remark 10.2.2. Suppose that L is a finite Galois extension of F of odd degree. Let ρ be a
self-dual Artin representation of GF and let ρ|L denote its restriction to GL. Then we have
the following useful congruences:

rE(ρ|L) ≡ rE(ρ) (mod 2), sE(ρ|L) ≡ sE(ρ) (mod 2), λE(ρ|L) ≡ λE(ρ) (mod 2) .

The last congruence makes sense only when the λ-invariants are defined. Remark 10.2.5
below extends the definition to all cases. For the proofs of the first two congruences, one
just uses proposition 9.3.5, taking ρ′ to be the self-dual representation space XE(K)⊗Zp Qp.
One must take K large enough so that ρ factors through Gal(K/F ) and also so that L ⊆ K.
One takes G = Gal(K/F ) and N = Gal(K/L). For the third congruence, one takes ρ′

to be the V occurring in proposition 10.1.1 (or in remark 10.2.5), G = Gal(K∞/F∞), and
N = Gal(K∞/L∞) in proposition 9.3.5. ♦

The situation if ρ is symplectic is interesting. The Schur index over Q for any such ρ is 2.
Consequently, it follows that rE(ρ) is even. Alternatively, if one regards ρ as a representation
over C instead of F , one could use the fact that the canonical height pairing on E(K)⊗Z R
is symmetric, nondegenerate and D-invariant. One can then apply the analogue of remark
9.3.2 to that representation space, replacing Qp by R and F by C. Since one expects that
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sE(ρ) = rE(ρ), it should also be true that sE(ρ) is even whenever ρ is symplectic. However,
this is not known in general. There is a p-adic height pairing on the Pontryagin dualXE(K) of
SelE(K)p. It is symmetric and D-invariant. It is conjectured to be nondegenerate (modulo
the torsion subgroup). If that is so, then we can extend that pairing to a Qp-bilinear,
symmetric, D-invariant, nondegenerate pairing on the vector space XE(K)⊗Zp Qp. Remark

9.3.2 would then imply that sE(ρ) is indeed even for every symplectic ρ ∈ Irr
(sd)
F (D). The

next proposition shows the same thing for the λE(ρ)’s.

Proposition 10.2.3. Assume that p is odd, that SelE(K∞)p is Zp[[ΓK ]]-cotorsion, and that

the p-adic height pairing on ̂SelE(K)p⊗Zp Qp is non-degenerate. Suppose that ρ is a self-dual,
irreducible representation of D and that σ is an irreducible constituent in ρ|∆. Then

sE(ρ) ≡ λE(ρ) ≡ λE(σ) (mod 2) .

for all ρ ∈ Irr
(sd)
F (D). In particular, if ρ is assumed to be symplectic, then λE(ρ) is even.

Proof. If we replace the base field F by Fm = K ∩ F∞ and ρ by ρ|Fm , then the congruences
to be proved are replaced by equivalent congruences. This follows from remark 10.2.2. Thus
we can assume at the start that K ∩ F∞ = F . Hence, we can write Γ instead of ΓK and
assume that G = ∆×Γ, D = ∆. Let X = XE(K∞) and let V = X⊗Zp Qp, as in proposition
10.1.1. There is a non-degenerate, Qp-bilinear, G-equivariant pairing V × V → Qp. For any
σ ∈ IrrF(∆), let Wσ denote the underlying F -representation space for σ. We regard Wσ as a
representation space for G by letting Γ act trivially. Let V ⊗ σ denote V ⊗Qp Wσ, regarded
as an F -representation space for G. We will also let X ⊗ σ denote X ⊗Zp Lσ, where Lσ is a
∆-invariant, and hence G-invariant, O-lattice in Wσ. We have a non-degenerate, F -bilinear,
∆-equivariant pairing Wσ ×Wσ̌ → F . The pairing is G-equivariant too. Therefore, we get
a non-degenerate, F -bilinear, G-equivariant pairing (V ⊗ σ)× (V ⊗ σ̌) → F . We then get a
non-degenerate, F -bilinear, Γ-equivariant pairing on the σ0-components:

(V ⊗ σ)∆ × (V ⊗ σ̌)∆ → F .

Note that (V ⊗ σ)∆ ∼= (V ⊗ σ)∆
∼= (X ⊗ σ)∆ ⊗Zp Qp, where the first isomorphism holds

because ∆ is finite and acts semisimply on any F -representation space.

Now (X⊗σ)∆ is the Pontryagin dual of
(
SelE(K∞)p⊗σ̌

)∆
. Let Xσ̌ denote the Pontryagin

dual of SelE[p∞]⊗σ̌(F∞) and let Vσ̌ = Xσ̌ ⊗Zp Qp. Using (4.3.b) for σ̌, we see that

(V ⊗ σ)∆ ∼= Vσ̌

as F -representation spaces for Γ. Proposition 4.3.1 asserts that dimF(Vσ̌) = λE(σ̌). If σ and
σ̌ are interchanged, we have a similar isomorphism and so we get a pairing

(10.2.a) Vσ̌ × Vσ → F .
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which is non-degenerate, F -bilinear, and Γ-equivariant. If one picks a Γ-invariant O-lattice in
Vσ, one can regard that lattice as a finitely-generated torsion ΛO-module, where ΛO = O[[Γ]],
and one can define the corresponding characteristic ideal Iσ. Now let ι be the involution of
Γ defined by ι(γ) = γ-1. This extends to an involution of the ring ΛO, which we also will
denote by ι. It is a continuous, O-algebra automorphism of that ring. If θ ∈ ΛO, its image
under ι will be denoted by θι. The pairing (10.2.a) implies that Iσ̌ = I ισ.

Suppose now that σ ∈ Irr
(sd)
F (∆). Then Vσ is self-dual as a representation space for Γ.

Also, the ideal Iσ is fixed by ι. A rather easy argument (found in [Gr91], proposition 1)
shows that a generator θE,σ for Iσ can be chosen so that

θE,σ
/
θιE,σ ∈ {±1}

This requires the assumption that p is odd. The ratio is uniquely determined by Iσ. We
temporarily denote it byW (E, σ). Choose a topological generator γ for Γ and let T = γ−γ-1,
a generator for the augmentation ideal in ΛO satisfying T ι = −T . Then ΛO can be identified
with the formal power series ring O[[T ]]. It then follows that the expansion of θE,σ requires
only even powers of T if W (E, σ) = 1 and only odd powers of T if W (E, σ) = −1. In
particular, if TmE(σ) is the highest power of T dividing θE,σ in ΛO, thenW (E, σ) = (−1)mE(σ).
Furthermore, the value of λE(σ) is determined by the first term where the coefficient is a
unit in O. Therefore, it follows that mE(σ) ≡ λE(σ) (mod 2). Hence W (E, σ) = WIwp

(E, σ)
and we have the “functional equation”

θιE,σ = WIwp
(E, σ) · θE,σ

for each σ ∈ Irr
(sd)
F (∆).

Now it is believed that corankZp

(
SelE(K∞)[T ]

)
= corankZp

(
SelE(K∞)[T k]

)
for any k ≥ 1,

a kind of semisimplicity statement for the Λ-module XE(K∞). In fact, Schneider proves in
[Sch] that this conjecture is equivalent to the nondegeneracy of the p-adic height pairing on

̂SelE(K)p, which he also defined. Thus, we may assume that this is the case. This means
that if we view T as an operator on V , then ker(T ) = ker(T k) for any k ≥ 1. The same
statement will be true when viewing T as an operator on Vσ. Therefore,

mE(σ) = dimF

(
V Γ
σ

)
= dimF

(
(Vσ)Γ

)
.

The action of ∆ and Γ on V commute. Thus, (Vσ)Γ
∼= (VΓ ⊗ σ)∆. Furthermore, Mazur’s

control theorem implies that the restriction map SelE(K)p −→ SelE(K∞)Γ
p has finite kernel

and cokernel. This implies that VΓ
∼= XE(K) ⊗Zp Qp. It follows that the multiplicities of σ

in the ∆-representation spaces VΓ and XE(K) ⊗Zp Qp are equal. That is, mE(σ) = sE(σ).
Since we also have mE(σ) ≡ λE(σ) (mod 2), the stated congruence follows. �
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Remark 10.2.4. A functional equation for a generator of the characteristic ideal of a Selmer
group like the one in the above proof first occurs in Mazur’s paper [Ma72]. The object of
study in [Ma72] is a Zp-extension F∞/F and a Λ-module closely related to SelE(F∞)p. If the
p-adic height pairing for E/F is non-degenerate, then Mazur’s functional equation implies
the congruence corankZp

(
SelE(F )p

)
≡ λE(F∞) (mod 2). It turns out that one can prove

that congruence just under the assumption that SelE(F∞)p is Λ-cotorsion. Such a proof is
given in [Guo]. See also proposition 3.10 in [Gr99]. ♦

Remark 10.2.5. It is not essential to assume that SelE(K∞)p is Zp[[ΓK ]]-cotorsion in
proposition 10.1.1 and the parity results. Without that assumption, one has a pseudo-
isomorphism

XE(K∞) ∼ Zp[[ΓK ]]r ⊕ YE(K∞)

as Zp[[ΓK ]]-modules, where r ≥ 0 and YE(K∞) denotes the torsion submodule of XE(K∞).
We will consider the Qp-representation space V = YE(K∞) ⊗Zp Qp for ∆ = Gal(K∞/F∞),
which of course coincides with the V in the proposition if r = 0. We want to show that
V is self-dual. It will be helpful to consider V = XE(K∞) ⊗Zp[[ΓK ]] L, where L denotes the
fraction field of Zp[[ΓK ]]. Thus, V is an L-representation space for ∆ and its dimension is
r. We will also prove that V is self-dual. Let χV denote the character for V . Thus, χV is a
function on ∆. Its values are in L, but must be algebraic over Qp, and hence are actually
in Qp too. This will be clear for a different reason in the next paragraph. A representation
space for ∆ over any field of characteristic zero is self-dual if and only if its character χ has
the following property: χ(δ) = χ(δ-1) for all δ ∈ ∆.

Let ZE(K∞) = XE(K∞)
/
YE(K∞), which is a torsion-free Zp[[ΓK ]]-module. It is pseudo-

isomorphic to a free Zp[[ΓK ]]-module of rank r. We obviously have V ∼= ZE(K∞) ⊗Zp[[ΓK ]] L

as L-representation spaces for ∆. Now ZE(K∞)ΓK
is a finitely-generated Zp-module of rank

r. The character χV is precisely the same as the character for the Qp-representation space
ZE(K∞)ΓK

⊗Zp Qp. Thus, we again see that its values are in Qp. For any n ≥ 0, let
φn : ΓK → Qp(µpn)× be a homomorphism whose kernel is ΓKn . Then φn can be extended
to a unique, continuous Zp-algebra homomorphism Z[[ΓK ]] → Zp[µpn ], which we also denote
by φn. Let In = ker(φn), an ideal in Z[[ΓK ]]. We then obtain a representation space(
ZE(K∞)

/
InZE(K∞)

)
⊗Zp[µpn ] Qp(µpn) for ∆ of dimension r over Qp(µpn). If n = 0, then

this representation space is the same as ZE(K∞)ΓK
⊗Zp Qp mentioned above. For any n ≥ 0,

its character is again χV . But viewing it as a Qp-representation space, the character is an ·χV ,
where an = [Qp(µpn) : Qp].

Let Mn be exactly as in the proof of proposition 10.1.1. If r ≥ 1, then the Zp-corank of
Mn will be unbounded. Define M∞ to be

⋃
n sn(Mn). For any n ≥ 0, the control theorem
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implies that the map
sn : Mn −→ MΓn

∞

has finite kernel and that sn(Mn) is precisely the maximal divisible subgroup of MΓn
∞ . It then

follows that the Zp-corank of Mn is equal to rpn + λ0 for all n ≥ t, where t is chosen so that
dimQp(VΓKt

) is maximal and λ0 is that dimension. It also follows that the Qp-representation
spaces

XE(Kn) ⊗Zp Qp, and
(
ZE(K∞)ΓKn

⊗Zp Qp

)
⊕ VΓKn

for ∆ are isomorphic for all n ≥ 0. Note that VΓKn
stabilizes when n ≥ t and its di-

mension is λ0. Also, note that ZE(K∞)ΓKn
⊗Zp Qp is isomorphic to the direct sum of the

Qp-representation spaces
(
ZE(K∞)

/
ImZE(K∞)

)
⊗Zp[µpm ] Qp(µpm) for ∆, where m varies in

the range 0 ≤ m ≤ n. Thus, the corresponding character is pnχV .

If we use the fact that both XE(Kt) ⊗Zp Qp and XE(Kt+1) ⊗Zp Qp are self-dual ∆-
representation spaces (using the result in [Dok4]), then we see that (pt+1 − pt)χV is the
character of a self-dual representation for ∆, and hence so is χV itself. Thus, V is indeed a
self-dual L-representation space for ∆. It then follows that VΓKt

is self-dual.

Now define An exactly as in the proof of proposition 10.1.1 and let A∞ = SelE(K∞)p
/
M∞.

As we’ve already said, the control theorem implies that sn(Mn) is the maximal divisible
subgroup of MΓn

∞ . It follows that the quotient MΓn
∞

/
sn(Mn) is finite and has bounded

order. This suffices to deduce that the maps an : An → A∞ induced by the sn’s have finite
kernel of bounded order. Choose n sufficiently large so that VΓn stabilizes. The proof that
W = ker(V → VΓt) has a non-degenerate, skew-symmetric, G-invariant pairing is now just
as before. We conclude again that V is self-dual.

For any σ ∈ IrrF(∆), we define λE(σ) to be the multiplicity of σ in the Qp-representation
space V and ̟E(σ) to be the multiplicity of σ in the L-representation space V . Of course,
in both cases, one may have to extend scalars suitably to define the multiplicity. Since V
and V are both self-dual, we have

λE(σ̌) = λE(σ), and ̟E(σ̌) = ̟E(σ)

for all σ ∈ IrrF(∆). Also, if ρ is an irreducible representation of Gal(K/F ), then one can also
define λE(ρ) and ̟E(ρ) in terms of ρ|∆. As in corollary 10.1.3, one finds the same equalities.

The above argument is valid even if p = 2. We will now assume that p is odd. One can
prove a congruence like the one in proposition 10.2.1 even if one omits the assumption that
SelE(K∞)p is Zp[[ΓK ]]-cotorsion, namely that

(10.2.b) sE(σ) ≡ λE(σ) + ̟E(σ) (mod 2)
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for all σ ∈ Irr
(sd)
F (∆) which are orthogonal. This follows easily from the earlier comments in

this remark. One uses the fact that the multiplicity of σ in ZE(K∞)ΓKn
⊗Zp Qp is pn̟E(σ),

which has the same parity as ̟E(σ). Furthermore, if ρ is a self-dual, orthogonal, irreducible
representation of Gal(K/F ), then we obtain the same congruence. ♦

11 p-modular functions.

Suppose that f : RF(∆) −→ A is a group homomorphism, where A is an abelian group.
Such a homomorphism is determined by specifying aσ = f(σ) ∈ A for each σ ∈ IrrF(∆).
Since IrrF(∆) is a basis for RF(∆), the aσ’s in A can be specified arbitrarily. If ρ is an
arbitrary representation of ∆ over F , then

f(ρ) =
∏

σ

amρ(σ)
σ

where mρ(σ) denotes the multiplicity of σ in ρ, the product varies over σ ∈ IrrF(∆), and we
are using a multiplicative notation for A. As previously, we let RepF(∆) denote the set of
representations for ∆ over F .

Definition. We will say that f is p-modular if the following statement is true: If
ρ1, ρ2 ∈ RepF(∆) and ρ̃1

ss ∼= ρ̃2
ss, then f(ρ1) = f(ρ2) .

Equivalently, f is p-modular means that f factors through the decomposition homomorphism
d : RF(∆) → Rf(∆). This means that one can define a homomorphism g : Rf(∆) → A such
that f = g ◦ d. One then has the formula

f(σ) =
∏

τ

g(τ)d(σ,τ)

for all σ ∈ IrrF(∆), where the product varies over all τ ∈ Irrf(∆).

One type of example is the following. Suppose that X is a finitely generated Zp[∆]-
module. We can define a homomorphism f = λX as in the introduction and chapter 2.
Proposition 2.1.5 is just the assertion that f is p-modular if and only if X is quasi-projective.

11.1 Basic examples of p-modular functions.

We now describe some very simple examples of p-modular functions which will turn out to
be useful in chapter 12. In addition to defining f , we will also give the corresponding g. We
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specify f by giving f(ρ) for all ρ ∈ RepF(∆) and g by just giving the values g(τ) for all
τ ∈ Irrf(∆).

11.1.1. Suppose that a ∈ A. Define f by f(ρ) = an(ρ). Define g by g(τ) = an(τ).

11.1.2. For any representation ρ of ∆ over F , det(ρ) is a 1-dimensional representation of
∆ over F . If τ ∈ Irrf(∆), then det(τ) is a 1-dimensional representation of ∆ over f. Suppose
that A is a group of roots of unity in F of order prime to p and that det(ρ) has values in A
for all ρ. Suppose that δ ∈ ∆. Define f by f(ρ) = det(ρ)(δ). To define the corresponding

function g, note that the reduction modulo m defines an isomorphism ι : A −→ Ã, where
Ã is a subgroup of f×. Also, one can show that det(τ) has values in Ã. This can be proved
by using the fact that the decomposition map d : RF(∆) −→ Rf(∆) is surjective. We can

define g by g(τ) = ι-1
(
det(τ)(δ)

)
. This works because d̃et(ρ) = det(ρ̃ss).

11.1.3. Suppose that ∆∗ is any subgroup of ∆ and that ϑ is some fixed element of Irrf(∆∗).
If ρ ∈ RepF(∆), let ρ∗ denote ρ|∆∗ . Then we obtain a semisimple representation ρ̃∗

ss of ∆∗

over f by reduction modulo m. Let A be the additive group Z. Define f by letting f(ρ) be
the multiplicity of ϑ in ρ̃∗

ss. Define g by letting g(τ) be the multiplicity of ϑ in τ∗ = τ |∆∗ .
11.1.4. Suppose that ∆∗ is a subgroup of ∆ of order prime to p. Let A be any group
and let f∗ : RF(∆∗) −→ A be any homomorphism whatsoever. We again let ρ∗ denote ρ|∆∗
for any ρ ∈ RepF(∆). Define f by f(ρ) = f∗(ρ∗). Then f is p-modular and one can take
g to be defined by g(τ) = f∗

(
d-1
∗ (τ∗)

)
. Here we use the fact that the decomposition map

d∗ : RF(∆∗) −→ Rf(∆∗) is an isomorphism because p ∤ |∆∗|. The map d-1
∗ is the inverse map

to d∗ and τ∗ denotes τ |∆∗ for any τ ∈ Irrf(∆).

The term p-modular will also be used in the following context. As in the introduction, we
let Irr

(sd)
F (∆) denote the set of irreducible, self-dual representations of ∆ over F . Let R(sd)

F (∆)

denote the subgroup of RF(∆) generated by self-dual representations. Thus, R(sd)
F (∆) is a

free Z-module with basis consisting of (i) all σ’s in Irr
(sd)
F (∆) together with (ii) all elements

of the form σ ⊕ σ̌, where σ ∈ IrrF(∆), but σ is not self-dual. One makes similar definitions

for representations over f: a subset Irr
(sd)
f (∆) of Irrf(∆) and a subgroup R(sd)

f (∆) of Rf(∆).

We let Rep
(sd)
F (∆) denote the set of self-dual elements of RepF(∆).

Now suppose that f : R(sd)
F (∆) −→ A is a group homomorphism, where A is an abelian

group. Such a homomorphism is determined by specifying f(σ) ∈ A for each σ in Irr
(sd)
F (∆)

and f(σ⊕σ̌) for all other σ’s in IrrF(∆). Often, one simply defines f(σ⊕σ̌) = idA for the non-

self-dual σ’s. We can restrict the decomposition homomorphism d to the subgroup R(sd)
F (∆)

obtaining a homomorphism d(sd) from that group to R(sd)
f (∆). We will say that f is p-modular

if it factors through d(sd). This means that there is a homomorphism g : R(sd)
f (∆) −→ A
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such that f = g◦d(sd). An equivalent characterization is just as in the definition given above,
but restricting ρ1 and ρ2 to be self-dual representations.

11.2 Some p-modular functions involving multiplicities.

The above group-theoretic observations will be useful in chapter 12. However, the arguments
in that chapter will require a more subtle ingredient which involves the parities of certain
multiplicities. We now consider the following arithmetic situation. As in chapter 5, let
Gv = GF∞,v , where v is a non-archimedean prime of F not lying over p. Let ϕ be an
absolutely irreducible representation of Gv. We are primarily interested in the ϕ’s for which
〈ρE,v, ϕ〉 > 0. Depending on the reduction type, such a ϕ is usually one-dimensional and of
order relatively prime to p. We will first study that case. The decomposition subgroup ∆v

of ∆ is a quotient of Gv. If ρ ∈ RepF(∆), we let ρv denote the restriction ρ|∆v , regarded
also as a representation of Gv. The multiplicity 〈ρv, ϕ〉 will play an important role and our
approach to studying it is to relate it to the multiplicity 〈ρ̃ssv , ϕ̃〉. We assume throughout
this chapter and the next that p ≥ 3. Here is one result that we will need.

Proposition 11.2.1. Suppose that ϕ and ψ are characters of Gv of order prime to p and
that ϕψ = ωjv for some integer j. Define a homomorphism

f : R(sd)
F (∆) −→ {±1}

by f(ρ) = (−1)〈ρv ,ϕ〉+〈ρv ,ψ〉 for all ρ ∈ Rep
(sd)
F (∆). Then f is p-modular.

If ∆v has order prime to p, then this result is quite obvious. For if χ is any irreducible
constituent in ρv, then 〈χ, ϕ〉 ≤ 1 and equality simply means that χ ∼= ϕ, and that is
equivalent to χ̃ = ϕ̃. However, if |∆v| is divisible by p (i.e., if v ∈ ΦK/F ), then it is possible
to have 〈χ̃ss, ϕ̃〉 ≥ 1 even if χ 6∼= ϕ. The proof of the proposition requires studying the
difference 〈χ̃ss, ϕ̃〉 − 〈χ, ϕ〉. A crucial role in the proof is played by the set

Ξ =
{
ξ | 〈ξ̃ss, ξ̃0〉 ≥ 1

}
,

where the ξ’s are assumed to be absolutely irreducible representations of Gv and ξ0 is the
trivial representation.

The next lemma shows that Ξ is an infinite set which can be described completely. We
use the notation from the beginning of section 8.2. Thus, Mv is a normal subgroup of Gv,
the kernel of ωv. We have wv = [Gv : Mv]. We also consider the unique subgroup Jv of Mv

characterized by the isomorphism Mv/Jv ∼= Zp. Then Jv is also a normal subgroup of Gv and
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has profinite order prime to p. Furthermore, the natural action (by inner automorphisms)
of Gv/Mv on Mv/Jv is given by the character ωv. Thus, we will write Mv/Jv ∼= Zp(1).
This action is faithful. The group Gv/Mv also acts faithfully on the Pontryagin dual of
Mv/Jv. Consequently, one sees easily that if π is any nontrivial character of Mv/Jv, then
the orbit of π under the action of Gv/Mv will have length wv. For any such π, it turns out
that ξ = IndGv

Mv
(π) is in Ξ. We include the easy verification of that fact in the proof of the

following lemma. The trivial character ξ0 of Gv is clearly in Ξ. The following lemma is valid
for any prime p.

Lemma 11.2.2. The nontrivial elements of Ξ are of the form ξ = IndGv
Mv

(π) for some
nontrivial character π of Mv factoring through Mv/Jv. The isomorphism class of ξ depends
just on the orbit of π under the action of Gv/Mv. We have ξ ⊗ ωv ∼= ξ for any nontrivial

element of Ξ. Furthermore, we have 〈ξ̃ss, ξ̃0〉 = 1 for all ξ ∈ Ξ.

Proof. We recall an easily proved result about induced representations. Suppose that M
is a normal subgroup of a group G and has finite index. Let w = [G : M]. Suppose that
ψ is an absolutely irreducible representation of M. If g ∈ G, then the inner automorphism
of G defined by g, restricted to M, is an automorphism of M. Composing ψ with that
automorphism of M gives another absolutely irreducible representation of M which de-
pends (up to isomorphism) only on the coset gM. Thus, one obtains absolutely irreducible
representations ψ1, ..., ψw of M. Then

IndG
M(ψ) is an absolutely irreducible representation of G if and only if ψ1, ..., ψw are mutually

non-isomorphic representations of M.

It follows that ξ = IndGv
Mv

(π) is an absolutely irreducible representation of Gv if π is a
nontrivial character of Mv factoring through Mv/Jv. The dimension of this representation
is wv. If π0 denotes the trivial representation of Mv, then IndGv

Mv
(π0) also has dimension wv,

but is isomorphic to the regular representation of Gv/Mv, a direct sum of the 1-dimensional
representations ωjv, 0 ≤ j ≤ wv-1. This is reducible if wv > 1. Since π̃ ∼= π̃0, the trivial

representation of Mv/Jv over f, it follows that ξ̃ss is just the regular representation of Gv/Mv

over f, which is semisimple. That is, we have

(11.2.a) ξ̃ss ∼=
wv-1⊕

j=0

ω̃v
j

and so 〈ξ̃ss, ξ̃0〉 = 1 since the characters ω̃v
j for 0 ≤ j < wv are all distinct. Hence, ξ ∈ Ξ.

For ξ = ξ0, it is obvious that 〈ξ̃ss, ξ̃0〉 = 1, and so ξ0 ∈ Ξ.
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We next prove that each nontrivial ξ ∈ Ξ is induced from some π. First we show that
if ξ ∈ Ξ, then Jv ⊆ ker(ξ). Now Jv is a normal subgroup of Gv and has profinite order
relatively prime to p. Therefore the restriction ξ|Jv factors through a finite quotient group
of Jv of order prime to p. Since ξ is absolutely irreducible, that restriction is isomorphic to a
direct sum of irreducible representations of Jv over F , all of which are conjugate under the
action of Gv/Jv. Their reductions modulo m remain irreducible. Since ξ̃ is assumed to have

ξ̃0 as a composition factor, ξ̃|Jv must have ξ̃0|Jv as a direct summand. It follows that one
and hence all of the irreducible constituents of ξ|Jv are trivial and therefore ker(ξ) indeed
contains Jv. Thus, ξ factors through Gv/Jv.

Since Mv/Jv is abelian, ξ|Mv is a direct sum of 1-dimensional characters, all conjugate
under the action of Gv/Mv. If π is one of them, then ξ is a direct summand of IndGv

Mv
(π).

If π 6= π0, then that induced representation is absolutely irreducible and therefore we have
ξ ∼= IndGv

Mv
(π). If π = π0, then the induced representation is isomorphic to the direct sum

of all of the distinct 1-dimensional representations of Gv/Mv, only one of which is in Ξ,
namely ξ0. Thus, ξ = ξ0 in that case. The first assertion in the lemma is proved. The second
assertion is clear. For the third assertion, note that ξ⊗ωv ∼= IndGv

Mv
(π⊗ωv|Mv). Since ωv|Mv

is trivial and 1-dimensional, we have ξ ⊗ ωv ∼= ξ. The final statement is a consequence of
(11.2.a). �

The next three lemmas follow from Lemma 11.2.2 and are needed to prove proposition
11.2.1. The first two are almost immediate. Note that if ξ is an absolutely irreducible
representation of Gv and χ = ξ ⊗ ϕ, where ϕ is a character of Gv of order prime to p, then
〈χ̃ss, ϕ̃〉 = 〈ξ̃ss, ξ̃ss0 〉. Hence 〈χ̃ss, ϕ̃〉 is positive if and only if ξ ∈ Ξ.

Lemma 11.2.3. Assume that ϕ is a character of Gv which has order prime to p. Assume
that χ is an irreducible representation of Gv. Then 〈χ̃ss, ϕ̃〉 = 1 if χ ∼= ξ⊗ϕ for some ξ ∈ Ξ.
If χ doesn’t have that form, then 〈χ̃ss, ϕ̃〉 = 0.

Lemma 11.2.4. Assume that ϕ is a character of Gv which has order prime to p. Assume
that χ ∼= ξ ⊗ ϕ for some nontrivial ξ ∈ Ξ. Then χ ⊗ ωv ∼= χ. Furthermore, 〈χ̃ss, ω̃vjϕ̃〉 = 1
for all integers j.

Lemma 11.2.5. Suppose that ϕ and ψ are as in the proposition and that ρ ∈ Rep
(sd)
F (∆).

Then 〈ρ̃vss, ϕ̃〉 − 〈ρv, ϕ〉 = 〈ρ̃vss, ψ̃〉 − 〈ρv, ψ〉.

Proof of lemma 11.2.5. The restriction ρv is still self-dual. We write

ρv ∼=
⊕

χ

χm(χ)
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where χ varies over IrrF(∆v) and m(χ) = 〈ρv, χ〉. Since ρ is assumed to be self-dual, we
have m(χ̌) = m(χ), where χ̌ denotes the contragredient of χ. For any character ϕ of order
prime to p, we have

〈ρ̃vss, ϕ̃〉 − 〈ρv, ϕ〉 =
∑

χ6=ϕ

m(χ)〈χ̃ss, ϕ̃〉 .

A similar formula is valid for ψ. If χ factors through a quotient group of ∆v of order prime
to p, then 〈χ̃ss, ϕ̃〉 6= 0 if and only if χ = ϕ. Thus, we can consider the above sum as a
sum over all χ’s which do not factor through such a quotient group. We denote that subset
of IrrF(∆v) by Jv in this proof. The only nonzero contribution comes from χ’s of the form
χ = ξ ⊗ ϕ, where ξ is a nontrivial element of Ξ. For each such term, we have 〈χ̃ss, ϕ̃〉 = 1.

As χ varies over Jv, so does χ̌. Note that if χ = ξ⊗ϕ as above, then ξ̌ is also a nontrivial
element of Ξ and χ̌ ∼= ξ̌ ⊗ ϕ-1. One then has 〈˜̌χ, ϕ̃-1〉 = 1. By lemma 11.2.4, we have

〈˜̌χss, ω̃vjϕ̃-1〉 = 1. Since ψ = ωjvϕ
-1, it follows that 〈χ̃ss, ϕ̃〉 = 〈˜̌χss, ψ̃〉 for all χ ∈ Jv. The

equality stated in the lemma follows from these observations. �

Proof of proposition 11.2.1. We use lemma 11.2.5 in the weaker form of a congruence

(11.2.b) 〈ρv, ϕ〉 + 〈ρv, ψ〉 ≡ 〈ρ̃vss, ϕ̃〉 + 〈ρ̃vss, ψ̃〉 (mod 2).

under the assumptions in the proposition. Consequently, we have

f(ρ) = (−1)〈fρv ,eϕ〉+〈fρv , eψ〉 .

To finish the proof, it is sufficient to note that the function fϑ : R(sd)
F (∆) → Z defined by

f(ρ) = 〈ρ̃v, ϑ̃〉 is p-modular for ϑ = ϕ̃ or ϑ = ψ̃. This follows immediately from 11.1.3, where
we take ∆∗ = ∆v. �

As one example where the hypotheses in proposition 11.2.1 are satisfied, suppose that E
has good reduction at v. One can then take ϕ = φv and ψ = ψv. We have ϕvψv = ωv. More
generally, one can just assume that E has potentially good reduction at v, that ρE,v(Gv) is
abelian, and that ϕv and ψv are the 1-dimensional constituents in ρE,v.

Remark 11.2.6. The assumption that ϕ and ψ have order prime to p is not needed in
the above proposition and lemmas. The proposition is trivial if ϕ, and therefore ψ, have
order divisible by p. In that case, F∞,v would have a cyclic extension with ramification index
divisible by p. By local class field theory (or ramification theory), this is only possible if F∞,v

contains µp. This means that ωv is trivial. Hence ψ = ϕ-1 and any self-dual representation ρv
contains both ϕ and ψ with equal multiplicity, and therefore f(ρ) = 1 for all ρ ∈ Rep

(sd)
F (∆).
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Also, the multiplicities of ϕ̃ and ψ̃ in ρ̃v are equal and hence lemma 11.2.5 is still valid. One
also sees easily that lemmas 11.2.3 and 11.2.4 still hold. ♦

We will use some additional properties of the representations in Ξ. First note that if
ξ ∈ Ξ, then ξ|Mv is a direct sum of distinct characters of Mv/Jv, the characters in one orbit
under the action of Gv/Mv. If ξ 6= ξ0, then the orbit has cardinality wv. If π is in that
orbit, then π 6= π0 and ξ ∼= IndGv

Mv
(π). If we assume that p is odd, then that orbit contains

π-1 if and only if wv is even. Hence if ξ is a nontrivial element of Ξ, and p is odd, then ξ is
self-dual if and only if wv is even. We can now prove the following proposition concerning
two-dimensional ϕ’s.

Proposition 11.2.7. Suppose that ϕ is an irreducible representation of Gv of dimension 2,
that im(ϕ) is finite and of order prime to p, and that p is odd. Define a homomorphism

fϕ : R(sd)
F (∆) −→ {±1}

by fϕ(ρ) = (−1)〈ρv ,ϕ〉 for all ρ ∈ Rep
(sd)
F (∆). Then:

(i) If wv is odd and ϕ̌ ∼= ϕ⊗ ωjv for some integer j, then fϕ is p-modular. This is also valid
if ϕ is 1-dimensional.

(ii) If wv is divisible by 4, ϕ|Mv is reducible, and det(ϕ) = ωjv for some integer j, then fϕ
is p-modular.

(iii) If ψ = ϕ⊗ ωjv for some integer j, then fϕfψ is p-modular.

Proof. For (i) and (ii), we will prove the congruence

〈ρv, ϕ〉 ≡ 〈ρ̃v, ϕ̃〉 (mod 2)

which together with 11.1.3 implies that fϕ is p-modular. Note that ϕ̃ is an irreducible
representation of Gv. To establish the congruence, it suffices to show that if χ is an irreducible
constituent in ρv and χ 6∼= ϕ, then: (a) χ̌ 6∼= χ and (b) the multiplicities of ϕ̃ in χ̃ss and in
˜̌χss are the same. The contributions of those multiplicities to 〈ρ̃v, ϕ̃〉 − 〈ρv, ϕ〉 will then be
even. We will need the following lemma which will play the same role as lemma 11.2.3.

Lemma 11.2.8. Assume that ϕ is as in proposition 11.2.7, that χ is an irreducible repre-
sentation of Gv, that χ 6∼= ϕ, and that 〈χ̃ss, ϕ̃〉 ≥ 1. If ϕ|Mv is irreducible, then χ ∼= ξ⊗ϕ for
some nontrivial ξ ∈ Ξ. If ϕ|Mv is reducible, then χ ∼= IndGv

Mv
(πα) where α is a character of

Mv which occurs as a constituent in ϕ|Mv and π is a nontrivial character of Mv of p-power
order.
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We remark that one can have 〈χ̃ss, ϕ̃〉 = 2. One has ω̃v
jϕ̃ ∼= ϕ̃ if and only if ωjvϕ

∼= ϕ. Such
an isomorphism can happen for one or two values of j.

Proof of lemma 11.2.8. If ϕ|Mv is irreducible, then so is ϕ|Jv . This is so because im(ϕ) has
order prime to p and hence ϕ(Jv) = ϕ(Mv). Assume that χ is an irreducible representa-
tion of Gv such that χ̃ss has ϕ̃ as a summand. The same thing is true for their restrictions
to Jv, which has profinite order prime to p. It follows that ϕ|Jv is a constituent in χ|Jv .
Consequently, there exists a subgroup Nv of Mv such that Jv ⊂ Nv, [Mv : Nv] is finite,
and ϕ|Nv is a constituent in χ|Nv . Frobenius reciprocity implies that χ|Mv and IndMv

Nv
(ϕ|Nv)

have an irreducible constituent in common. Now Mv/Nv is cyclic of p-power order. There-
fore, IndMv

Nv
(ϕ|Nv) is a direct sum of the representations ϕ|Mv ⊗ π, where π varies over the

characters of Mv/Nv, and one of those representations is a constituent in χ|Mv . Frobenius
reciprocity then implies that χ is a direct summand in IndGv

Mv
(π ⊗ ϕ|Mv) = ξ ⊗ ϕ, where

ξ = IndGv
Mv

(π). If π is nontrivial, then ξ is irreducible, and so we then indeed have χ ∼= ξ⊗ϕ

for some ξ ∈ Ξ. To see that π 6= π0, note that IndGv
Mv

(π0)⊗ϕ is isomorphic to the direct sum
of the representations ωv ⊗ ϕ. If χ is one of the direct summands, then |im(χ)| is prime to
p. Hence χ 6∼= ϕ implies that 〈χ̃ss, ϕ̃〉 = 0.

The argument when ϕ|Mv is reducible is quite similar. One sees that for one of the
irreducible constituents α in ϕ|Mv , and for some character π of Mv/Jv, the character πα of
Mv is a constituent in χ|Mv . Therefore, χ is a constituent in IndGv

Mv
(πα) for some character

π of Mv/Jv. Again, π 6= π0 since χ 6∼= ϕ. �

For the proof of part (i) of proposition 11.2.7, we first note that since ϕ has dimension
2 and [Gv : Mv] is odd, it follows that ϕ|Mv is irreducible. Hence, if 〈χ̃ss, ϕ̃〉 ≥ 1, then
χ ∼= ξ ⊗ ϕ for some ξ ∈ Ξ. If ξ 6= ξ0, we then have

χ̌ ∼= ξ̌ ⊗ ϕ̌ ∼= ξ̌ ⊗ ωjv ⊗ ϕ ∼= ξ̌ ⊗ ϕ ,

where the last isomorphism follows from lemma 11.2.2 since ξ̌ ∈ Ξ. Assuming ξ 6= ξ0, the
irreducible constituents of both χ̃ss and ˜̌χss will be the irreducible representations ϕ̃ ⊗ ω̃v

i,
where 0 ≤ i < wv. Hence, we have 〈˜̌χss, ϕ̃〉 = 〈χ̃ss, ϕ̃〉. This proves assertion (b). To prove
(a), note that χ ∼= IndGv

Mv
(π⊗ϕ|Mv) and χ̌ ∼= IndGv

Mv
(π-1⊗ϕ|Mv) for some nontrivial character

π of Mv/Jv. Also, since im(ϕ) has order prime to p, the isomorphism class of π ⊗ ϕ|Mv

determines π. Since conjugation by elements of Gv/Mv obviously fixes ϕ|Mv and the orbit
of π doesn’t contain π-1, it follows that indeed χ̌ 6∼= χ.

For part (ii), lemma 11.2.8 implies that if 〈χ̃, ϕ̃〉 ≥ 1 and χ 6∼= ϕ, then χ ∼= IndGv
Mv

(πα),
where α is one of the two constituents in ϕMv . Since det(ϕ)|Mv is trivial, the other constituent
is α-1. One sees easily that α-1 6= α. Now χ̌ ∼= IndGv

Mv
(π-1α-1). To show that χ̌ 6∼= χ, it is

enough to show that πα and π-1α-1 are not in the same orbit under the action (by conjugation)
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of Gv/Mv. It is the assumption that 4|wv which implies this. The isomorphism class of πα,
or of π-1α-1, determines both π and α since the order of α is prime to p. Now Gv/Mv is
cyclic and the action on the orbit {α, α-1} is through the unique quotient group of Gv/Mv

of order 2. Suppose that conjugation by g ∈ Gv sends πα to π-1α-1. Then conjugation by g
must send π to π-1 and α to α-1. The first property implies that gMv has order 2 in Gv/Mv.
Hence gMv is in the unique subgroup of index 2 and hence conjugation by g fixes α. But
α 6= α-1. This establishes (a). As for (b), that assertion follows by essentially the same
argument as in part (i). One can note that the orbit of π-1α-1 contains a character of Mv

of the form π′α for some character π of Mv/Jv and hence χ̌ ∼= IndGv
Mv

(π′ ⊗ α). It is then

clear that the multiplicities of ϕ̃ in χ̃ss and ˜̌χss both are equal to the multiplicity of ϕ̃ in
β̃ss, where β = IndGv

Mv
(α), which establishes (b).

Finally, to prove part (iii), it suffices to prove the congruence

〈χ, ϕ〉 + 〈χ, ψ〉 ≡ 〈χ̃, ϕ̃〉 + 〈χ̃, ψ̃〉 (mod 2)

for all χ ∈ IrrF(∆v). We may assume that ϕ 6∼= ψ, since the congruence is obvious otherwise.
If the right side is 0, then so is the left. Hence we may assume that at least one of the
irreducible representations ϕ̃ or ψ̃ is a constituent in χ̃, say ϕ̃. If χ is isomorphic to ϕ or ψ,
then im(χ) has order prime to p, χ̃ is irreducible, and the two sides of the congruence are
clearly equal. Thus, we assume that χ is not isomorphic to ϕ or ψ, but 〈χ̃, ϕ̃〉 ≥ 1. The left
side of the congruence is then zero. By lemma 11.2.8, either χ ∼= ϕ⊗ ξ for a nontrivial ξ ∈ Ξ
or χ ∼= IndGv

Mv
(πα) for a suitable α. In either case, χ⊗ ωjv

∼= χ. Therefore,

〈χ̃, ψ̃〉 = 〈χ̃⊗ ω̃jv, ϕ̃⊗ ω̃jv〉 = 〈χ̃, ϕ̃〉

and so the right side of the congruence is also even. �

Remark 11.2.9. The special case of proposition 11.2.7(i) where ϕ = ωv will come up in
remark 12.2.2 which in turn is used in part C of section 13.3. The argument can be made
almost transparent in this case. We assume that wv is odd. It suffices to show that 〈ρv, ωv〉
and 〈ρ̃v, ω̃v〉 have the same parity. One can assume that 〈ρ̃v, ω̃v〉 is positive. The irreducible
constituents of ρv which make a nontrivial contribution to 〈ρ̃v, ω̃v〉 must be of the form ξ⊗ωv,
where ξ ∈ Ξ. According to lemma 11.2.2, if ξ 6= ξ0, then ξ ⊗ ωv ∼= ξ. Also, ξ cannot be
self-dual. For ξ is induced from some character π of Mv, ξ̌ is induced from π-1, and the
assumption that wv is odd easily implies that the orbit of π under the action of Gv

/
Mv

cannot contain π-1.

Now since ρ is assumed to be self-dual, so is ρv. Thus, if ξ occurs as a constituent in ρv,
then so does ξ̌, and the multiplicities will be equal. If ξ 6= ξ0, then ξ̌ 6∼= ξ. The contributions
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to 〈ρ̃v, ω̃v〉 coming from ξ and ξ̌ will both be 1. The total contribution coming from all such
pairs ξ and ξ̌ will be even and hence the parity of 〈ρ̃v, ω̃v〉 is determined by the one remaining
contribution, which is from ξ0 ⊗ ωv. That contribution is exactly 〈ρv, ωv〉. ♦

12 Parity.

This chapter will include results concerning the parity of λE(ρ) and sE(ρ) under the hy-
pothesis that ρ is a self-dual Artin representation of GF . The results are conditional in that
our approach requires the assumption that SelE(K∞)[p] is finite, where K is chosen so that
the representations being considered factor through Gal(K/F ). Roughly speaking, our main
result is that the standard parity conjectures are compatible with congruence relations. We
assume that p is odd throughout this chapter. We also assume that E has good, ordinary
reduction at the primes of F lying above p.

For brevity, we let Art(sd)(F ) denote the set of self-dual Artin representations of GF . We
first introduce four functions from Art(sd)(F ) to {±1}. Our results will primarily concern
three of them. One function is the so-called “root number” associated with the L-function
L(E/F, ρ, s) for E and ρ over F . The analytic continuation and functional equation for
such L-functions is still conjectural in most cases, but the corresponding root number has a
precise definition given by Deligne in [Del]. Our discussion will be based on formulas due to
Rohrlich which are derived from that definition. We denote the value of that function at ρ
by WDel(E, ρ).

One should note that the definition of WDel(E, ρ) is really for a self-dual representation ρ
of GF over the field C of complex numbers. For our arguments, and also for the statements
of the conjectures and propositions, the representations ρ which we consider are defined over
a field F which is a finite extension of Qp. We will arbitrarily fix an embedding of F into C.
Thus, if ρ is a self-dual representations over F , then we can also view ρ as a representation
over C. Rohrlich [Ro08] has proven that the value of WDel(E, ρ) is independent of the choice
of embedding.

The other three functions are defined as follows:

WMW(E, ρ) = (−1)rE(ρ), WSelp
(E, ρ) = (−1)sE(ρ), WIwp

(E, ρ) = (−1)λE(ρ)

for an arbitrary Artin representation ρ. The definitions of rE(ρ) and sE(ρ) can be found at
the beginning of chapter 10. The definition of λE(ρ) is in section 3.5, extending the definition
in section 1.2. These definitions don’t assume that ρ is self-dual, but our propositions will
require that assumption.
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We will almost always require that ρ be orthogonal. Now ρ may be reducible, and we
say that ρ is orthogonal if the underlying representation space Wρ has a nondegenerate,
GF -invariant F -bilinear form which is symmetric. Equivalently, this means that if θ is any
irreducible constituent in ρ, then either (i) θ is self-dual and orthogonal, or (ii) θ is self-dual,
symplectic, and occurs with even multiplicity, or (iii) θ is not self-dual and both θ and θ̌
have the same multiplicity in ρ.

Assuming just that ρ is self-dual, the following equalities should be true:

WMW(E, ρ) = WSelp
(E, ρ), WSelp

(E, ρ) = WIwp
(E, ρ), WIwp

(E, ρ) = WDel(E, ρ) .

Actually, the first equality should hold for any ρ and is certainly true if XE(K)p is finite,
where we chooseK so that ρ factors through Gal(K/F ). We will say nothing more about that
equality. Concerning the second equality, what we can say is covered by proposition 10.2.1
for orthogonal representations and 10.2.3 for symplectic representations. The assumption
in those results that ρ be irreducible is not important. One can easily reduce to that case.
We will study the third equality in this chapter. Our main result states that, under certain
hypotheses, the ratio WIwp

(E, ·)
/
WDel(E, ·) defines a p-modular function.

If D is a finite group, we use the notation Rep
(sd)
F (D) to denote the set of all finite-

dimensional, self-dual representations of D over F . We let R(sd)
F (D) denote the subgroup of

RF(D) generated by Rep
(sd)
F (D). Thus, R(sd)

F (D) is a free Z-module with a basis consisting

of (i) all ρ’s in Irr
(sd)
F (D) together with (ii) all elements of the form ρ⊕ ρ̌, where ρ ∈ IrrF(D),

but ρ is not self-dual. If we have a function f with values in the group {±1} defined on

the set Irr
(sd)
F (D), then we will automatically extend it to a group homomorphism f from

R(sd)
F (D) to {±1} by defining f(ρ ⊕ ρ̌) = 1 for all the non-self-dual ρ ∈ IrrF(D). This is

already built into the definitions of WMW(E, ·), WSelp
(E, ·) and WIwp

(E, ·), as one can see
from (10.0.a) and corollary 10.1.3, and is also a known property of WDel(E, ·). In that case,
it follows from proposition 8, part (iii), in [Ro96].

12.1 The proof of theorem 3.

Fix a finite Galois extension K/F . The following hypothesis will be needed in the proof of
proposition 12.1.1 for the primes v of F lying over 2 or 3. It should be unnecessary, but the
formulas for the local root numbers that we use don’t cover all cases for such v’s. Only (i)
involves the field K.

Hypv: Either (i) v 6∈ ΦK/F , or (ii) E is semistable at v, or (iii) E has potentially
multiplicative reduction at v, or (iv) Gal(Fv(E[p])/Fv) is abelian.
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The proof is rather long and uses results from chapters 9, 10, and 11 as well as the earlier
chapters. As before, we let D = Gal(K/F ) and identify ∆ = Gal(K∞/F∞) with a subgroup
of D by the restriction map.

Proposition 12.1.1. Assume that p is odd and that Hypv is satisfied for all primes v of F
lying over 2 or 3. Assume that SelE(K∞)[p] is finite. Suppose that ρ1, ρ2 ∈ Rep

(sd)
F (D) and

that ρ̃1
ss ∼= ρ̃2

ss. Then WIwp
(E, ρ1) = WDel(E, ρ1) if and only if WIwp

(E, ρ2) = WDel(E, ρ2).

The following lemma will be used and may be of independent interest. We state it
for WDel(E, ·), but the analogous results for WMW(E, ·), WSelp

(E, ·), and WIwp
(E, ·) follow

immediately from remark 10.2.2. The proof reduces to a local argument which uses formulas
of Rohrlich for some of the primes v of F . For the primes v where E has potentially good
reduction, but not good reduction, we are grateful to Rohrlich for providing us with most of
the rather long argument, and an outline of the rest. In fact, his argument works for all primes
v, but requires some additional steps when E has multiplicative or potentially multiplicative
reduction at v. For those primes, we decided to directly use Rohrlich’s formulas instead. The
statement of the lemma is more general than we need. We will apply it to the case where
L = Fn, a cyclic extension of degree pn, where n will be chosen to be sufficiently large.

Lemma 12.1.2. Suppose that L is a finite Galois extension of F and that [L : F ] is odd.
Let ρ ∈ Art(sd)(F ) and let ρ|L denote the restriction of ρ to GL. Then ρ|L ∈ Art(sd)(L) and
we have

WDel(E, ρ|L) = WDel(E, ρ) .

Proof. The proof uses the factorization

(12.1.a) WDel(E, ρ) =
∏

v

Wv(E, ρ)

over all the primes v of F . The factors Wv(E, ρ) are in {±1}, the so-called local root numbers,
which we denote below by WFv(E, ρ). Those factors are only defined when ρ is self-dual. We
also use the analogous factorization for WDel(E, ρ|L) over the primes of L. Suppose that v
is any prime of F . We let Lv denote the completion of L at any prime lying over v. Then
[Lv : Fv] is also odd. We will show that

(12.1.b) WLv(E, ρ|L) = WFv(E, ρ)

for all self-dual ρ. Here we are using subscripts Lv and Fv to avoid confusion. These local
root numbers depend only on the restrictions of ρ to GLv and GFv , respectively. Establishing
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(12.1.b) for all primes v of F will suffice because the quantities are ±1 and there are an odd
number of primes of L lying over each such v. Hence the corresponding contributions to the
product formulas for WDel(E, ρ) and WDel(E, ρ|L) will indeed be equal.

The results that we will need about local root numbers come mostly from [Ro96], theorem
2 and proposition 8. We need the formulas for both Fv and Lv, but state them just for Fv. If
v is archimedean, then one has WFv(E, ρ) = (−1)n(ρ) (from [Ro96], theorem 2). It is obvious
that WLv(E, ρ|L) = WFv(E, ρ). If we now assume that v is a nonarchimedean prime of F
where E has good reduction, then one has WFv(E, ρ) = ϑ(−1), where ϑ = det(ρ). Here ϑ is
regarded as a character of GFv and also identified with the character of F×

v corresponding
to it by local class field theory. (See [Ro96], proposition 2.) A similar formula is valid if we
restrict ρ to GLv . By local class field theory, the corresponding character of L×

v is ϑ◦NLv/Fv ,
where NLv/Fv is the norm map. Hence, WLv(E, ρ|L) = ϑ

(
NLv/Fv(−1)

)
. Since [Lv : Fv] is

odd, NLv/Fv(−1) = −1, and so (12.1.b) is verified.

Now assume that ordv(jE) < 0. We then use the following formula from theorem 2 of
[Ro96]:

WFv(E, ρ) = det(ρFv)(−1) · ϕ(−1)n(ρ) · (−1)〈ϕ, ρFv 〉 .

Our notation differs from that in [Ro96]. Here we let ρFv denote the restriction of ρ to GFv ,
and the character ϕ occurring in this formula is of order 1 or 2. Although it is not important
now, the character ϕ is determined by its restriction to Gv and that restriction is precisely
the character ϕvω

-1
v occurring in section 5.2. We view ϕ as a character of GFv or of F×

v . A
similar formula is valid for WLv(E, ρ|L). The roles of ρFv and ϕ are then played by their
restrictions to GLv , which we denote by ρLv and ϕLv , respectively. Since ρFv and ϕ are both
self-dual, we can use proposition 9.3.5, obtaining

〈ρLv , ϕLv〉 ≡ 〈ρFv , ϕ〉 (mod 2) .

The equality WLv(E, ρ) = WFv(E, ρ) follows from this congruence and the previous argu-
ments given for the case of good reduction at v.

Assume now that ordv(jE) ≥ 0. Thus, E has potentially good reduction at v. Let
n = n(ρ). The trivial representations of GFv and GLv will be denoted by 1Fv and 1Lv ,
respectively. Let n = [Lv : Fv]. Consider the virtual representations

αFv = ρFv − n · 1Fv , αLv = ρLv − n · 1Lv .

They have degree 0. The local root numbers behave well with respect to induction for virtual
representations of degree 0. The justification for this can be found in [Ro94], property ǫ2 on
page 142. One should use that property in conjunction with equation (3.1) in [Ro96], noting
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that since we are assuming that E has potentially good reduction at v, one can write σE/Fv

in place of σ′
E/Fv

. This justifies the second equality below.

WLv(E, ρ|L)WLv(E)−n = WLv(E,αLv) = WFv

(
E, IndFv

Lv
(αLv)

)

Here we write WLv(E) for WLv(E,1Lv), which is just the local root number for E over Lv.
We can simplify the rest of the argument by using the fact that Gal(Lv/Fv) is a solvable
group. This is true because it is a local Galois group, (or, alternatively, because it has odd
order). Therefore, for the proof of the (12.1.b), it is enough to consider the case where the
extension Lv/Fv is cyclic of odd degree. We then have

(12.1.c) WLv(E, ρ|L)WLv(E)−n =
∏

ε

WFv

(
E,αFv ⊗ ε

)
,

where the product varies over the characters ε of Gal(Lv/Fv). There are [Lv : Fv] such
characters. The factor for ε = ε0 is WFv

(
E,αv) = WFv(E, ρ)WFv(E)−n.

For any ε, the definition of the corresponding local root number is

WFv(E,αFv ⊗ ε) = W
(
σE ⊗ αFv ⊗ ε

)
,

where σE is the canonical 2-dimensional representation of the Weil-Deligne group associated
to E, as defined on page 329 in [Ro96]. (It is denoted by σE/Fv there.) The function
W (·) is defined in [Ro94], chapter 12. The representation σE is self-dual and has trivial
determinant. For brevity, let γv,ε = σE ⊗ αFv ⊗ ε, whose contragredient is γv,ε-1 . This is a
virtual representation of the Weil-Deligne group and has degree 0. Its determinant can be
defined. Since αFv has degree 0, one sees easily that det(αFv ⊗ ε) = det(αFv). The values
of det(αFv) are in {±1} and since σE has degree 2, we have det(γv,ε) = det(σE) = 1Fv . One
also has

W
(
γv,ε
)
W
(
γv,ε-1

)
= det

(
γv,ε
)
(−1) = 1 .

This follows from part (i) in the lemma on page 144 in [Ro94], taking into account the fact
that γv,ε has virtual degree 0. If ε is nontrivial, then ε 6= ε-1 since [Lv : Fv] is odd. Therefore,
grouping the factors for ε and for ε-1 together on the left side of (12.1.c), we have

WLv(E, ρ|L)WLv(E)−n = WFv(E, ρ)WFv(E)−n ,

and so (12.1.b) is equivalent to the assertion that WLv(E)n = WFv(E)n.

We will prove that WLv(E) = WFv(E), which will then complete the proof of (12.1.b)
and hence of lemma 12.1.2. If E has good reduction over Fv, then E has good reduction
over Lv, and this implies that WLv(E) = 1, WFv(E) = 1. (See the proposition in chapter 19

188



of [Ro94].) Thus, no further argument is needed. We assume now that E has bad reduction
over Fv. We will use a global argument (suggested by Rohrlich) to complete the proof.
Suppose that S = ΨE, the set of primes of F where E has bad reduction. The Grunwald-
Wang theorem ([NSW], 9.2.3) implies that there exists a cyclic extension L of F with the
following properties: (i) there exists just one prime of L lying over v and the corresponding
completion of L is Lv, (ii) all other primes in S split completely in L/F . It follows that
[L : F ] = [Lv : Fv], which is odd. Denoting the global root numbers for E over L and over
F by WDel(E/L) and WDel(E/F ), respectively, we have

WDel(E/L) =
∏

ε

WDel(E, ε) = WDel(E/F ) ,

where ε now runs over all the characters of Gal(L/F ). The first equality is a consequence of
the fact that the global root number is unchanged by induction from a subgroup. (A proof
of this can be found in [Ro09].) The first term is the root number for E and the trivial
representation 1L of GL. The second term is the root number for E and for the regular
representation of Gal(L/F ), which can be regarded as IndGF

GL
(1L). The second equality

follows by grouping the factors for ε and ε-1 when ε is nontrivial. One can then use part (iii)
in proposition 8 of [Ro96] together with the fact that ε⊕ ε-1 is a symplectic representation.

On the other hand, WDel(E/L) and WDel(E/F ) can both be expressed as products of local
root numbers over all the primes of L or of F . The contributions from the unique prime of
L lying above v, and from v itself, are WLv(E) and WFv(E), respectively. We prove that
WLv(E) = WFv(E), by showing that the contributions to the products from all other primes
w of F , and the primes of L lying above such a w, are equal. The contributions for any
w where E has good reduction, and for primes of L lying over w, are all 1’s. If w is an
archimedean prime of F or a prime in S other than v, then w splits completely in L/F . For
any such w, the contribution to the product for WDel(E/L) is WFw(E)[L:F ]. Since [L : F ] is
odd, this contribution is equal to WFw(E), which is the corresponding contribution to the
product formula for WDel(E/F ). This completes the proof of lemma 12.1.2. �

Proof of proposition 12.1.1. By lemma 12.1.2 and remark 10.2.2, we are free to replace the
ground field F by Fn for any n ≥ 0. We make that replacement so that the restriction map
from ∆ to D is an isomorphism. Thus, we can identify ∆ with D. We will assume that the
primes in ΦK/F are inert in F∞/F . Letting ∆v = Gal(K∞,v/F∞,v) and Dv = Gal(Kv/Fv), we
will furthermore assume that the restriction map defines an isomorphism from ∆v to Dv for
all v ∈ ΦK/F . Such a replacement is clearly possible. We make these simplifying assumptions
from here on. Thus, we can now identify representations of D with representations of ∆.
Similarly, we can identify the restrictions of those representations to Dv and to ∆v for any
v ∈ ΦK/F .
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Consider the homomorphism f : R(sd)
F (D) −→ {±1} which is defined as follows: For a

self-dual representation ρ, let f(ρ) = WIwp
(E, ρ)

/
WDel(E, ρ). Under the stated assumptions,

we must show that f(ρ1) = 1 if and only if f(ρ2) = 1. This is equivalent to showing that f
is p-modular.

Let Σ0 = ΦK/F . We define λE(ρ), λΣ0
E (ρ), δΣ0

E (ρ), and δE,v(ρ) for any ρ ∈ RepF(D) by
making them additive for direct sums. They all have values in Z. We then have

(12.1.d) WIwp
(E, ρ) = (−1)λE(ρ) = (−1)λ

Σ0
E (ρ)(−1)δ

Σ0
E (ρ) = (−1)λ

Σ0
E (ρ)

∏

v∈Σ0

(−1)δE,v(ρ) .

We have used (5.0.b) from chapter 5 together with the fact that the gv’s are odd. As
mentioned before, we have WIwp

(E, ρ) = 1 if ρ ∼= θ ⊕ θ̌ for some θ ∈ IrrF(D). Note however
that the other factors occurring above are not necessarily all 1’s for such a ρ. For example,
it is not always true that δE,v(θ̌) = δE,v(θ), or even that they have the same parity.

Using (12.1.d) and the product formula for WDel(E, ρ), we have

(12.1.e) f(ρ) = (−1)λ
Σ0
E (ρ)

∏

v 6∈Σ0

Wv(E, ρ)
∏

v∈Σ0

(
Wv(E, ρ)(−1)δE,v(ρ)

)
.

We will show that each individual factor in the above product is p-modular. The quantity
within each large parenthesis in the last product must be taken together as one factor. For
the first factor, we only need to recall that the function f1 defined by f1(ρ) = λΣ0

E (ρ) is
p-modular. This follows from proposition 3.2.1.

The p-Modularity for v 6∈ Σ0. We first consider the primes v lying over p or ∞. For an
archimedean prime v, one has Wv(E, ρ) = (−1)n(ρ) (from [Ro96], theorem 2), which certainly
defines a p-modular function (by 11.1.1). If v|p, then E has good reduction at v and one has
Wv(E, ρ) = det(ρ)(−1) for all v|p, as stated in the proof of lemma 12.1.2. Thus, applying
11.1.2 with A = {±1} and using the assumption that p is odd, we see that the function
Wv(E, ·) is p-modular for all v|p.

Now assume that v doesn’t lie above p or ∞, but still that v 6∈ Σ0. The index of the
inertia subgroup of ∆v (in ∆v) is not divisible by p. Therefore, since v 6∈ Σ0, the order of
∆v is also not divisible by p. Now Wv(E, ρ) is determined by the restriction of ρ to Dv, but
[Dv : ∆v] is odd and so by applying (12.1.b) to v, it follows that Wv(E, ρ) is determined by
the restriction of ρ to ∆v. We can then use 11.1.4 for ∆∗ = ∆v to conclude that the function
Wv(E, ·) is p-modular. Thus, the subproduct in (12.1.e) over all v 6∈ Σ0 defines a p-modular

function on R(sd)
F (∆).

The p-Modularity for v ∈ Σ0. The formulas found in [Ro96] are expressed in terms of
the restriction of ρ to Dv. Some of the formulas only involve the degree or determinant
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of ρ, and the p-modularity then follows quite easily. For the primes v ∈ Σ0, our initial
reduction at the beginning of this proof allows us to identify ∆v with Dv. Hence we can
state Rohrlich’s formulas in terms of ρ|∆v , which we will denote by ρv in the rest of this proof.
This identification is useful simply because various other representations which intervene in
the argument are only defined over F∞,v. It will also be convenient sometimes to regard ρv
as a self-dual representation of Gv.

For brevity, we use the notation

Av(ρ) = Wv(E, ρ) · (−1)δE,v(ρ) .

We will also use the notation from section 5.2. Recall that we have defined an irreducible
representation ϕv there, and also ψv in some cases. Those representation(s) of Gv occur as
subrepresentations of ρE,v, usually with multiplicity 1. The multiplicity will be 2 in the case
where E has good or potentially good reduction, ϕv is 1-dimensional, and ψv = ϕv.

If E has good reduction at v, then we have Wv(E, ρ) = det(ρ)(−1). The functionWv(E, ·)
is therefore p-modular by 11.1.2. On the other hand, in this case, we have

(12.1.f) δE,v(ρ) ≡ 〈ρv, ϕv〉 + 〈ρv, ψv〉 (mod 2) .

Since ϕv and ψv have order prime to p, and ϕvψv = ωv, we can apply proposition 11.2.1 to
conclude that the function f defined by f(ρ) = (−1)δE,v(ρ) is p-modular. It follows that the
function Av(·) is p-modular.

If E has multiplicative or potentially multiplicative reduction at v, then Rohrlich’s for-
mula (from theorem 2 of [Ro96]) is

Wv(E, ρ) = det(ρv)(−1) ·
(
ϕvω

-1
v (−1)

)n(ρ) · (−1)〈ϕvω-1
v , ρv〉 .

The first two factors define p-modular functions by 11.1.2 and 11.1.1, but the third factor
might actually fail to be p-modular. However, we have δE,v(ρ) ≡ 〈ρv, ϕv〉 (mod 2) and so

(−1)〈ϕvω-1
v , ρv〉(−1)δE,v(ρ) = (−1)〈ρv ,ϕvω-1

v 〉+〈ρv ,ϕv〉 ,

which defines a p-modular function according to proposition 11.2.1. The hypothesis in that
proposition is satisfied because ϕvω

-1
v is a character of order 1 or 2. It follows that the

function Av(·) is p-modular, as we wanted to show. Note that our arguments so far work
even if v divides 2 or 3.

Now we come to the case where E has potentially good reduction at v, but not good
reduction. Assume first that the image of Gv under ρE,v is abelian. In that case, there are
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two (non necessarily distinct) characters ϕv and ψv which are constituents in ρE,v. We have
ϕvψv = ωv. Rohrlich proves the formula Wv(E, ρ) = det(ρv)(−1) · χv(−1)n(ρ) in this case,
where χv is a certain character of GFv . This is proved in [Ro07]. If v doesn’t lie above 2 or
3, this was already proved in [Ro96], but the proof in [Ro07] includes all v’s if im(ρE,v) is
abelian. (See the proof of proposition 3, especially equation (1.6).) Such a formula defines a
p-modular function of ρ. The proof that Av(·) is p-modular is now just like the case where
E has good reduction at v, again just using proposition 11.2.1 and (12.1.f). This argument
works for p ≥ 5. But if p = 3, it is possible that ϕv and ψv will have order divisible by p. In
that case, one can apply remark 11.2.6.

It remains to discuss the case where v ∈ Σ0 and E has potentially good reduction at v,
but where the image of ρE,v is non-abelian. The assumption in proposition 12.1.1 concerning
Hypv implies that v doesn’t lie over 2 or 3. The inertia subgroup Θv of Gal(F∞,v(E[p])/F∞,v)
is then a cyclic group of order e, where e ∈ {3, 4, 6}. The value of e is determined by
ordv

(
disc(E)

)
. We then have the following formula from [Ro96]:

(12.1.g) Wv(E, ρ) = det(ρv)(−1) · (−ǫ)n(ρ) · (−1)〈ρv ,χ0〉+〈ρv ,η〉+〈ρv ,σ̂e〉 ,

where ǫ ∈ {±1}, η is the unramified character of Gv of order 2, and σ̂e is a certain 2-
dimensional representation of Gv. Rohrlich defines this on page 329 of [Ro96] as a repre-
sentation of GFv which factors through a certain extension with Galois group isomorphic to
the dihedral group D2e. That extension is tamely ramified, the inertia subgroup is cyclic of
order e, and σ̂e is the unique irreducible 2-dimensional representation of the Galois group.
Also, det(σ̂e) = η. We can consider σ̂e as a representation of Gv.

As before, 11.1.1 and 11.1.2 imply that the first two factors in (12.1.g) define p-modular
functions. We don’t need the definition of ǫ for this. We will consider the functions a and b
on R(sd)

F (∆) defined by

a(ρ) = (−1)〈ρv ,χ0〉+〈ρv ,η〉, b(ρ) = (−1)〈ρv ,σ̂e〉

separately. If wv is even, then η is a power of ωv, and so one can apply proposition 11.2.1 to
see that the function a is p-modular. If wv is odd, then one can apply part (i) of proposition
11.2.7 to both ϕ = χ0 and ϕ = η to conclude that a is p-modular function. The function b
is not necessarily p-modular. However, it is the function c defined by

c(ρ) = (−1)〈ρv ,σ̂e〉+δE,v(ρ) ,

which we must show is p-modular. The p-modularity of Av(·) follows from that.
Note that δE,v(ρ) ≡ 〈ρv, ϕv〉 (mod 2), where now ϕv coincides with ρE,v in the notation

of chapter 5. Thus, using the notation of proposition 11.2.7, we have c = fσ̂efϕv . Assume
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first that p ≥ 5. We consider p = 3 later. The assumptions in the first sentence of that
proposition are then satisfied for both ϕ = σ̂e and for ϕ = ϕv. Now σ̂e is self-dual and
has determinant η. Also, det(ϕv) = ωv and hence ϕ̌v ∼= ϕv ⊗ ω-1

v . If wv is even, then the
restriction of σ̂e to Mv is clearly reducible. The same is true for ϕv since the action of
Gal(F∞,v(E[p])/F∞,v)

/
Θv on Θv is through a quotient group of order 2. It follows that if wv

is odd or if 4 | wv, then both fσ̂e and fϕv are p-modular.

We now consider the case where wv is even, but wv/2 is odd. Thus η = ω
wv/2
v . It is

clear that ϕv ⊗ ωjv has determinant η for some j. We will show that ϕv ⊗ ωjv
∼= σ̂e for that

j. The p-modularity of c then follows from part (iii) of proposition 11.2.7. To see this,
let F unr

v,∞ and F tr
v,∞ denote the maximal unramified and tamely ramified extensions of F∞,v,

respectively. Both ϕv ⊗ ωjv and σ̂e factor through Gal(F tr
v,∞

/
Fv,∞). Their restrictions to the

inertia subgroup Gal(F tr
v,∞

/
F unr
v,∞) are direct sums of the two characters of order e and hence

are isomorphic. It follows that ϕv⊗ωjv ∼= σ̂e⊗ε for an unramified character ε. Comparing the
determinants, it follows that ε has order 1 or 2. In that latter case, ε = η. But σ̂e ⊗ η ∼= σ̂e.
Thus, in either case, ϕv ⊗ ωjv is indeed isomorphic to σ̂e.

Now suppose that p = 3. The above argument applies if e = 4. Assume that e ∈ {3, 6}.
Note that wv = 1 or 2. If wv = 1, then ρE,v(Gv) is abelian, a case already settled. If wv = 2,
then both ϕv and σ̂e have determinant η. Then we have ϕv ∼= σ̂e. Thus c(ρ) = 1 for all

ρ ∈ Rep
(sd)
F (∆), and so c is obviously p-modular. �

Theorem 3 is now proved. The consequence that we mentioned (in section 1.5) is a
special case of the following corollary. We assume that ∆ contains a normal subgroup Π
which is a p-group. We might as well assume that Π is the maximal such subgroup. Since
we are identifying ∆ with a normal subgroup of D, Π is identified with a normal subgroup
of D. The subfield KΠ of K will be denoted by K0. Then Gal(K0/F ) can be identified with
D0 = D/Π. As previously, we let K0,∞ = K0F∞, which coincides with KΠ

∞.

Corollary 12.1.3. Suppose that p is odd, that SelE(K0,∞)[p] is finite, and that Hypv is
satisfied for all primes v of F lying over 2 or 3. If the equality WIwp

(E, ρ) = WDel(E, ρ) is

true for all ρ ∈ Irr
(sd)
F (D0), then that equality is also true for all ρ ∈ Irr

(sd)
F (D).

Proof. First of all, we have Irrf(D0) = Irrf(D). The assumption that SelE(K0,∞)[p] is finite
together with proposition 4.2.5 implies that all of the Selmer atoms SelE[p]⊗τ (F∞) are finite
for τ ∈ Irrf(D). That same proposition then implies that SelE(K∞)[p] is finite. Thus, all the
hypotheses in proposition 12.1.1 are satisfied.

Assume that ρ ∈ Rep
(sd)
F (D). Then the class [ρ̃ss] is in R(sd)

f (D) = R(sd)
f (D0). Therefore,

as shown in section 9.4, there exist ρa and ρb in Rep
(sd)
F (D0) such that

ρ̃(ss) ⊕ ρ̃a
(ss) ∼= ρ̃b

(ss)

193



as representations of D. Assuming the equality in question for all the self-dual, irreducible
constituents of ρa and ρb, it then follows that WIwp

(E, ρc) = WDel(E, ρc) for c = a and for
c = b. We see that WIwp

(E, ρ) = WDel(E, ρ) by applying proposition 12.1.1 to ρ1 = ρ ⊕ ρa

and ρ2 = ρb. This equality holds for all ρ ∈ Rep
(sd)
F (D). �

12.2 Consequences concerning WDel(E, ρ) and WSelp
(E, ρ).

We continue to assume that K∞ = KF∞, where K is a finite Galois extension of F , and we
let D denote Gal(K/F ). Consider the following functions fDel, fIwp

, and fSelp
defined by

fDel(ρ) = WDel(E, ρ), fIwp
(ρ) = WIwp

(E, ρ), fSelp
(ρ) = WSelp

(E, ρ)

for all ρ ∈ Rep
(sd)
F (D). One can ask whether those functions are p-modular. This is not

always so. However, the proof of proposition 12.1.1 gives the following result for the first
two functions. Note that the assumption that ΨE

⋂
ΦK/F is empty implies Hypv and also

that E has good reduction at any v ∈ Σ0 = ΦK/F . With the additional assumption about
D, the p-modularity for the third function follows by using proposition 10.2.1.

Proposition 12.2.1. Assume that p is odd and that ΨE

⋂
ΦK/F is empty. Then the function

fDel is p-modular. Furthermore, if one assumes that SelE(K∞)[p] is finite, then fIwp
is p-

modular. If one assumes in addition that D satisfies property (O), then fSelp
is also p-

modular.

Remark 12.2.2. The proof of proposition 12.1.1 gives results about p-modularity for the
local root numbers. We continue to assume that p is odd. We need only assume that E
has good reduction at primes of F lying above p. For any prime v of F , define fWv

by

fWv
(ρ) = Wv(E, ρ) for all ρ ∈ Rep

(sd)
F (D). First of all, the proof shows that fWv

is p-modular
if v 6∈ ΨE

⋂
ΦK/F . In addition, if E has potentially good reduction at v and im(ρE,v) is

abelian, then fWv
has also been shown to be p-modular.

Suppose that E has potentially good reduction at v and that im(ρE,v) is non-abelian.
We let ϕv = ρE,v in this case. Assume that v does not divide 2 or 3. Define a function
fϕv exactly as in proposition 11.2.7. We have δE,v(ρ) ≡ 〈ρv, ϕv〉 (mod 2) and therefore

Av(ρ) = fWv
(ρ)fϕv(ρ) for all ρ ∈ Rep

(sd)
F (D), where Av(ρ) is as defined in the proof of

proposition 12.1.1. Since Av(·) has been proved to be p-modular, it follows that fWv
is p-

modular if and only if fϕv is p-modular. In general, fϕv will not be p-modular. However, if
fϕv(ρ) 6= 1, then 〈ρv, ϕv〉 6= 0. This would imply that ϕv factors through ∆v and therefore
that ∆v has a non-abelian quotient. If p ≥ 5, then ∆v would have a non-abelian quotient
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of order prime to p. Consequently, if ∆v has no non-abelian quotient of order prime to p,
p ≥ 5, and v does not lie over 2 or 3, then fϕv(ρ) = 1 for all ρ ∈ Rep

(sd)
F (D) and hence fϕv

is p-modular. Under those assumptions, it follows that fWv
is also p-modular.

Now assume that E has multiplicative or potentially multiplicative reduction at v. Just
as in the previous paragraph, the proof of proposition 12.1.1 shows that fWv

is p-modular
if and only if fϕv is p-modular, where ϕv is either ωv or ωvεv for a certain character εv of
order 2. Again, if it turns out that ϕv does not factor through the quotient ∆v of Gv, then
fϕv(ρ) = 1 for all ρ ∈ Rep

(sd)
F (D). In that situation, fWv

will be p-modular. Furthermore, if
E has split, multiplicative reduction and ωv has odd order, then fWv

will be p-modular. This
follows from remark 11.2.9 which shows that fωv is p-modular when ωv has odd order. ♦

Now we will consider WSelp
(E, ρ) for ρ ∈ Rep

(sd)
F (D). Assume that p is odd. The final

conclusion in proposition 10.2.1 asserts that WSelp
(E, ρ) = WIwp

(E, ρ) if ρ is assumed to be
orthogonal and SelE(K∞)p is assumed to be Zp[[ΓK ]]-cotorsion. Applying proposition 12.1.1
and corollary 12.1.3 gives us the following results.

Proposition 12.2.3. Suppose that p is odd, that Hypv is satisfied for all primes v of F lying
over 2 or 3, and that SelE(K∞)[p] is finite. Assume that ρ1 and ρ2 are self-dual, orthogonal
representations of D = Gal(K/F ) and that ρ̃1

ss ∼= ρ̃2
ss. Then WSelp

(E, ρ1) = WDel(E, ρ1) if
and only if WSelp

(E, ρ2) = WDel(E, ρ2).

Corollary 12.2.4. Suppose that we are in the setting of corollary 12.1.3. In addition to the
hypotheses stated there, assume that D0 satisfies property (O). If WSelp

(E, ρ) = WDel(E, ρ) for

all ρ ∈ Irr
(sd)
F (D0), then WSelp

(E, ρ) = WDel(E, ρ) for all self-dual, orthogonal representations
of D.

Remark 12.2.5. A result proved in [Dok5] has a similar flavor to corollary 12.2.4, but
requires no Iwasawa-theoretic hypothesis such as the vanishing of a µ-invariant. We will use
the same notation as in corollary 12.1.3. It is assumed that p is odd, but no assumption
about the reduction type of E at primes over p is needed. For primes v over 2 or 3 where E
has additive reduction, it is assumed that v is unramified in K/F . No other assumptions are
needed. Theorem 1.4 in [Dok5] then asserts that if the parity conjecture for the Zp-corank
of the Selmer group for E over all extensions of F contained in K0 is valid, then the same
statement is true for all extensions of F contained in K. One can restate their result as
follows:

If WSelp
(E, ρ) = WDel(E, ρ) for all permutation representations ρ of D0, then WSelp

(E, ρ) =
WDel(E, ρ) for all permutation representations of D.
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By definition, a permutation representation ρ of a finite group G is isomorphic to a direct
sum of representations of the form IndGH

(
1H
)
, where H is a subgroup of G. Such represen-

tations are obviously realizable over Q and therefore are orthogonal. More directly, these
representations can be realized by permutation matrices, and such matrices are already or-
thogonal. ♦

13 More arithmetic illustrations.

We end this paper with a number of illustrations concerning the growth of the Zp-corank of
SelE(K)p as K varies over some collection of fields. We will not strive for generality. We
always take the base field F to be Q. It is in this case that we have the best chance to verify
the hypotheses in the propositions and corollaries from chapters 3 and 12. We will also
discuss results of J. Nekovář, of Mazur and Rubin, of Coates, Fukaya, Kato, and Sujatha,
and of T. and V. Dokchitser. The illustrations that we consider are situations where one can
calculate WDel(E, σ) for some interesting family of irreducible, self-dual Artin representations
σ. One certainly expects that

(13.0.a) WSelp
(E, σ) = WDel(E, σ)

as we already mentioned in the introduction. This is especially interesting when it turns
out that WDel(E, σ) = −1. For it then would follow that sE(σ) is odd and hence nonzero,
contributing at least n(σ) to the Zp-corank of SelE(K)p. The Galois groups that occur in our
illustrations will at least satisfy property (O). Most often, we will refer to corollary 12.2.4.
It will be clear in each illustration that Hypv is satisfied for all v lying over 2 or 3. We
always assume that p is an odd prime and that E has good, ordinary reduction at p. We will
describe the predictions arising from (13.0.a), the unconditional results that can be proven,
and then the conditional results which one can obtain from sets of hypotheses which seem
significantly weaker than (13.0.a).

The simplest case for such root number calculations is when the conductor of E, which
we will denote by nE, and the discriminant of the extension K/F , which we denote by dK/F ,
are relatively prime. One then has the formula

(13.0.b) WDel(E, σ) = WDel(E/F )n(σ) · det(σ)
(
nE
)
·
∏

v∈Σ∞

det(σv)
(
δv
)

for all σ ∈ Rep
(sd)
F (D), where D = Gal(K/F ). This is proposition 10 in [Ro96]. Here

WDel(E/F ) denotes the root number for the Hasse-Weil L-series for E over F and δv denotes
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the generator of Dv for each v | ∞. The factor det(σ)
(
nE
)

is interpreted as follows. Let Dab

denote the maximal abelian quotient of D and let δE ∈ Dab denote the image of nE under
the Artin map. Then det(σ) factors through Dab and det(σ)

(
nE
)

is defined to be det(σ)
(
δE
)
.

Note that it isn’t necessary to assume that σ is irreducible to apply (13.0.b). We do need to
assume that σ is self-dual.

It is worth pointing out that formula (13.0.b) implies that the function fDel is p-modular.
This follows immediately from 11.1.1 and 11.1.2. However, proposition 12.2.1 asserts this in
somewhat greater generality. Also, for the special case where F = Q, formula (13.0.b) takes
the following simpler form:

(13.0.c) WDel(E, σ) = WDel(E/Q)n(σ) · det(σ)(−NE)

where NE is the conductor of E.

In the rest of this chapter, we will assume that E is an elliptic curve defined over Q,
that p is an odd prime where E has good, ordinary reduction, and that F = Q. In sections
13.1 and 13.2, the extensions K of Q to be considered will satisfy K ∩ Q∞ = Q. Hence
there will be no real need to distinguish between D = Gal(K/Q) and ∆ = Gal(K∞/Q∞).
We will simply write ∆. However, the illustrations in section 13.1 will require distinguishing
between the two Galois groups. The situation will be the one discussed in section 3.5..

13.1 An illustration where ΨE

⋂
ΦK/F is empty.

We will consider a situation where we can apply formula (13.0.c). As one favorite illustration,
we take F = Q and consider a tower of number fields Kr such that ∆r = Gal(Kr/Q) is
isomorphic to PGL2(Z/p

r+1Z) for all r ≥ 0. We continue to assume that p is odd. In order
to use formula (13.0.c), we further assume that the elliptic curve E has good reduction at
all the primes of Q which are ramified in Kr/Q. According to proposition 9.1.1, ∆r satisfies
property (SDO). Also, ∆ab

r is of order 2. Hence, for every ρ ∈ RepFr
(∆r), det(ρ) = σ0 or

σ1 in the notation of sections 7.2 and 7.3. Note that σ1 corresponds to a certain quadratic
Dirichlet character for Q whose conductor involves only primes which are ramified in K0/Q.
We denote that Dirichlet character by ε1. If the Kr’s arise as subfields of Q(A[p∞]) for some
elliptic curve A, as in the illustrations of sections 8.1 and 8.2, then ε1 is the unique quadratic
Dirichlet character of conductor p.

Now n(ρ) is even for all ρ ∈ IrrFr(∆r) and for all r ≥ 0, with the exception of the four
representations σ0, σ1, σp,1, σp,2. When n(σ) is even, the value of WDel(E, σ) is determined
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completely by det(σ) and NE according to (13.0.c). This is not true for the odd-dimensional
σ’s, but we do have

(13.1.a) WDel(E, σ0)WDel(E, σp,2) = WDel(E, σ1)WDel(E, σp,1) = ε1(−NE) .

Howe [How] determines the set {σ | det(σ) = σ1, n(σ) even } precisely. It is an infinite
set and the subset of primitive elements of level r is precisely Ar ∪ Br for any r ≥ 1. (See
remarks 7.3.4 and 7.4.8 for an argument using modular representations.) We will use the
notation A0 to denote the subset of IrrF(∆0) consisting of σ’s of degree p+ 1 and B0 for the
subset consisting of σ’s of degree p− 1. For those σ’s, we also have det(σ) = σ1.

A. Predictions. First we note one prediction from (13.0.a) that doesn’t depend on the
value of ε1(−NE) or on WDel(E/Q). It should be true that WSelp

(E, σ) = 1, and hence that
sE(σ) is even, for all σ ∈ Cr and r ≥ 1. This is because those σ’s have even degree and

det(σ) = σ0. (See remark 7.3.4.) In particular, WSelp
(E, σ

(r)
st ) = 1 for all r ≥ 1.

If ε1(−NE) = 1, then WDel(E, σ) = 1 for all the even-dimensional σ’s. Thus, (13.0.a)
predicts that sE(σ) is even for all σ’s except possibly the four odd-dimensional σ’s, for which
we will have WDel(E, σ) = WDel(E/Q).

Assume now that ε1(−NE) = −1. For the four odd-dimensional irreducible representa-
tions of ∆0, it follows that WDel(E, σ) = −1 for two of them, one of dimension 1 and one
of dimension p. For each σ ∈ Ar ∪ Br for r ≥ 0, one has WDel(E, σ) = −1. The sum of
the degrees, where σ varies over Ar ∪ Br and r varies from 0 to n ≥ 1, turns out to be
p2n+2 − p2n+1 − p − 1. Thus, assuming (13.0.a) for all the relevant σ’s, one gets the lower
bound

(13.1.b) corankZp

(
SelE(Kn)p

)
≥ p2n+2 − p2n+1 .

under the assumption that ε1(−NE) = −1. Equality in (13.1.b) is equivalent to the assertion
that sE(σ) = 1 if det(σ) = σ1, sE(σ) = 0 if det(σ) = σ0.

B. Unconditional results. There are hardly any. Nekovář proved the parity conjecture
for E over Q. Thus, (13.0.a) is true for σ = σ0. This has been extended in [Dok1] to all
quadratic twists of E, and so (13.0.a) holds for σ = σ1 too. For p = 3, one has ∆0

∼= S4

which has a unique quotient isomorphic to S3. The irreducible, 2-dimensional representation
of that quotient is σ = σp-1,1 and (13.0.a) follows for that σ from theorem 7.1 in [MR07] or
theorem 1.4 in [Dok5].

One very specific result concerns the following especially interesting example where one
can show that rE(σ

(r)
st ) ≥ 1 for r ≥ 1. This example is discussed in [Gr01], pages 419-

421, and was first mentioned by L. Howe. Let A be either one of the two elliptic curves
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of conductor 1225 which have an isogeny of degree 37 defined over Q. One can verify that
ρA : GQ → Aut

(
Tp(A)

)
is surjective for all p ≥ 5, except for p = 37. Let E be any one of

the elliptic curves of conductor 37. We assume that p ≥ 5 and that E has good, ordinary
reduction (which excludes p = 37). Since ρA is surjective, Q(A[p∞]) contains a tower of
fields Kr with Gal(Kr/Q) ∼= PGL2(Z/p

r+1Z) for r ≥ 0. The modular parametrization
X0(37) → E then provides a construction of points on E(Kr) (due originally to M. Harris

[Har]). Examining that construction, one can show that σ
(r)
st has positive multiplicity in

E(Kr)⊗Z Qp for all r ≥ 1. Thus, it follows that rE(σ
(r)
st ) is positive, and hence so is sE(σ

(r)
st ).

C. Conditional results. In the situation we are now considering, ΦKr/Q ∩ ΨE is empty
and therefore Hypv is certainly satisfied for K = Kr and all primes v. To apply corollary
12.2.4, it would suffice to assume that SelE(K0,∞)[p] is finite and that (13.0.a) holds for the
p+2 elements of IrrF(∆0). As mentioned above, it is known that (13.0.a) is valid for σ = σ0

and σ1. If one could verify (13.0.a) for the remaining σ’s in IrrF(∆0), and also verify the
finiteness of SelE(K0,∞)[p], then (13.0.a) would actually hold for all σ ∈ IrrFr(∆r) and for
all r ≥ 0. The lower bound (13.1.b) would follow. Unfortunately, both of these verifications
seem quite inaccessible at present.

Now assume that r ≥ 1. For certain σ’s, one can establish (13.0.a) with much less
information. In addition to assuming that SelE(K0,∞)[p] is finite, we will make the following
assumption in the rest of this illustration:

(13.1.c) WSelp
(E, σp,1) = WDel(E, σp,1), WSelp

(E, σp,2) = WDel(E, σp,2) .

As mentioned above, (13.0.a) also holds for σ0 and σ1. For the representation κ of ∆0 defined
in part D of section 7.2, we have

WSelp
(E, κ) = WDel(E, κ) = 1 .

The first equality follows immediately from the definition of κ and assumption (13.1.c). For
the second, one can use (13.0.c) together with the facts that n(κ) is even and that det(κ) = σ0.
Propositions 7.3.1 and 12.2.3 therefore imply the first of the following equalities:

WSelp
(E, σ) = WDel(E, σ) = 1

for all σ ∈ Cr and r ≥ 1. The second equality was pointed out before. Furthermore, one can
apply those same propositions to the irreducible representations σ = σ

(r)
θ and σ = σ

(r)
θ ⊗ σ1,

where θ is a character of Br of order pr. These are elements of Ar which were defined in
remark 7.3.5. The present assumptions again suffice to establish (13.0.a) for those σ’s.
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Assuming that ε1(−NE) = −1, and continuing to make the assumptions in the previous
paragraph, (13.1.a) and (13.1.c) imply that

(13.1.d) WSelp
(E, σ0)WSelp

(E, σp,2) = WSelp
(E, σ1)WSelp

(E, σp,1) = − 1 .

For any character θ of Br of order pr, it follows that WSelp
(E, σ) = −1 for σ = σ

(r)
θ and

σ = σ
(r)
θ ⊗ σ1. Letting θ vary, one gets the following lower bound from those two families of

σ’s and the four irreducible representations of odd dimension:

(13.1.e) corankZp

(
SelE(Kn)p

)
≥ p2n+1 + 1

for n ≥ 1. Following the notation in section 8.1, consider the field J0 ⊂ K0, the fixed subfield
for the Borel subgroup B0 ⊂ ∆0, and let J ♯0 denote the fixed field for the subgroup of B0 of
index 2. Then (13.1.d) is equivalent to the equations WSelp

(E/J0) = −1, WSelp
(E/J ♯0) = +1.

Those equations simply mean that corankZp(SelE(J0)p) is odd and corankZp(SelE(J ♯0)p) is
even. If one could somehow verifies those two parity statements, then one can obtain (13.1.e)
just by using the last part of proposition 12.2.1, and without even considering root numbers.
Alternatively, since XE(K∞) is quasi-projective under the present assumptions, one can
simply use remark 7.3.5 together with proposition 10.2.1.

As we’ve indicated, the above considerations show that under the assumptions that we are
now making, sE(σ

(r)
st ) will be even for r ≥ 1. In particular, for the specific example mentioned

previously (where E has conductor 37, p ≥ 5 is a prime where E has good, ordinary reduction,
and the fields Kr are constructed by adjoining p-power torsion points on a certain elliptic
curve A/Q of conductor 1225), one gets the interesting (but conditional) statement that

sE(σ
(r)
st ) is even and positive for all r ≥ 1. This behavior seems quite remarkable.

13.2 An illustration where K ⊂ Q(E[p∞]).

We again take F = Q and assume that p is odd. We also make the following assumptions
throughout this illustration:

(i) The conductor NE is squarefree. Thus, E has multiplicative reduction at all l |NE and
so E is a semistable curve over Q.

(ii) We have Gal(Q(E[p∞])/Q) ∼= GL2(Zp). Thus, Q(E[p∞]) contains a tower of subfields
Kr such that ∆r = Gal(Kr/Q) ∼= PGL2(Z/p

r+1Z) for r ≥ 0.

(iii) We have ordl(jE) 6≡ 0 (mod p) for all l |NE .

We then have ΦKr/Q = ΨE for all r ≥ 0. Actually, (i) and (iii) imply (ii) for p ≥ 7. (See
proposition 21 in [Se72].) Although formula (13.0.c) cannot be applied, root numbers for
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all self-dual representations have been calculated by Rohrlich under the above assumptions.
Rohrlich actually does those calculations in [Ro06] when F is arbitrary.

We will mention just part of Rohrlich’s calculations. First of all,

WDel(E, σ
(r)
st ) =

(
NE

p

)

for all r ≥ 1. Rohrlich’s formulas for the four odd-dimensional irreducible representations
imply that

(13.2.a) WDel(E, σ0)WDel(E, σp,2) = WDel(E, σ1)WDel(E, σp,1) = (−1)
p-1
2 .

As in section 13.1, we let ε1 be the Dirichlet character corresponding to σ1. But now the
conductor of ε1 is p, which is prime to NE, and so we have

WDel(E, σ1) =

(−NE

p

)
WDel(E, σ0) =

(−NE

p

)
(−1)s+1

where s denotes the number of primes where E has split multiplicative reduction. This follows
from (13.0.c) and a well-known formula for the root number WDel(E/Q) = WDel(E, σ0) for
semistable elliptic curves over Q. Furthermore, Rohrlich gives the following formula for
σ ∈ Ar ∪ Br, where r ≥ 0:

WDel(E, σ) = (−1)
p-1
2 .

For σ ∈ Cr, excluding the Steinberg representations, Rohrlich shows that WDel(E, σ) = 1.

A. Predictions. Assuming that (13.0.a) holds, the above formulas give infinite families
of irreducible representations σ of the ∆r’s for which sE(σ) should be odd when NE is a
quadratic nonresidue modulo p or when p ≡ 3 (mod 4). In the first case, the infinite family

consists of the Steinberg representations σ
(r)
st for r ≥ 1. In the second case, the family is

Ar ∪ Br for r ≥ 0. These families are disjoint.

B. Unconditional results. As mentioned before, it is known that (13.0.a) holds for σ = σ0

and σ = σ1. However, (13.0.a) is also known to hold for the two σ’s such that n(σ) = p.
This follows easily from one of the main results in [CFKS], their corollary 2.2, as we will
now explain. Those authors prove that if E has a cyclic isogeny of degree p over a number
field J , then the parity conjecture for the Zp-corank of SelE(J)p is true. The result is proved
under very broad assumptions on the reduction type for E at primes over p.

We will again use the notation from section 8.1, where fields Jr and J ♯r were defined for
r ≥ 0. In particular, J0 = KB0

0 is indeed the field of rationality for a cyclic isogeny of E of
degree p. Now corankZp

(
SelE(J0)p

)
is equal to the multiplicity of 1B0 in XE(K0) ⊗Zp Qp,
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viewed as a representation space for B0. Frobenius Reciprocity implies that this multiplicity
is in turn equal to sE(σ0) + sE(σp,2). This is because Ind∆0

B0

(
1B0

)
is isomorphic to σ0 ⊕ σp,2.

(See the second part of remark 2.1.8.) Thus, corollary 2.2 in [CFKS] implies that (13.0.a)
holds for that reducible representation. Since (13.0.a) holds for σ0, it holds for σp,2 too. Now,

E also has an isogeny of degree p over any field J containing J0. Taking J = J ♯0 , one can
again use Frobenius Reciprocity, the parity result in [CFKS] mentioned above, and the fact
that (13.0.a) holds for σ = σ0, σ1, and σp,2, to conclude that (13.0.a) holds for σ = σp,1.

Furthermore, applying corollary 2.2 in [CFKS] to the fields J = Jr, one deduces (13.0.a)

inductively for σ = σ
(r)
st and all r ≥ 1. As a consequence, it follows that if NE is a quadratic

nonresidue modulo p, then WSelp

(
E, σ

(r)
st

)
= −1. One obtains the lower bound

(13.2.b) corankZp

(
SelE(Kn)p

)
≥ pn+1 + pn − p− 1

for n ≥ 1. This is unconditional. One gets a better lower bound by including the odd-
dimensional representations. Indeed, one can augment the above lower bound by p+1 when
p ≡ 1 (mod 4) or by either 2 or 2p when p ≡ 3 (mod 4), assuming still that NE is a quadratic
nonresidue modulo p.

C. Conditional results. Let us now assume that p ≡ 3 (mod 4). We make no assumption
about NE except for (i). Conjecturally, sE(σ) should then be odd for all σ ∈ Ar ∪ Br.
We make the assumption that SelE(K0,∞)[p] is finite. We can then use propositions 7.3.1
and 12.2.3 to prove that sE(σ) is odd for a certain subset of Ar, namely for all σ’s of the

form σ = σ
(r)
θ or σ = σ

(r)
θ ⊗ σ1, where θ is of order pr and r ≥ 1. (See remark 7.3.5

too.) One thereby obtains the lower bound (13.1.e), which is considerably stronger than the
unconditional inequality (13.2.b). We can make a further improvement in the lower bound
if we also assume that (13.0.a) holds for σ = σp+1,j for some j. If we make that assumption
for all j’s, 1 ≤ j ≤ p-3

2
, then it would follow that sE(σ) is odd for all σ ∈ Ar and r ≥ 1.

13.3 An illustration where Gal(K/Q) is isomorphic to Bn or Hn.

This section will continue the discussion of the illustrations in sections 8.3 and 8.4. We
assume as before that p is an odd prime and that E has good, ordinary reduction at p.
Suppose that L = Q(µp) and that K is a finite, Galois extension of Q containing L. We will
assume that [K : L] is a power of p. Let Ω = Gal(L/Q), D = Gal(K/Q), P = Gal(K/L),
which is the Sylow p-subgroup of D. It will also be useful to consider the Galois groups
Ω′ = Gal(L/F ) and D′ = Gal(K/F ), where F is the maximal real subfield of L. Thus, Ω′ is
the unique subgroup of Ω of order 2, D′ is the unique subgroup of D of index p−1

2
, the Sylow

p-subgroup of D′ is also P , and D′/P ∼= Ω′.
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The two irreducible, self-dual representations of Ω are σ0 = ω0 and σ1 = ω
p−1
2 , the

quadratic character of conductor p. We denote the two characters of Ω′ by ρ0 and ρ1. The
fact that XE(L) ⊗Zp Qp is a self-dual representation space for Ω implies the congruence
below. The equality is obvious.

(13.3.a) sE(ρ0) + sE(ρ1) = corankZp

(
SelE(L)p

)
≡ sE(σ0) + sE(σ1) (mod 2) .

Since E has good reduction at p, one can apply (13.0.c) to σ0 and σ1, obtaining

(13.3.b) WDel(E, σ0)WDel(E, σ1) =

(−NE

p

)
.

Nekovář’s parity theorem for E/Q and the generalization for quadratic fields proved by T.
and V. Dokchitser show that (13.0.a) holds when σ is σ0 or σ1. Therefore, corankZp

(
SelE(L)p

)

is odd if and only if −NE is a quadratic nonresidue modulo p. These remarks are the starting
point for most of the results that we will now discuss.

Assume that E has semistable reduction at the primes 2 and 3. Theorem 1.3 in [Dok5]
then implies that (13.0.a) holds if σ is any irreducible orthogonal representation of D. Their
theorem is actually valid if L is any finite, abelian extension of Q, K is a Galois extension of
Q containing L, and K/L is a p-extension. No additional assumption (such as ordinariness)
on the reduction type of E at p is needed. It is valid even if p = 2.

Corollary 12.2.4 also implies (13.0.a) for all orthogonal σ ∈ Irr
(sd)
F (D), but only under

the following assumptions: One assumes that E has good ordinary reduction at p and that
p is odd (which will be assumed throughout this section anyway), one assumes that Hyp2

and Hyp3 are satisfied, and one assumes that SelE(L∞)[p] is finite. That last assumption is
crucial for the approach in this paper. Note that L∞ = Q(µp∞). We also remark that Hyp2

and Hyp3 are certainly satisfied if E is assumed to have semistable reduction at the primes
2 and 3.

A. Lower bounds. Suppose that we are in a situation where WDel(E, σ) = −1 for all

σ ∈ Irr
(sd)
F (D) which are orthogonal and have degree > 1 (which excludes just σ0 and σ1).

Assuming that E is semistable at 2 and 3, one can then apply the theorem from [Dok5] just
cited to obtain the following inequality:

(13.3.c) corankZp

(
SelE(K)p

)
≥ corankZp

(
SelE(L)p

)
+ θorth(D) − 2 ,

where θorth(D) is as defined in chapter 9. Furthermore, one can get the following lower bound
for θorth(D) by using the Frobenius-Schur identity and the last part of remark 9.2.2:

(13.3.d) θorth(D) ≥ θD′-orth(D) = θorth(D
′) = [P : P+] + 1 .
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To explain the last equality, note that all of the elements of order 2 in D′ are conjugate under
the action of P . If δ′ is one of them, then the number of elements of order 2 in D′ is the index
[P : P+], where P+ denotes the centralizer of δ′ in P . The last equality in (13.3.d) follows
by applying the Frobenius-Schur identity for D′ and using the fact that θsymp(D

′) = 0, as
pointed out in remark 9.2.1. We remark that a self-contained proof of an equivalent equality
is given in [MR08]. It is part of their proposition 4.4. They also study the value of [P : P+]
in a variety of cases.

The inequality in (13.3.d) is an equality if and only if D satisfies property (O) in chapter
9. This equivalence was pointed out at the end of remark 9.2.2. In particular, we have
equality if D is one of the groups Bn or Hn. Those groups have the stronger property that
all irreducible, self-dual representations have degree divisible by p − 1, apart from the two
one-dimensional representations σ0 and σ1. Recall also that if σ ∈ IrrF(D), then n(σ) is
divisible by p− 1 if and only if σ is P -induced. (See part A of section 7.4.)

To illustrate the lower bounds that one can obtain, consider a tower of Galois extensions
Kn of Q such that Gal(Kn/Q) is isomorphic to either Hn or Bn for all r ≥ 0. Propositions
8.3.3 and 8.3.7 show the existence of Hn-towers for certain primes p. The Kummer extensions
discussed in section 8.4 provide many Bn-towers for any odd prime p. Those towers corre-
spond to false Tate extensions of Q. The representation theory for Hn and Bn is described
rather precisely in parts D1, D2, and D3 of section 7.4. Both those groups satisfy property
(O) and hence (13.3.d) will be an equality. . One can use the Frobenius-Schur identity to
calculate θorth(D) when D = Hn or D = Bn. The calculation of [P : P+] for D = Hn is
contained in the proof of proposition 9.1.1. It is easy for D = Bn. Alternatively, one can use
the results in part D of section 7.4 to calculate θorth(D) directly. In particular, if D = Hn,
proposition 7.4.4 makes that calculation easy. One finds that

(13.3.e) θorth(Hn) − 2 = p2n+1 − 1 , θorth(Bn) − 2 = pn+1 − 1 .

We then get an explicit lower bound for corankZp

(
SelE(Kn)p

)
from (13.3.c) if we are in the

situation where all of the relevant root numbers are equal to −1. The rest of this section
discusses some situations where those root numbers can be determined.

B. First situation. One situation to consider is the following. Suppose that −NE is
a quadratic nonresidue modulo p. Suppose also that the function fDel turns out to be p-
modular. (That function is defined just before proposition 12.2.1. Recall that its domain of

definition is Rep
(sd)
F (D).) Furthermore, suppose that all self-dual irreducible representations

of D, except for σ0 and σ1, have degree divisible by p− 1. This last assumption is satisfied
when D ∼= Hn or D ∼= Bn. It means that if σ is a self-dual, irreducible representation of D
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and n(σ) > 1, then σ is P -induced and therefore

(13.3.f) σ̃ss ∼=
( p−2⊕

i=0

ω̃i
)pa

,

where pa = n(σ)
p−1

. The assumption that fDel is p-modular then implies that

WDel(E, σ) =

(
WDel(E, σ0)WDel(E, σ1)

)pa

=

(−NE

p

)pa

= − 1

for all σ ∈ Irr
(sd)
F (D) with n(σ) > 1. For the first equality, we are using the fact that

WDel(E,χ ⊕ χ̌) = 1 for any irreducible representation χ of D. One applies this when χ is a
power of ω which is not self-dual. The other equalities follow from (13.3.b).

C. p-modularity. It is not always the case that fDel is p-modular. This will soon be quite
clear. We will study this question by making use of remark 12.2.2. In the notation of that
remark, we have

fDel(σ) =
∏

ℓ

fWℓ
(σ)

for all σ ∈ Rep
(sd)
F (D). The product is over all primes ℓ of Q, including ℓ = ∞. We will now

discuss various sufficient conditions for fWℓ
to be p-modular. We refer the reader to remark

12.2.2 for their justifications. Assume that p ≥ 5 and that E is semistable at 2 and 3. First
of all, if ℓ 6∈ ΨE

⋂
ΦK/Q, then fWℓ

is p-modular. Now ∆ = Gal(K∞/Q∞) is isomorphic to a
subgroup of D and hence so is the decomposition subgroup ∆ℓ for any prime ℓ. It follows
that ∆ℓ has a normal Sylow p-subgroup and that the corresponding quotient group is cyclic
of order dividing p − 1. Thus, ∆ℓ cannot have a nonabelian quotient of order prime to p.
Therefore, fWℓ

is p-modular for any prime ℓ where E has potentially good reduction.
If ℓ has potentially multiplicative reduction at ℓ, but not multiplicative reduction, then

the character ϕℓ is ramified at ℓ and of order prime to p. It certainly cannot be a power of
ωℓ and hence cannot factor through ∆ℓ. Therefore, fWℓ

is p-modular for any such ℓ. Only
the primes ℓ ∈ ΦK/Q where E has multiplicative reduction remain to be considered.

Assume that ℓ has odd order modulo p. That means that the order of ωℓ is odd. If E
has split, multiplicative reduction, then fWℓ

is p-modular, as explained in remark 12.2.2. If
E has nonsplit, multiplicative reduction at ℓ, then ϕℓ has even order and therefore cannot
factor through ∆ℓ. It follows that fWℓ

is p-modular in that case too.

Let Ψ
(st)
E denote the subset of ΨE consisting of the primes where E has semistable reduc-

tion. Thus, ℓ ∈ Ψ
(st)
E if and only if E has either split or nonsplit multiplicative reduction at
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ℓ. For brevity, we denote ΦK/Q

⋂
Ψ

(st)
E by SE,K in this illustration. Let Ψ

(ev)
E consist of the

primes ℓ ∈ ΨE which have even order modulo p. Let Ψ
(nr)
E denote the subset of ΨE consisting

of primes ℓ which are quadratic nonresidues modulo p. Thus, we have Ψ
(nr)
E ⊆ Ψ

(ev)
E . Note

that ℓ ∈ Ψ
(nr)
E if and only if p−1

wℓ
is odd, where wℓ denotes the order of ℓ modulo p. Hence

the sets Ψ
(nr)
E and Ψ

(ev)
E are different when p ≡ 1 (mod 4). We let S

(ev)
E,K and S

(nr)
E,K denote

SE,K
⋂

Ψ
(ev)
E and SE,K

⋂
Ψ

(nr)
E , respectively. Obviously, we have S

(nr)
E,K ⊆ S

(ev)
E,K . The two sets

are equal if p ≡ 3 (mod 4).

The above discussion shows that fWℓ
is p-modular if ℓ 6∈ S

(ev)
E,K . Now fDel is clearly p-

modular if fWℓ
is p-modular for all ℓ. Thus, we have the following result.

Proposition 13.3.1. Assume that p ≥ 5, that E has semistable reduction at 2 and 3, and
that the set S

(ev)
E,K is empty. Then fDel is p-modular.

Note that S
(ev)
E,K ⊆ ΦK/Q

⋂
Ψ

(ev)
E . The hypothesis that S

(ev)
E,K be empty is therefore very

closely related to the following hypothesis occurring in theorem 1.1 in [MR08]:

If l ∈ ΨE , then either l is unramified in the p-extension K/L or l is split in the quadratic
extension L/F .

This means that ΦK/Q

⋂
Ψ

(ev)
E is empty, and hence implies that S

(ev)
E,K is also empty. The

conclusion in that theorem of Mazur and Rubin is that

(13.3.g) sE(ρ) ≡ corankZp

(
SelE(L)p

)
(mod 2) .

for every irreducible, self-dual representation ρ of D′, excluding ρ0 and ρ1. This is a certain
congruence relation for D′. Their result is equivalent to saying that the function fSel on
Rep

(sd)
F (D′) is p-modular. If one also assumes that corankZp

(
SelE(L)p

)
is odd, then their

result implies the following lower bound.

corankZp

(
SelE(K)p

)
≥ corankZp

(
SelE(L)p

)
+ θorth(D

′) − 2 ,

One should compare this with (13.3.c). Mazur and Rubin also prove the formula for θorth(D
′)

in (13.3.d) and study its value in a variety of cases. Note that their results don’t actually
involve root numbers. Also, just as with theorem 1.3 in [Dok5], theorem 1.1 in [MR08] is far
more general than the special case under consideration here.

It is worth pointing out that if σ ∈ Irr
(sd)
F (D), if σ is D′-orthogonal, and if ρ is an

irreducible constituent in σ|D′ , then

sE(σ) ≡ sE(ρ) (mod 2) .
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This congruence follows from Frobenius Reciprocity by using the facts that XE(K)⊗Zp Qp is

a self-dual representation space for D, that σ is the only irreducible constituent in IndDD′(ρ)
which is self-dual, and that the multiplicity of σ in IndDD′(ρ) is 1.

D. Towers with Galois groups Hn and Bn. In the rest of this illustration, we will consider
a tower of extensions Kn such that Gal(Kn/Q) is isomorphic to Hn or Bn for n ≥ 0. We
continue to assume that p ≥ 5 and that E has semistable reduction at 2 and 3. Furthermore,
we will make the following restrictive assumption concerning ramification:

(13.3.h) ΦKn/Q = ΦK0/Q

for all n ≥ 0. Thus, the sets S
(ev)
E,Kn

and S
(nr)
E,Kn

will also be independent of n. To simplify
notation in the discussion, we will just write K for any one of the fields in the tower and
identify D = Gal(K/Q) with either Hn or Bn. In particular, Un will be regarded as a specific
subgroup of D. The above ramification assumption then implies that the inertia subgroup
Iℓ(K/Q) of D for any prime ℓ ∈ ΦK/Q is conjugate to Un. Thus we can simply assume
that Iℓ(K/Q) = Un. Under these assumptions, we can weaken the hypothesis in proposition

13.3.1 by restricting fDel to the following subset of Rep
(sd)
F (D):

Rep
(sd)
F (D)♯ = {σ ∈ Rep

(sd)
F (D) | σ ⊗ σ1

∼= σ } .

Note that if σ ∈ Irr
(sd)
F (D) and n(σ) > 1, then σ ∈ Rep

(sd)
F (D)♯. In fact, σ ⊗ χ ∼= σ for all

χ ∈ Ω̂ since σ is P -induced. In addition, Rep
(sd)
F (D)♯ contains the regular representation of

Ω, which we will denote by σΩ and consider as a representation of D. We have n(σΩ) = p−1.

The representation σ0 ⊕ σ1 is also in Rep
(sd)
F (D)♯.

Proposition 13.3.2. In addition to the above assumptions, assume that S
(nr)
E,K is empty.

Then the restriction of fDel to Rep
(sd)
F (D)♯ is p-modular. Furthermore, assume also that

σ ∈ Irr
(sd)
F (D) and that n(σ) > 1. Then

WDel(E, σ) = WDel(E, σ0)WDel(E, σ1) =

(−NE

p

)
.

In particular, if −NE is a quadratic nonresidue modulo p, then WDel(E, σ) = −1 for all

σ ∈ Irr
(sd)
F (D) such that n(σ) > 1. As a consequence, corankZp

(
SelE(L)p

)
is odd and the

lower bounds for corankZp

(
SelE(Kn)p

)
given by (13.3.c) and (13.3.e) hold.

Proof. As discussed above, if ℓ 6∈ SE,K , then fWℓ
is p-modular on Rep

(sd)
F (D), and hence on

the subset Rep
(sd)
F (D)♯. We are now assuming that if ℓ ∈ SE,K , then ℓ is a quadratic residue
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modulo p. This means that wℓ divides p−1
2

. We can also assume that wℓ is even since we
already know that fWℓ

is p-modular otherwise. As before, we let ∆ = Gal(K∞/Q∞). Then
ωℓ = ω|∆ℓ

has order wℓ, where ∆ℓ is a decomposition subgroup of ∆ for a prime above ℓ.
To show that fWℓ

is p-modular, we refer to the discussion in remark 12.2.2. It suffices to
show that the function fϕℓ

defined in proposition 11.2.7, where ϕℓ is a certain power of ωℓ,

is p-modular when restricted to the set Rep
(sd)
F (D)♯. We will simply prove that fϕℓ

(σ) = 1

for all σ ∈ Rep
(sd)
F (D)♯. Equivalently, we will show that 〈σℓ, ϕℓ〉 is even for such σ, where σℓ

denotes the restriction of σ to ∆ℓ.

The assumption about ℓ means that ω
p−1
2

ℓ is trivial. Recall that we are also assuming
that Iℓ(K/Q) = Un. Thus, Un is a normal subgroup of ∆ℓ. The normalizer of Un in D is Bn

and so ∆ℓ is a subgroup of Bn. As in part D1 of section 7.4, we let Ωn denote the subgroup
of Bn consisting of elements represented by diagonal matrices of order p− 1. Thus, Ωn can
be identified with Ω by the projection map D → Ω. Then ∆ℓ is a subgroup of ΩnUn, the
unique subgroup of Bn containing Un as a subgroup of index p− 1.

Suppose that σ ∈ Rep
(sd)
F (D)♯. Consider the restriction of σ to ΩnUn. The 1-dimensional

constituents of σ|ΩnUn are trivial on Un. They are of the form ωj|ΩnUn and can be identified

with the corresponding character χ = ωj of Ω. Since σ ⊗ σ1
∼= σ, where σ1 = ω

p−1
2 , it

follows that if χ is a constituent in σ|ΩnUn , then so is χω
p−1
2 . Also, the multiplicities are

equal. The characters χ and χω
p−1
2 have the same restriction to ∆ℓ. Therefore, each power

of ωℓ occurs with even multiplicity in σℓ. In particular, 〈σℓ, ϕℓ〉 is indeed even. This proves

the p-modularity of fWℓ
on the set Rep

(sd)
F (D)♯ for ℓ ∈ SE,K , and hence for all ℓ. The stated

assertion about fDel is a consequence.

Now suppose that σ ∈ Irr
(sd)
F (D) and that n(σ) > 1. Then σ is P -induced. The isomor-

phism (13.3.f) and the remarks after it then imply the following equalities.

fDel(σ) = fDel(σΩ) = fDel(σ0 ⊕ σ1) .

This gives the assertion concerning the root numbers. The final statement concerning coranks
of Selmer groups then follows from the results of J. Nekovář and of T. and V. Dokchitser
discussed at the beginning of this illustration. �

We continue making all the assumptions in proposition 13.3.2, except for the assumption
that S

(nr)
E,K be empty. Suppose that ℓ ∈ S

(nr)
E,K . In particular, ℓ has even order modulo p.

Suppose that σ ∈ Irr
(sd)
F (D) and n(σ) > 1. Recall that fϕℓ

(σ) = (−1)δE,ℓ(σ). Applying
proposition 8.3.8 to σ, we obtain

δE,ℓ(σ) =
dimF

(
WUn
σ

)

wℓ
,
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where we have used the fact that α(E, ℓ) = 1. The fact that σ⊗χ ∼= σ for all χ ∈ Ω̂ implies
that dimF

(
WUn
σ

)
is divisible by p − 1. We will write this dimension as (p − 1)b(σ), where

b(σ) is a nonnegative integer. Applying proposition 8.3.8 to σΩ gives

δE,ℓ(σΩ) =
p− 1

wℓ
.

Referring to remark 12.2.2, we know that fWℓ
fϕℓ

is p-modular. Using that fact together with
(13.3.f), we obtain

fWℓ
(σ)
/
fWℓ

(σΩ) = fϕℓ
(σ)
/
fϕℓ

(σΩ) = (−1)

(
δE,ℓ(σ)−δE,ℓ(σΩ)

)
.

Thus, we have WDel(E, σ) = WDel(E, σ0)WDel(E, σ1)(−1)a(σ) =
(
−NE

p

)
(−1)a(σ), where

a(σ) =
∑

ℓ

(
dimF

(
WUn
σ

)

wℓ
− p− 1

wℓ

)
=
(
b(σ) − 1

)
·
∑

ℓ

p− 1

wℓ
.

In the sums, ℓ varies over the set S
(nr)
E,K . However, note that if a prime ℓ is a quadratic residue

modulo p, then p−1
wℓ

is even. Therefore, if one wishes, one can allow the above sums to be
over all primes ℓ ∈ SE,K instead. The extra terms are even.

Thus, we have the congruence a(σ) ≡
(
b(σ)− 1

)
· |S(nr)

E,K | (mod 2) and therefore the value

of WDel(E, σ) is determined by
(
−NE

p

)
and the parities of b(σ) and |S(nr)

E,K |. The results of
Nekovář and T. and V. Dokchitser then imply the following congruence:

(13.3.i) sE(σ) ≡ corankZp

(
SelE(L)p

)
+
(
b(σ) − 1

)
· |S(nr)

E,K | (mod 2) .

We now reintroduce the subscripts on the K’s. If the right hand side in (13.3.i) is odd for

all σ ∈ Irr
(sd)
F

(
Gal(Kn/Q)

)
, then the lower bounds on corankZp

(
SelE(Kn)p

)
discussed earlier

will hold. These remarks are valid under the assumptions that we are now making. In
particular, assumption (13.3.h) is needed.

Suppose that D = Bn. The self-dual irreducible representations of D of degree > 1 are
the γr’s defined in D1 of section 7.4, where 0 ≤ r ≤ n. The irreducible constituents of γr|Un

are the characters of Un of order pr+1 and hence are all nontrivial. Hence dimF

(
WUn
γr

)
= 0.

Thus, b(γr) = 0. The above discussion leads us to the following formulas for root numbers:

WDel(E, γr) =

(−NE

p

) ∏

l∈SE,K0

(
l

p

)
= (−1)corankZp

(
SelE(L)p

)
·
∏

l∈SE,K0

(
l

p

)
.
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We write K0 here because we continue to assume (13.3.h). If one also makes the assumption

that corankZp

(
SelE(L)p

)
+ |S(nr)

E,K0
| is odd, then the above formula and theorem 1.3 in [Dok5]

give the following inequality:

corankZp

(
SelE(Kn)p

)
≥ corankZp

(
SelE(L)p

)
+ pn+1 − 1 .

For example, we might have Kn = Q
(
µpn+1 , pn+1√

m
)
, where m is an integer. The

ramification assumption (13.3.h) means that if ℓ|m and ℓ 6= p, then p ∤ ordℓ(m). If that
assumption is satisfied, then

SE,Kn = SE,K0 = {ℓ | ℓ divides m, and ℓ ∈ Ψ
(st)
E } .

The above formula for the root numbers WDel(E, γr) was proved in this case by V. Dokchitser
and is mentioned in (A.33) in the appendix to [Dok6]. If one allows ordℓ(m) to be divisible
by p for some ℓ’s dividing m, then the formula for WDel(E, γr) is still valid if r is sufficiently
large if one replaces K0 by Kn, where n ≥ r. This is so because the index of Iℓ(Kn/Q)
in Un will become constant as n increases. Consequently, one still gets a lower bound for
corankZp

(
SelE(Kn)p

)
of the form pn+1 − c, where c is a constant.

Suppose now that D = Hn. Suppose that 0 ≤ r ≤ n. According to proposition 7.4.4, Hr

has certain self-dual irreducible representations σ of degree (p− 1)pr. They are the faithful
irreducible representations of Hr. Up to isomorphism, there are pr such representations.
Regarding any such representation σ as a representation ofHn, we have σ|Bn

∼= γr. Therefore,
dimF

(
WUn
σ

)
= 0 and hence b(σ) = 0. As a consequence, the corresponding root number is

given by the same formula as the one given above for WDel(E, γr). That is, assuming that
(13.3.h) is satisfied and that σ is r-primitive and has degree pr(p−1), the value of WDel(E, σ)

is determined by the parity of the quantity corankZp

(
SelE(L)p

)
+ |S(nr)

E,K0
|. If that quantity

is odd, then we get the following inequality:

corankZp

(
SelE(Kn)p

)
≥ corankZp

(
SelE(L)p

)
+

p2n+2 − 1

p+ 1
.

This bound is not as good as (13.3.c). It only includes some of the terms in θorth(Hn) − 2.
In contrast, consider the non-faithful irreducible representation σ of Hr which occurs

as a constituent in σ
(st)
r |Hr according to proposition 7.4.4. Then n(σ) = (p − 1)pr-1. For

1 ≤ r ≤ n, we can regard σ as a representation of D = Hn. For such σ, we have

dimF

(
WUn
σ

)
= 〈σ(st)

r |Ur ,1Ur〉 = (p− 1)p[(r-1)/2] ,

as mentioned in section 8.2. Therefore, b(σ) is odd, a(σ) is even, and we have the formula

WDel(E, σ) =

(−NE

p

)
.
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If −NE is a quadratic nonresidue modulo p, or equivalently if corankZp

(
SelE(L)p

)
is odd,

then all of these root numbers are −1 and one gets the inequality

corankZp

(
SelE(Kn)p

)
≥ corankZp

(
SelE(L)p

)
+ pn − 1

even if |S(nr)
E,K0

| happens to be odd. Of course, if |S(nr)
E,K0

| is even, one obtains a much better
inequality because of the contribution from the r-primitive representations considered in the
previous paragraph.
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[Nek5] J. Nekovář, Growth of Selmer groups of Hilbert modular forms over ring class fields,
Ann. E. N. S. 41 (2008), 1003 - 1022.

[Nic] A. Nichifor, Iwasawa theory for elliptic curves with cyclic isogenies, University of
Washington Ph. D. thesis, 2004,

[NSW] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Grundlehren
der Math. Wissenschaften 323 (2000), Springer.

[Rei] I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer.
Math. Soc. 8 (1957), 142-146.

[Ro94] D. Rohrlich, Elliptic curves and the Weil-Deligne group, in Elliptic Curves and
Related Topics, CRM Proceedings and Lecture Notes 4 (1994), 125-157.

215



[Ro96] D. Rohrlich, Galois theory, elliptic curves, and root numbers, Comp. Math. 100
(1996), 311-349.

[Ro06] D. Rohrlich, Root numbers of semistable elliptic curves in division towers, Math.
Research Letters 13 (2006), 359-376.

[Ro07] D. Rohrlich, Scarcity and abundance of trivial zeros in division towers, J. Alg. Geom.
17 (2008), 643-675.

[Ro08] D. Rohrlich, Galois invariance of local root numbers, preprint.

[Ro09] D. Rohrlich, Root numbers, in preparation.

[RuSi] K. Rubin, A. Silverberg, Families of elliptic curves with constant mod p represen-
tations, in Elliptic curves, modular forms, and Fermat’s last theorem, Hong Kong,
International Press, (1995), 148-161.

[Sch] P. Schneider, p-Adic height pairings II, Invent. Math. 79 (1985), 329-374.

[Se68] J. P. Serre, Corps locaux, Actualités scientifiques et industrialles 1296, (1968),
Hermann.

[Se72] J. P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques,
Invent. Math. 15 (1972), 259-331.

[Se77] J. P. Serre, Linear representations of finite groups, Graduate Texts in Math. (1977),
Springer.

[SeTa] J. P. Serre, J. Tate, Good reduction of abelian varieties, Ann. of Math. 88 (1968),
492-517.

[Shu] M. Shuter, Descent on division fields of elliptic curves, University of Cambridge Ph.
D. thesis (2006).

[Sil] A. Silberger, PGL2 over the p-adics, its representations, spherical functions, and
Fourier series, Lecture Notes in Math. 166 (1970), Springer.

[Tri] M. Trifkovic, On the vanishing of µ-invariants of elliptic curves over Q, Canadian
Jour. of Math. 57 (2005), 812-843.
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