Practice questions for the midterm

1. Suppose that G is an abelian group and that $a, b \in G$. Suppose that $|a|=3$ and $|b|=5$. Prove that $|a b|=15$.
2. Suppose that G is a group and that $c \in G$. Suppose that $|c|=15$. Prove that there exist elements $a, b \in G$ such that $|a|=3, \quad|b|=5$, and $a b=c$.
3. Let $G=S_{8}$. Show that there exist elements $a, b \in G$ such that $|a|=3$ and $|b|=5$, but $|a b| \neq 15$.
4. Let σ be the following element in S_{9} :

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 3 & 4 & 5 & 1 & 8 & 9 & 7 & 6
\end{array}\right)
$$

(a) Find the cycle decomposition of σ.
(b) Let $H=\langle\sigma\rangle$, the cyclic subgroup of S_{9} generated by σ. Determine $|H|$.
(c) Does there exist an element $\tau \in S_{9}$ such that $\tau \sigma \tau^{-1}=\tau^{3}$? If so, find such a τ. If not, explain why.
(d) Does there exist an element $\tau \in S_{9}$ such that $\tau \sigma \tau^{-1}=\tau^{2}$? If so, find such a τ. If not, explain why.
5. Give an example of a nonabelian group G of order 42 .
6. Give two examples of non-isomorphic groups G such that G is nonabelian, but every proper subgroup of G is cyclic.
7. Give an example of non-isomorphic groups G such that G is nonabelian, every proper subgroup of G is abelian, and at least one proper subgroup is not cyclic.
8. Determine the center of the group Q_{8}. Determine the center of the group D_{4}. Determine the center of the group $G=A \times B$, where A and B are groups of order 4 .

