DEFINITION: A group (G, \circ) is a set G together with a binary operation \circ on G that satisfies the following three requirements:

- (i) The operation \circ is associative. That is, $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a, b, c \in G$.
- (ii) There exists an element $e \in G$ such that $e \circ a = a$ and $a \circ e = a$ for all $a \in G$. The element e is called the *identity element* of G.
- (iii) For each element $a \in G$, there exists an element $b \in G$ such that $a \circ b = e$ and $b \circ a = e$. The element b is called the *inverse* of a and is usually denoted by a^{-1} .

Assignment 1 (due on Friday, January 18th)

Section 3.4: Problems 2, 6, 7, 8, 10, 15, 25, 26, 31, 40, 44, 45