The Primitive Element Theorem.

The Primitive Element Theorem. Assume that F and K are subfields of \mathbb{C} and that K/F is a finite extension. Then $K = F(\theta)$ for some element θ in K.

Proof. The key step is to prove that if $K = F(\alpha, \beta)$, then $K = F(\theta)$ for some element θ in K. We will find such a θ of the following form:

$$\theta = \alpha + f \beta,$$

where $f \in F$. We will assume in the rest of this proof that θ has this specific form. Note that $\theta \in K$ since $f \in F$ and $\alpha, \beta \in K$. Since F is a subfield of \mathbb{C}, F contains \mathbb{Q}, and is therefore infinite. Assuming that θ has the above form, we will actually prove that $K = F(\theta)$ for all but finitely many choices of $f \in F$.

Note that $\alpha, \beta \in K$, a finite extension of F, and hence α and β are algebraic over F. Let $g(x)$ be the minimal polynomial for α over F. Let $h(x)$ be the minimal polynomial for β over F. Then both $g(x)$ and $h(x)$ are in $F[x]$ and are irreducible over F. We have

$$g(x) = \prod_{i=1}^{m} (x - \alpha_i), \quad h(x) = \prod_{j=1}^{n} (x - \beta_j),$$

where $m = \deg(g(x))$, $n = \deg(h(x))$, $\alpha_1, ..., \alpha_m$ are distinct elements of \mathbb{C}, and $\beta_1, ..., \beta_n$ are distinct elements of \mathbb{C}. This follows from a result proved in class: An irreducible polynomial over a subfield of \mathbb{C} cannot have multiple roots in \mathbb{C}.

We assume that the indexing is such that $\alpha = \alpha_1$ and $\beta = \beta_1$. For any specific subscripts i, j satisfying $1 \leq i \leq m$ and $2 \leq j \leq n$, the equation

$$\alpha_i + f \beta_j = \alpha + f \beta$$

holds for exactly one $f \in \mathbb{C}$ and therefore for at most one $f \in F$. This is true because $\beta_j \neq \beta$ for $j \geq 2$. Since F is infinite, we can therefore suppose from here on that f is chosen so that none of the above equations hold. That is, since $\theta = \alpha + f \beta$, we can assume that

$$\theta \neq \alpha_i + f \beta_j \text{ for all } i, j \text{ satisfying } 1 \leq i \leq m, \ 2 \leq j \leq n.$$

Let $E = F(\theta)$. Since $\theta \in K$, E is a subfield of K. Consider the polynomial $k(x) = g(\theta - f x)$. One can use the binomial theorem to write $k(x)$ as a polynomial. Its coefficients will be in \mathbb{C}. More precisely, since $g(x) \in F[x]$, f and θ are in the field E, and $F[x] \subseteq E[x]$, it follows that $k(x) \in E[x]$. Notice also that

$$K = F(\alpha, \beta) = F(\alpha, \beta, \alpha + f \beta) = F(\beta, \alpha + f \beta) = F(\theta, \beta) = E(\beta).$$
We will prove that \(K = E \) by showing that \([K : E] = 1\). Let \(p(x) \) denote the minimal polynomial for \(\beta \) over \(E \). Since \(K = E(\beta) \), we can say that \([K : E] = \deg(p(x))\). Hence we must show that \(\deg(p(x)) = 1 \).

By definition, \(\beta \) is a root of \(h(x) \). Since \(h(x) \in F[x] \subseteq E[x] \), it follows that \(p(x)|h(x) \) in \(E[x] \).

Therefore, the set of roots of \(p(x) \) in \(C \) must be a subset of the set \(\{\beta_1, \ldots, \beta_n\} \). However, \(\beta \) is also a root of \(k(x) \) because

\[
k(\beta) = g(\theta - f\beta) = g(\alpha + f\beta - f\beta) = g(\alpha) = 0,
\]

using the fact that \(\alpha \) is one of the roots of \(g(x) \) in \(C \). Hence, since \(k(x) \in E[x] \), we can also say that \(p(x)|k(x) \) in \(E[x] \). We are again using the fact that \(p(x) \) is the minimal polynomial for \(\beta \) over \(E \).

Suppose that \(2 \leq j \leq n \). We will show that \(\beta_j \) is not a root of \(k(x) \). To see this, note that \(k(\beta_j) = g(\theta - f\beta_j) \). Thus,

\[
k(\beta_j) = 0 \iff g(\theta - f\beta_j) = 0 \iff \theta - f\beta_j = \alpha_i
\]

for some index \(i \), \(1 \leq i \leq m \). This is because the roots of \(g(x) \) in \(C \) are \(\alpha_1, \ldots, \alpha_m \). But then we would have \(\theta = \alpha_i + f\beta_j \), contrary to the way that we chose \(f \) before. It follows that, if \(2 \leq j \leq n \), then \(\beta_j \) is not a root of \(p(x) \).

In summary, we have proved that every root of \(p(x) \) in \(C \) must be contained in the set \(\{\beta_1, \ldots, \beta_n\} \), but the elements \(\beta_2, \ldots, \beta_n \) of that set are actually not roots of \(p(x) \). Therefore, \(p(x) \) has exactly one root in \(C \), namely \(\beta_1 = \beta \). Since \(p(x) \) is irreducible over \(E \), a subfield of \(C \), \(p(x) \) cannot have multiple roots. We can therefore conclude that \(\deg(p(x)) = 1 \), as we wanted to prove. Therefore, we have proved that \(K = E = F(\theta) \).

To finish the proof of the primitive element theorem, it is clear that we can find a finite subset \(\{\gamma_1, \ldots, \gamma_t\} \) of \(K \) so that \(K = F(\gamma_1, \ldots, \gamma_t) \). We will refer to such a set \(\{\gamma_1, \ldots, \gamma_t\} \) as a “generating set” for the extension \(K/F \). For example, we could simply take \(\{\gamma_1, \ldots, \gamma_1\} \) to be a basis for \(K \) as a vector space over \(F \). Suppose that \(\{\gamma_1, \ldots, \gamma_t\} \) is a generating set for the extension \(K/F \) and that \(t > 1 \). We will show that we can find another generating set for \(K/F \) which has only \(t - 1 \) elements. Consider the field \(F(\gamma_1, \gamma_2) \), which is a subfield of \(K \) and therefore a finite extension of \(F \). Taking \(\alpha = \gamma_1 \) and \(\beta = \gamma_2 \), the result proved above shows that we have \(F(\gamma_1, \gamma_2) = F(\theta_1) \) for some suitably chosen element \(\theta_1 \) in \(K \). If \(t = 2 \), we are done. If \(t > 2 \), then we have

\[
K = F(\gamma_1, \ldots, \gamma_t) = F(\gamma_1, \gamma_2)(\gamma_3, \ldots, \gamma_t) = F(\theta_1)(\gamma_3, \ldots, \gamma_t) = F(\theta_1, \gamma_3, \ldots, \gamma_t),
\]

and so we do have a generating set \(\{\theta_1, \gamma_3, \ldots, \gamma_t\} \) for \(K \) over \(F \) with just \(t - 1 \) elements. Continuing, we eventually find a generating set for \(K/F \) with just one element. This proves the Primitive Element Theorem.