
Solutions for the Practice Questions for the Final

A. Let σ be the following element in S9:

σ =

(
1 2 3 4 5 6 7 8 9
3 5 2 4 8 7 9 1 6

)
.

(a) Find the cycle decomposition of σ.

Solution. Here are the orbits:

1 7→ 3 7→ 2 7→ 5 7→ 8 7→ 1, 4 7→ 4, 6 7→ 7 7→ 9 7→ 6

and so we have the following cycle decomposition for σ:

σ = (1 3 2 5 8)(4)(6 7 9) = (1 3 2 5 8)(6 7 9) .

(b) Does there exist an element τ ∈ S9 such that τστ−1 = σ4 ? If so, find such a τ . If not,
explain why.

Solution. Since (1 3 2 5 8) and (6 7 9) and have orders 5 and 3, respectively, we have

(1 3 2 5 8)4 = (1 3 2 5 8)−1 = (8 5 2 3 1) and (6 7 9)4 = (6 7 9) .

Since (1 3 2 5 8) and (6 7 9) are disjoint cycles, they commute with each other. Therefore,

σ4 =
(
(1 3 2 5 8)(6 7 9)

)4
= (1 3 2 5 8)4(6 7 9)4 = (8 5 2 3 1)(6 7 9) ,

which is a product of disjoint cycles of lengths 5 and 3, just like σ. As discussed in class, σ
and σ4 must therefore be conjugate in S9. By the Conjugacy Principle, we can take

τ =

(
1 2 3 4 5 6 7 8 9
8 2 5 4 3 6 7 1 9

)
.

With this choice of τ , we have τστ−1 = σ4.

(c) Does there exist an element τ ∈ S9 such that τστ−1 = σ6 ? If so, find such a τ . If not,
explain why.
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Solution. Note that |σ| = 15. Note also that gcd(6, 15) = 3. Therefore, we have a formula∣∣σ6
∣∣ =

15

3
= 5

Since the orders of σ and σ6 are not equal, those elements of S9 cannot be conjugate in S9.
Therefore, no such τ exists.

B. Consider the element σ = (1 3)(2 4) in S4. Let C(σ) denote the centralizer of σ in S4.
Determine C(σ). (Hint: Proposition 5 on the handout about Conjugacy might be helpful.)

Solution. Note that there are exactly three elements in S4 with the same cycle decompo-
sition type as σ. Thus, the conjugacy class of σ has cardinality equal to 3. Therefore, by
proposition 5 on the conjugacy handout, we have [S4 : C(σ)] = 3. Thus |S4|

/
|C(σ)| = 3. It

follows that
∣∣C(σ)

∣∣ = 8.

Note that σ ∈ D4. In fact, σ corresponds to a 180o rotation of the square. We know that
the center Z(D4) = {e, σ}. Thus, σ commutes with every element of D4. It follows that
D4 ⊆ C(σ). Both of those groups have order 8. Therefore, we must have D4 = C(σ). This
determines C(σ). We have C(σ) = D4.

C. Suppose that G is a group. Suppose that N is a normal subgroup of G and that |N | = 2.
Prove that N ⊆ Z(G).

Solution Since N has order 2, we have N = {e, n}, where e is the identity element in G
and n 6= e. Thus, n has order 2. If g ∈ G, then gng−1 also has order 2. Since N is a normal
subgroup of G, we know that gng−1 ∈ N for all g ∈ G. The only element in N of order 2 is
n itself. Hence we must have gng−1 = n for all g ∈ G. That is, gn = ng for all g ∈ G. It
follows that n ∈ Z(G). Of course, we also have e ∈ Z(G). Therefore, N ⊆ Z(G), as stated.
We have proved that N is a subgroup of Z(G).

D. Suppose that G is a group and that M and N are normal subgroups of G. Assume also
that M ∩N = {e}, where e is the identity element in G. Suppose that m ∈ M and n ∈ N .
Prove that mn = nm.

Solution. We will assume that m ∈ M and n ∈ N . We want to prove that mn = nm.
Equivalently, we want to prove that (mn)(nm)−1 = e, where e is the identity element of G.
Let

g = (mn)(nm)−1 = mnm−1n−1 .
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We want to prove that g = e. Note that

g =
(
mnm−1

)
n−1 and g = m

(
nm−1n−1

)
.

Since N is a normal subgroup of G and m ∈ G, we have mNm−1 ⊆ N . Thus, mnm−1 ∈ N .
Since n−1 ∈ N , we have

g =
(
mnm−1

)
n−1 ∈ N .

Since M is a normal subgroup of G and n ∈ G, we have nMn−1 ⊆ N . Since m−1 ∈ M , it
follows that nm−1n−1 ∈M . Since m ∈M , we then have

g = m
(
nm−1n−1

)
∈ M .

We have proved that g ∈ N and that g ∈ M . It follows that g ∈ M ∩ N . Since we are
assuming that M ∩ N = {e}, it follows that g = e. As pointed out above, it follows that
mn = nm, which is what we wanted to prove.

E. Let A = Z/2Z×Z/2Z. For each of the following groups G, determine if G has a subgroup
isomorphic to A. Justify your answers fully.

G = S3, G = S4 , G = Q8 ,

G = D4 , G = Z/4Z× Z/2Z , G = Z/48Z .

Solution. The group G = S3 has no subgroup isomorphic to A. Justification: Since
|G| = 6, any subgroup of G has order dividing 6. Hence G cannot have a subgroup of order
4. But |A| = 4 and any group isomorphic to A must have order 4.

The group G = S4 has a subgroup isomorphic to A, namely the Klein 4-group

V = { e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) }

We know that V is a subgroup of S4. If we let H = 〈(1 2)(3 4)〉 and K = 〈(1 3)(2 4)〉. Then
H and K are subgroups of V of order 2 and we have H ∩ K = {e}. Furthermore, since
V is abelian, every element of H commutes with every element of K. Also, it is clear that
HK = V . As proved in class one day, it follows that V ∼= H ×K. Both H and K are cyclic
of order 2. Therefore, both H and K are isomorphic to Z2 = Z/2Z. It follows that V ∼= A.
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The quaternionic group G = Q8 has no subgroup isomorphic to A. In fact, G has only one
element of order 2, namely −1. Therefore, if H is any subgroup of G of order 4, then H
must contain an element of order 4. Thus, H cannot be isomorphic to A because A has no
elements of order 4.

The group G = D4 has a subgroup isomorphic to A. Using the definition given in class,
we can regard D4 as a subgroup of S4. That subgroup contains the Klein 4-group V . As
pointed out above, V is isomorphic to A. Hence D4 contains a subgroup isomorphic to A.

The group G = Z/4Z × Z/2Z contains a subgroup isomorphic to A. We will use additive
notation for G. Since G is abelian, the map φ : G → G defined by φ(g) = 2g for all g ∈ G
is a homomorphism. Let

K = Ker(φ) = { g ∈ G | 2g = e }

where e is the identity element of G. Of course, K is a subgroup of G. Using the standard
notation for congruence classes, this subgroup H is as follows:

K = {
(
[0]4, [0]2

)
,
(
[0]4, [1]2

)
,
(
[2]4, [0]2

)
,
(
[2]4, [1]2

)
}

It is clear that K is isomorphic to the direct product of two cyclic groups of order 2, and
hence K is isomorphic to A.

The group G = Z/48Z has no subgroup isomorphic to A. Justification: Since G is cyclic,
every subgroup of G must also be cyclic. But A is not cyclic. Any group isomorphic to A
will also fail to be cyclic. Hence no subgroup of G can be isomorphic to A.

F: Recall that R is a group under + and that Z is a subgroup of R.

(a) Explain why Z is a normal subgroup of R.

Solution. The group R under the operation + is abelian. Hence every subgroup of R is
normal. Obviously, Z is a subgroup of R and hence must be a normal subgroup of R.

(b) Show that R/Z contains infinitely many elements of finite order.

Solution. The elements of R/Z are of the form r + Z, where r ∈ R. The elements of Q/Z
are of the form a + Z, where a ∈ Q. We can regard Q/Z as a subgroup of R/Z. Every
element of Q/Z has a finite order ( a fact proved in one of the homework problems). Also,
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Q/Z is an infinite group. Thus, the infinite subgroup Q/Z of R/Z consists of elements of
finite order.

(c) How many elements in R/Z have order 7? How many elements have order 49?

Solution.. Consider r + Z, where r ∈ R. The identity element in R/Z is 0 + Z = Z. Also,

7(r + Z) = 0 + Z ⇐⇒ 7r ∈ Z ⇐⇒ r =
m

7
with m ∈ Z .

Also, if m is not divisible by 7, then r 6∈ Z, and r+Z 6= Z. It follows that if r has denominator
equal to 7, then r + Z has order 7. All the element of R/Z of order 7 are of that form. An
example of an element of order 7 in R/Z is g = 1

7
+ Z. All the element of R/Z of order 7

(which we just described) are of the form mg, where m ∈ Z. Thus, they are in the cyclic
subgroup 〈g〉 which has order 7. There are six elements in that subgroup, apart from the
identity element. They are the elements of order 7 in R/Z. Thus, R/Z has exactly six
elements of order 7.

For similar reasons to the above, any element of order 49 in R/Z will be of the form
r + Z, where r = m

49
+ Z, where gcd(m, 49) = 1. They are all in the cyclic subgroup of R/Z

generated by g = 1
49

+ Z. Thus, we must just determine the number of elements of order 49
in a cyclic group of order 49. The elements in a cyclic group of order 49 have orders 1, 7,
and 49. Exactly one element has order 1, exactly six elements have order 7. Therefore the
number of elements of order 49 in R/Z is 49-7=42.

(d) Show that R/Z contains infinitely many elements of infinite order.

Solution. One element of infinite order is g =
√

2 + Z. To verify this, assume to the
contrary that g has finite order. Then, for some positive integer m, we would have mg = Z.
That is, we would have m

(√
2 + Z

)
= Z. Equivalently, m

√
2 + Z = Z. This would mean

that m
√

2 ∈ Z. It would follow that m
√

2 = n, where n ∈ Z, and hence
√

2 = n/m. This
contradicts the fact that

√
2 is irrational.

Since g =
√

2 + Z has infinite order, the subgroup 〈g〉 of R/Z is an infinite cyclic group
and hence is isomorphic to Z, considered as a group under addition. Every nonzero element
of Z has infinite order. Therefore, every element of 〈g〉, except for the identity element, must
have infinite order.

G. In this problem, suppose that G and G′ are groups and that ϕ : G→ G′ is a homomor-
phism. Suppose that a ∈ G and that |a| = m, where m ≥ 1.
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(a) Prove that |ϕ(a)| divides m.

Solution.. Since |a| = m, we have am = e, the identity element in G. Since ϕ is a
homomorphism, we know that ϕ(e) = e′, the identity element in G′. We also have ϕ(am) =
ϕ(a)m. Therefore,

ϕ(a)m = ϕ(am) = ϕ(e) = e′ .

Since ϕ(a)m = e′, it follows that the order of ϕ(a) divides m. That is, |ϕ(a)| divides m.

(b) Let N = Ker(ϕ). Suppose that N is finite and that gcd(m, |N |) = 1. Prove that
|ϕ(a)| = m.

Solution. Let n = |ϕ(a)|. From part (a), we know that n divides m. Let d = m/n. Then d
is a positive integer and m = nd. Furthermore,

ϕ(an) = ϕ(a)n = e′ .

Therefore, an ∈ Ker(ϕ). That is, an ∈ N . Notice that (an)d = am = e. Thus, an is an
element of N and |an| must divide d. But, N is assumed to be a finite group and we know
that the order of every element of N must divide |N |. Thus, |an| must divide |N | and must
also divide d. Since d divides m, it follows that |an| must divide both |N | and m.

We are assuming that gcd(m, |N |) = 1. Since |an| is a common divisor of m and |N |, it
follows that |an| = 1. Therefore, an = e. Thus, m = |a| must divide n. But m = nd and
so n also divides m. Therefore, n = m. That is, |ϕ(a)| = m, which is what we wanted to
prove.

(c) Give a specific example where |a| = 25 and |ϕ(a)| = 5. Justify your answer. (Note: You
must specify G, G′, ϕ, and a in your example.)

Solution. Let G be a cyclic group of order 25. Let a be a generator of G. Then |a| = 25.
Let G′ = G. Consider the map ϕ : G → G defined by ϕ(g) = g5 for all g ∈ G. Notice that
ϕ is a homomorphism of G to G. To see this, note that if x, y ∈ G, then

ϕ(xy) = (xy)5 = x5y5 = ϕ(x)ϕ(y) .

Now ϕ(a) = a5. We know that |a5| = 25
gcd(5,25)

= 25
5

= 5. Here we are using proposition 8

on the handout about cyclic groups and orders of elements. It follows that |ϕ(a)| = 5 and
|a| = 25, as we wanted.

To give a specific example, we take G = G′ = Z25 and a = 1 + 25Z. Note that the group
operation is +. Thus, we define ϕ by ϕ(g) = 5g for all g ∈ G.
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